Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Display Technology
  • Vol. 11,
  • Issue 3,
  • pp. 217-222
  • (2015)

Effect of the Quantum-Well Shape on the Performance of InGaN-Based Light-Emitting Diodes Emitting in the 400–500-nm Range

Not Accessible

Your library or personal account may give you access

Abstract

The electrical and optical properties of InGaN–GaN light-emitting diodes (LEDs) emitting in the 400–500-nm range and having a v-shaped quantum well (VSQW) and a u-shaped quantum well (USQW) are numerically investigated using APSYS simulation program. The simulation results showed that the devices containing VSQW have superior performance in terms of optical power and internal quantum efficiency droop compared to those with USQW. The optical power of the LEDs containing USQW increases gradually and reaches a maximum at 460 nm; however, the optical power of the LEDs with VSQW improves gradually, and the maximum is obtained in a window from 420 to 436 nm as a result of radiative recombination enhancement. The simulation results suggest that the higher performance of the VSQW is due to piezoelectric field reduction and an enhancement of electron and hole wave functions overlap.

© 2014 IEEE

PDF Article
More Like This
InGaN quantum well with gradually varying indium content for high-efficiency GaN-based green light-emitting diodes

Shengjun Zhou, Zehong Wan, Yu Lei, Bin Tang, Guoyi Tao, Peng Du, and Xiaoyu Zhao
Opt. Lett. 47(5) 1291-1294 (2022)

Effects of polarization field distribution on photoelectric properties of InGaN light-emitting diodes

Suihu Dang, Chunxia Li, Pei Sun, Wei Jia, Tianbao Li, and Bingshe Xu
Opt. Mater. Express 4(9) 1848-1855 (2014)

Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells

Hongping Zhao, Guangyu Liu, Jing Zhang, Jonathan D. Poplawsky, Volkmar Dierolf, and Nelson Tansu
Opt. Express 19(S4) A991-A1007 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.