Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 19,
  • Issue 10,
  • pp. 1420-
  • (2001)

WDM Packet Routing for High-Capacity Data Networks

Not Accessible

Your library or personal account may give you access

Abstract

We present experimental and numerical studies of a novel packet-switch architecture, the data vortex, designed for large-scale photonic interconnections. The selfrouting multihop packet switch efficiently scales to large port counts (>10 k) while maintaining low latencies,a narrow latency distribution, and high throughput. To facilitate optical implementation, the data-vortex architecture employs a novel hierarchical topology, traffic control, and synchronous timing that act to reduce the necessary routing logic operations and buffering. As a result of this architecture,all routing decisions for the data packets are based on a single logic operation at each node. The routing is further simplified by the employment of wavelength division multiplexing (WDM)-encoded header bits, which enable packet-header processing by simple wavelength filtering. The packet payload remains in the optical domain as it propagates through the data-vortex switch fabric, exploiting the transparency and high bandwidths achievable in fiber optic transmission. In this paper, we discuss numerical simulations of the data-vortex performance and report results from an experimental investigation of multihop WDM packet routing in a recirculating test bed.

[IEEE ]

PDF Article
More Like This
Numerical and experimental study of a high port-density WDM optical packet switch architecture for data centers

S. Di Lucente, J. Luo, R. Pueyo Centelles, A. Rohit, S. Zou, K. A. Williams, H. J. S. Dorren, and N. Calabretta
Opt. Express 21(1) 263-269 (2013)

On the Performance of a Large-Scale Optical Packet Switch Under Realistic Data Center Traffic

Nicola Calabretta, Roger Pueyo Centelles, Stefano Di Lucente, and Harmen J. S. Dorren
J. Opt. Commun. Netw. 5(6) 565-573 (2013)

OPSquare: A Flat DCN Architecture Based on Flow-Controlled Optical Packet Switches

Fulong Yan, Wang Miao, Oded Raz, and Nicola Calabretta
J. Opt. Commun. Netw. 9(4) 291-303 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved