Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 17,
  • Issue 11,
  • pp. 2261-
  • (1999)

Limits on WDM Systems Due to Four-Wave Mixing: A Statistical Approach

Not Accessible

Your library or personal account may give you access

Abstract

For wavelength division multiplexing (WDM) systems over nonzero dispersion fiber, we evaluate the statistics of the eye-closure due to four-wave mixing (FWM) in the presence of arbitrary data values and optical phases in all WDM channels. By Monte Carlo (MC) experiments, we determine the distribution function and the standard deviation of the eye-closure for several channel counts. Convolution of the distribution after a single span yields the eye-closure distribution after multiple amplified spans. The results are used to assess the Q-factor penalty in a WDM system. The limits for optical power, chromatic dispersion and channel spacing can then be found. It is shown that the power of the FWM products can be used to estimate the system penalty due to FWM. When comparing standard single-mode fiber with nonzero dispersion-shifted fiber (NZDSF), we find that standard fiber allows for a triple narrower channel spacing than NZDSF, given the same set of system parameters.

[IEEE ]

PDF Article
More Like This
On the Optimum Detection Threshold for Minimum Bit Error Rate due to Four-Wave Mixing in a WDM System

Santu Sarkar and N. R. Das
J. Opt. Commun. Netw. 5(4) 370-377 (2013)

Evaluation by Monte Carlo simulations of the power limits and bit-error rate degradation in wavelength-division multiplexing networks caused by four-wave mixing

Ioannis Neokosmidis, Thomas Kamalakis, Aristides Chipouras, and Thomas Sphicopoulos
Appl. Opt. 43(26) 5023-5032 (2004)

Higher-order four-wave mixing and its effect in WDM systems

Shuxian Song
Opt. Express 7(4) 166-171 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved