Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Display Technology
  • Vol. 7,
  • Issue 11,
  • pp. 593-600
  • (2011)

Bending Fatigue Study of Sputtered ITO on Flexible Substrate

Not Accessible

Your library or personal account may give you access

Abstract

Recently, there has been a tremendous rise in production of portable electronic devices. To produce flexible devices, flexible substrates should replace conventional glass substrates. Indium–tin–oxide (ITO) is the preferred transparent conducting layer used in the display technology. Although ITO has excellent sheet resistance and very good optical properties, ITO can crack at very low tensile strains which might cause failure in the conductive layer because of the unusual structure of a very thin film of brittle ceramic material applied to a polymer substrate. Therefore, the mechanics of ITO on flexible substrates has been thoroughly considered in the design and manufacturing of flexible devices. In a typical roll-to-roll manufacturing process, many challenges exist during the travel of the coated web over the rollers which produce bending stresses that might cause failure even if the stresses are below the yield strength of the material. Therefore, the high cycle bending fatigue of ITO thin films on flexible substrates is of a significant importance. In this work, high cycle bending fatigue experiments were conducted on ITO coated PET substrate. The effect of bending diameter, bending frequency, and sample width on the change in electrical resistance was investigated. High magnification images were obtained to observe crack initiation and propagating in the ITO layer. The goal of this work is to establish a baseline for a comprehensive reliability study of ITO thin films on flexible substrate. It was found that bending diameters as well as the number of bending cycles have a great influence on the electrical conductivity of the ITO layer.

© 2011 IEEE

PDF Article
More Like This
Anti-reflective coating with a conductive indium tin oxide layer on flexible glass substrates

Yilin Sung, Robert E. Malay, Xin Wen, Christian N. Bezama, Varun V. Soman, Ming-Huang Huang, Sean M. Garner, Mark D. Poliks, and David Klotzkin
Appl. Opt. 57(9) 2202-2207 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.