Abstract

This paper describes the design, fabrication, and measurement of backward-wave-cancelled distributed traveling-wave photodetectors. One of the fundamental issues in traveling-wave photodetectors is the generation of backward-waves, which reduces bandwidth or, in the case of matched input termination, reduces their radio-frequency (RF) efficiencies by up to 6 dB. We report a traveling-wave photodetector with multisection coplanar strip transmission lines. The reflections at the discontinuities of the transmission line cancel the backward propagating waves exactly. The bandwidth reduction due to backward-waves is eliminated without sacrificing the RF efficiency. We have demonstrated a broadband backward-wave-cancelled traveling-wave photodetector with three discrete photodiodes. The photodetector is realized in InGaAs/InGaAsP/InP material systems and operates at 1.55 µm. A 3-dB bandwidth of 38 GHz and a linear RF output of - 1 dBm at 40 GHz have been achieved. The experimental results agree very well with the theoretical calculations.

© 2003 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription