Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Display Technology
  • Vol. 9,
  • Issue 4,
  • pp. 260-265
  • (2013)

Observation of Electroluminescence From Quantum Wells Far From p-GaN Layer in Nitride-Based Light-Emitting Diodes

Not Accessible

Your library or personal account may give you access

Abstract

We report the observation of electroluminescence from the first to fourth quantum wells (QWs) from the <i>p</i>-GaN layer in InGaN/GaN multiple-QW light-emitting diodes (LEDs) with various indium contents (4%–16%) in each QW. The investigated LED sample showed a lower turn-on voltage and ideality factor as well as a reduction of etching pit density compared with the reference sample. Also, the X-ray reciprocal space maps revealed a partial strain relaxation in the active region. The enhanced hole injection efficiency was attributed to the weakening of strain-induced polarization field in the QWs and the good crystalline quality.

© 2013 IEEE

PDF Article
More Like This
InGaN quantum well with gradually varying indium content for high-efficiency GaN-based green light-emitting diodes

Shengjun Zhou, Zehong Wan, Yu Lei, Bin Tang, Guoyi Tao, Peng Du, and Xiaoyu Zhao
Opt. Lett. 47(5) 1291-1294 (2022)

InN/GaN alternative growth of thick InGaN wells on GaN-based light emitting diodes

Chun-Ta Yu, Wei-Chih Lai, Cheng-Hsiung Yen, and Shoou-Jinn Chang
Opt. Mater. Express 3(11) 1952-1959 (2013)

GaN-based ultraviolet light-emitting diodes with AlN/GaN/InGaN multiple quantum wells

Hung-Ming Chang, Wei-Chih Lai, Wei-Shou Chen, and Shoou-Jinn Chang
Opt. Express 23(7) A337-A345 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.