Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Display Technology
  • Vol. 10,
  • Issue 12,
  • pp. 1101-1105
  • (2014)

Carrier Transport Improvement in Blue InGaN Light-Emitting Diodes Via Reduced Polarization Using a Band-Engineered Electron Blocking Layer

Not Accessible

Your library or personal account may give you access

Abstract

This study numerically investigates the effect of using a new electron blocking layer (EBL) for blue InGaN light-emitting diodes (LEDs) to improve hole injection efficiency and electron confinement. Simulation results suggest that the carrier transportation behavior of the EBL can be appropriately modified by adept control of the graded AlGaN layer. Furthermore, when compared with the conventional LED structure, the redesigned LED with graded AlGaN layer shows a slight improvement in forward voltage ${\rm V}_{\rm f}$ and a significant enhancement in light output power. The redesigned LED can achieve an exceptional increment of 106.6% in light output power at 100 mA when compared with conventional LED. The observed improvement in the photoelectric performance of blue LEDs is primarily due to the reduced polarization effect at the last-barrier/EBL interface, as a result of the graded Al composition in EBL.

© 2014 IEEE

PDF Article
More Like This
Performance enhancement of blue light-emitting diodes without an electron-blocking layer by using special designed p-type doped InGaN barriers

Yun-Yan Zhang, Guang-Han Fan, Yi-An Yin, and Guang-Rui Yao
Opt. Express 20(S1) A133-A140 (2012)

Hole injection and electron overflow improvement in InGaN/GaN light-emitting diodes by a tapered AlGaN electron blocking layer

Bing-Chen Lin, Kuo-Ju Chen, Chao-Hsun Wang, Ching-Hsueh Chiu, Yu-Pin Lan, Chien-Chung Lin, Po-Tsung Lee, Min-Hsiung Shih, Yen-Kuang Kuo, and Hao-Chung Kuo
Opt. Express 22(1) 463-469 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.