Abstract

We have developed a microlaser encoder that can detect displacements relative to an external grating scale with a resolution on the order of 10 nm. Its size is only a few tens of a percent of a conventional encoder's. A long-lasting InP laser diode with a wavelength of 1550 nm was bonded, along with several photodiode chips, within an alignment accuracy of 1 µm onto a silicon planar lightwave circuit chip. The chip is 2.3 mm × 1.7 mm and includes a fluorinated polyimide lightwaveguide fabricated in advance. A wide gap of more than 600 µm was obtained between the external grating scale and the encoder despite the tiny size of the sensor. When used as a rotary encoder, the number of rotations could also be detected. Thus, this microencoder satisfies the market requirements for practical use.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription