Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Display Technology
  • Vol. 9,
  • Issue 4,
  • pp. 226-233
  • (2013)

On the Effect of Step-Doped Quantum Barriers in InGaN/GaN Light Emitting Diodes

Not Accessible

Your library or personal account may give you access

Abstract

InGaN/GaN light-emitting diodes (LEDs) make an important class of optoelectronic devices, increasingly used in lighting and displays. Conventional InGaN/GaN LEDs of c-orientation exhibit strong internal polarization fields and suffer from significantly reduced radiative recombination rates. A reduced polarization within the device can improve the optical matrix element, thereby enhancing the optical output power and efficiency. Here, we have demonstrated computationally that the step-doping in the quantum barriers is effective in reducing the polarization-induced fields and lowering the energy barrier for hole transport. Also, we have proven experimentally that such InGaN/GaN LEDs with Si step-doped quantum barriers indeed outperform LEDs with wholly Si-doped barriers and those without doped barriers in terms of output power and external quantum efficiency. The consistency of our numerical simulation and experimental results indicate the effects of Si step-doping in suppressing quantum-confined stark effect and enhancing the hole injection, and is promising in improving the InGaN/GaN LED performance.

© 2012 IEEE

PDF Article
More Like This
A PN-type quantum barrier for InGaN/GaN light emitting diodes

Zi-Hui Zhang, Swee Tiam Tan, Yun Ji, Wei Liu, Zhengang Ju, Zabu Kyaw, Xiao Wei Sun, and Hilmi Volkan Demir
Opt. Express 21(13) 15676-15685 (2013)

Enhanced hole transport in InGaN/GaN multiple quantum well light-emitting diodes with a p-type doped quantum barrier

Yun Ji, Zi-Hui Zhang, Swee Tiam Tan, Zhen Gang Ju, Zabu Kyaw, Namig Hasanov, Wei Liu, Xiao Wei Sun, and Hilmi Volkan Demir
Opt. Lett. 38(2) 202-204 (2013)

Efficiency enhancement of III-nitride light-emitting diodes with strain-compensated thin-barrier InGaN/AlN/GaN multiple quantum wells

Chi-Ming Tsai, Chia-Sheng Chang, Zhibo Xu, Wen-Pin Huang, Wei-Chih Lai, and Jong-Shing Bow
OSA Continuum 2(4) 1207-1214 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved