Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 19,
  • Issue 9,
  • pp. 1316-
  • (2001)

Increasing Input Power Dynamic Range of SOA by Shifting the Transparent Wavelength of Tunable Optical Filter

Not Accessible

Your library or personal account may give you access

Abstract

Gain-saturation-induced self-phase modulation (SPM) leading to pulse distortion in a semiconductor optical amplifier (SOA) is overcome by shifting a tunable optical filter (TOF). A recovered or broadened pulse can be obtained after filtering the amplified pulse in the SOA even if the short pulse is only 2-3ps long. The input power dynamic range (IPDR) can be strongly increased by shifting the TOF and the direction of the shifted transparent wavelength is different for 10Gb/s return-to-zero (RZ) or nonreturn-to-zero (NRZ) signals. The transparent wavelength of the TOF should be shifted to a longer wavelength for RZ signals and to a shorter for NRZ signals. 80-Gb/s optical time division multiplexing (OTDM) signal amplification in the SOA is demonstrated for the first time. We also demonstrate that a large IPDR for the 80-Gb/s OTDM signal can be obtained by shifting the TOF.

[IEEE ]

PDF Article
More Like This
Multiple-channel optical signal processing with wavelength-waveform conversions, pulsewidth tunability, and signal regeneration

Hung Nguyen Tan, Motoharu Matsuura, Tomoya Katafuchi, and Naoto Kishi
Opt. Express 17(25) 22960-22973 (2009)

Spectral filtering from a cross-phase modulated signal for RZ to NRZ format and wavelength conversion

S. H. Lee, K. K. Chow, and C. Shu
Opt. Express 13(5) 1710-1715 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved