Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Correlations between Refractive Index and Retroreflectance of Glass Beads for Use in Road-marking Applications under Wet Conditions

Open Access Open Access

Abstract

Visibility of road-surface markings is one of the critical issues that should be secured for self-driving cars as well as human drivers. Glass beads are taking on the role of retroreflectors, and therefore are considered a necessity in modern pavements. In this context, retroreflectance is sensitively dependent not only on the refractive index of glass beads but also on that of the surrounding medium. This implies that the optimum refractive index of glass beads immersed in water, i.e. under wet conditions, is different from that of glass beads surrounded by air, i.e. under dry conditions. A refractive index of approximately 1.9, which is known to maximize retroreflectance under dry conditions, actually exhibits much poorer retroreflectance under wet conditions. This suggests that glass beads with optimal refractive index for wet conditions need to be installed together with those for dry conditions. We propose a facile but practical model capable of calculating retroreflectance of glass beads surrounded by an arbitrary medium, here water in particular, and experimentally verify its capability of assessing the refractive index of commercial glass beads. Changes in retroreflectance according to the mixing ratio of glass beads with different refractive indices are also discussed, in an effort to propose the proper use of glass beads produced for dry and wet conditions.

© 2019 Optical Society of Korea

PDF Article
More Like This
Study of the refractive index of microscopic glass beads by light-refraction analysis

F. Sarcinelli, R. Pizzoferrato, and F. Scudieri
Appl. Opt. 36(34) 8999-9004 (1997)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved