Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 17,
  • Issue 5,
  • pp. 904-
  • (1999)

Wavelength Add-Drop Switching Using Tilting Micromirrors

Not Accessible

Your library or personal account may give you access

Abstract

This paper describes a single-mode optical fiber switch which routes individual signals into and out of a wavelength multiplexed data stream without interrupting the remaining channels. The switch uses free-space optical wavelength multiplexing and a column of micromechanical tilt-mirrors to switch 16 channels at 200 GHz spacing from 1531 to 1556 nm. The electrostatically actuated tilt mirrors use an 80 V peak-to-peak 300 KHz sinusoidal drive signal to switch between 10 with a 20 \mus response. The total fiber-to-fiber insertion loss for the packaged switch is 5 dB for the passed signals and 8 dB for added and dropped signals, with 0.2 dB polarization dependence. Switching contrast was 30 dB or more for all 16 channels and all input and output states. We demonstrate operation by switching 622 Mb/s data on eight wavelength channels between the two input and output ports with negligible eye closure.

[IEEE ]

PDF Article
More Like This
A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator

Kazunori Takahashi, Yoshiaki Kanamori, Yasuo Kokubun, and Kazuhiro Hane
Opt. Express 16(19) 14421-14428 (2008)

Fault-tolerant dense multiwavelength add–drop filter with a two-dimensional digital micromirror device

Nabeel A. Riza and Sarun Sumriddetchkajorn
Appl. Opt. 37(27) 6355-6361 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.