Abstract

In this paper, we consider wavelength rerouting in wavelength routed wavelength division multiplexed (WDM) networks with circuit switching, wherein lightpaths between source-destination pairs are dynamically established and released in response to a random pattern of arriving connection requests and connection holding times. The wavelength continuity constraint imposed by WDM networks leads to poor blocking performance. Wavelength rerouting is a viable and cost effective mechanism that can improve the blocking performance by rearranging certain existing lightpaths to accommodate a new request. Recently, in [1], a rerouting scheme called "parallel move-to-vacant wavelength retuning (MTV-WR)" with many attractive features such as shorter disruption period and simple switching control, and a polynomial time rerouting algorithm, for this scheme, to minimize the weighted number of rerouted lightpaths have been proposed. This paper presents a time optimal rerouting algorithm for wavelength-routed WDM networks with parallel MTV-WR rerouting scheme. The algorithm requires only {{O(N}}^{{2}}{{W)}} time units to minimize the weighted number of existing lightpaths to be rerouted, where { N} is the number of nodes in the network and { W} is the number of wavelength channels available on a fiber link. Our algorithm is an improvement over the earlier algorithm proposed in [1] that requires {{O(N}}^{{3}}{{W+N}}^{ {2}}{{W}}^{ {2}}{{)}} time units, which is not time optimal. The simulation results show that our algorithm improves the blocking performance considerably and only very few lightpaths are required to be rerouted per rerouting. It is also established through simulation that our algorithm is faster than the earlier rerouting algorithm by measuring the time required for processing connection requests for different networks.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription