Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 19,
  • Issue 9,
  • pp. 1263-
  • (2001)

Optimum Filter Bandwidths for Optically Preamplified NRZ Receivers

Not Accessible

Your library or personal account may give you access

Abstract

We present a comprehensive treatment of optically preamplified direct detection receivers for non-return-to-zero (NRZ) and return-to-zero (RZ) on/off keying modulation, taking into account the influence of different (N)RZ optical pulse shapes, specified at the receiver input, and filter transfer functions; optical Fabry-Prot filters (FPFs) and Bragg gratings as well as electrical fifth-order Bessel and first-order RC low-pass filters are considered. We determine optimum optical and electrical filter bandwidths and analyze the impact of bandwidth deviations on receiver sensitivity. Optimum receiver performance relies on a balance between noise and intersymbol interference (ISI) for NRZ transmission, while for RZ reception detection noise has to be traded against filter-induced signal energy rejection. Both for NRZ and 33% duty cycle RZ, optical filter bandwidths of around twice the data rate are found to be optimum. Receivers using RZ coding are shown to closely approach the quantum limit, and thus to outperform NRZ-based systems by several decibels. We further analyze the impact of important degrading effects on receiver sensitivity and optimum receiver bandwidths,including receiver noise, finite extinction ratio, chirp, and optical carrier frequency (or optical filter center frequency) fluctuations.

[IEEE ]

PDF Article
More Like This
Receiver sensitivity of type-II return-to-zero signals having finite extinction ratios

Jihoon Lee and Hoon Kim
Opt. Express 30(23) 42594-42604 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.