Experimental and theoretical analysis of the gain dynamics of all-optically stabilized multichannel erbium-doped fiber amplifier (EDFA) and the impact on wavelength division multiplexed (WDM) networks performance requirements is presented. In particular, we focus on precise analysis of the detailed transient response of the surviving channel and the relaxation oscillations of the compensating (lasing) signal. The main objective of this work is to experimentally and theoretically analyze and examine some of the critical factors such as, lasing wavelength, gain recovery time, relaxation oscillation frequency of the feedback loop, and the number of channels dropped/added, that affect the transient power excursions in the surviving channel. First, we consider the applicability of laser automatic gain control (AGC) to control fast power transients in WDM optical networks and reports the first high resolution measurements of transients in such gain controlled EDFA's. Second, the experimental results are compared with those predicted from a numerical simulation of the dynamic of the gain controlled EDFA.


PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription