Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Display Technology
  • Vol. 3,
  • Issue 4,
  • pp. 377-385
  • (2007)

Mixed Color Sequential Technique for Reducing Color Breakup and Motion Blur Effects

Not Accessible

Your library or personal account may give you access

Abstract

This paper proposes a mixed color sequential (MCS) algorithm with high contrast enhancement technique in RGB light-emitting diode (LED) backlight display. Owing to synchronous control of liquid crystal display (LCD) and LED panels, high quality image with suppressed color breakup (CBU) and motion blur effects is achieved by our novel color sequential technique. Importantly, MCS algorithm is useful for color filter-less optical compensated bend (OCB) panel display for alleviating CBU and motion blur effects. Furthermore, high contrast image is also presented on LCD panel because of mixed red–green–blue (RGB) and cyan–magenta-yellow (CMY) backlights with optimum power consumption. In other words, MCS algorithm with high contrast enhancement technique can have the better performance compared with other field sequential color techniques. Experimental results demonstrate by an actual RGB backlight module for 32-in 1366*768 LCD panel the improvement of CBU and motion blur effects.

© 2007 IEEE

PDF Article
More Like This
Deep learning-enabled image content-adaptive field sequential color LCDs with mini-LED backlight

Guowei Zou, Zeyu Wang, Yutong Liu, Juanli Li, Xingyun Liu, Jiahui Liu, Bo-Ru Yang, and Zong Qin
Opt. Express 30(12) 21044-21064 (2022)

Color breakup suppression based on global dimming for field sequential color displays using edge information in images

Fang-Cheng Lin, Zong Qin, Kai-Tung Teng, and Yi-Pai Huang
Opt. Express 27(3) 2335-2343 (2019)

Deep learning-based real-time driving for 3-field sequential color displays with low color breakup and high fidelity

Zeyu Wang, Guowei Zou, Yan Shen, Bo-Ru Yang, and Zong Qin
Opt. Express 31(11) 17999-18016 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved