Abstract

Stimulated polariton scattering from the B1-symmetry modes of a KNbO3 crystal to generate a terahertz wave (THz-wave) with a noncollinear phase-matching scheme is investigated. The frequency-tuning characteristics of the THz-wave by varying the phase-matching angle and pump wavelength are analyzed. The expression for the effective parametric gain length under the noncollinear phase-matching condition is deduced. Parametric gain and absorption characteristics of the THz-wave in KNbO3 are theoretically simulated. The characteristics of KNbO3 for a terahertz parametric oscillator (TPO) are compared to those of MgO:LiNbO3. The analysis indicates that KNbO3 is an excellent optical crystal for a TPO, to enhance the THz-wave output.

© 2018 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photon. 2, 541-543 (2008).
    [Crossref]
  2. D. Abbott and X. C. Zhang, “Scanning the issues: T-ray imaging, sensing, and retection,” Proc. IEEE 95, 1509-1513 (2007).
  3. J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627-631 (2010).
    [Crossref]
  4. T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared, Millimeter, Terahertz Waves 32, 143-171 (2011).
    [Crossref]
  5. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97-105 (2007).
    [Crossref]
  6. D. Bigourd, A. Cuisset, F. Hindle, S. Matton, E. Fertein, R. Bocquet, and G. Mouret, “Detection and quantification of multiple molecular species in mainstream cigarette smoke by continuous-wave terahertz spectroscopy,” Opt. Lett. 31, 2356-2358 (2006).
    [Crossref]
  7. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D: Appl. Phys. 35, R1-R14 (2002).
    [Crossref]
  8. D. Wu and T. Ikari, “Enhancement of the output power of a terahertz parametric oscillator with recycled pump beam,” Appl. Phys. Lett. 95, 141105 (2009).
    [Crossref]
  9. Y. J. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Topics Quantum Electron. 13, 705-720 (2007).
    [Crossref]
  10. T. Ikari, R. Guo, H. Minamide, and H. Ito, “Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration,” J. Eur. Opt. Soc. 5, 10054 (2010).
  11. Y. J. Ding and W. Shi, “From backward THz difference-frequency generation to parametric oscillation,” IEEE J. Sel. Topics Quantum Electron. 12, 352-359 (2006).
    [Crossref]
  12. R. Sowade, I. Breunig, C. Tulea, and K. Buse, “Nonlinear coefficient and temperature dependence of the refractive index of lithium niobate crystals in the terahertz regime,” Appl. Phys. B 99, 63-66 (2010).
  13. D. Molter, M. Theuer, and R. Beigang, “Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate,” Opt. Express 17, 6623-6628 (2009).
    [Crossref]
  14. B. Zysset, I. Biaggio, and P. Günter, “Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence,” J. Opt. Soc. Am. B 9, 380-386 (1992).
    [Crossref]
  15. I. Biaggio, P. Kerkoc, L. S. Wu, P. Günter, and B. Zysset, “Refractive indices of orthorhombic KNbO3. II. Phase-matching configurations for nonlinear-optical interactions,” J. Opt. Soc. Am. B 9, 507-517 (1992).
  16. W. Seelert, P. Kortz, D. Rytz, B. Zysset, D. Ellgehausen, and G. Mizell, “Second-harmonic generation and degradation in critically phase-matched KNbO3 with a diode-pumped Q-switched Nd:YLF laser,” Opt. Lett. 17, 1432-1434 (1992).
    [Crossref]
  17. D. G. Bozinis and J. P. Hurrell, “Optical modes and dielectric properties of ferroelectric orthorhombic KNbO3,” Phys. Rev. B 13, 3109-3120 (1976).
    [Crossref]
  18. T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14, 1604-1610 (2006).
    [Crossref]
  19. S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15, 415-431 (1979).
    [Crossref]
  20. S. S. Sussman, Tunable Light Scattering from Transverse Optical Modes in Lithium Niobate (Microwave Laboratory Report No. 1851, Stanford University, 1970), pp. 22-52.

2011 (1)

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared, Millimeter, Terahertz Waves 32, 143-171 (2011).
[Crossref]

2010 (3)

J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627-631 (2010).
[Crossref]

R. Sowade, I. Breunig, C. Tulea, and K. Buse, “Nonlinear coefficient and temperature dependence of the refractive index of lithium niobate crystals in the terahertz regime,” Appl. Phys. B 99, 63-66 (2010).

T. Ikari, R. Guo, H. Minamide, and H. Ito, “Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration,” J. Eur. Opt. Soc. 5, 10054 (2010).

2009 (2)

D. Molter, M. Theuer, and R. Beigang, “Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate,” Opt. Express 17, 6623-6628 (2009).
[Crossref]

D. Wu and T. Ikari, “Enhancement of the output power of a terahertz parametric oscillator with recycled pump beam,” Appl. Phys. Lett. 95, 141105 (2009).
[Crossref]

2008 (1)

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photon. 2, 541-543 (2008).
[Crossref]

2007 (2)

Y. J. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Topics Quantum Electron. 13, 705-720 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97-105 (2007).
[Crossref]

2006 (3)

2002 (1)

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D: Appl. Phys. 35, R1-R14 (2002).
[Crossref]

1992 (3)

1979 (1)

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15, 415-431 (1979).
[Crossref]

1976 (1)

D. G. Bozinis and J. P. Hurrell, “Optical modes and dielectric properties of ferroelectric orthorhombic KNbO3,” Phys. Rev. B 13, 3109-3120 (1976).
[Crossref]

Abbott, D.

D. Abbott and X. C. Zhang, “Scanning the issues: T-ray imaging, sensing, and retection,” Proc. IEEE 95, 1509-1513 (2007).

Beigang, R.

Biaggio, I.

Bigourd, D.

Bocquet, R.

Bozinis, D. G.

D. G. Bozinis and J. P. Hurrell, “Optical modes and dielectric properties of ferroelectric orthorhombic KNbO3,” Phys. Rev. B 13, 3109-3120 (1976).
[Crossref]

Breunig, I.

R. Sowade, I. Breunig, C. Tulea, and K. Buse, “Nonlinear coefficient and temperature dependence of the refractive index of lithium niobate crystals in the terahertz regime,” Appl. Phys. B 99, 63-66 (2010).

Brosnan, S. J.

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15, 415-431 (1979).
[Crossref]

Buse, K.

R. Sowade, I. Breunig, C. Tulea, and K. Buse, “Nonlinear coefficient and temperature dependence of the refractive index of lithium niobate crystals in the terahertz regime,” Appl. Phys. B 99, 63-66 (2010).

Byer, R. L.

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15, 415-431 (1979).
[Crossref]

Chin, S. L.

J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627-631 (2010).
[Crossref]

Cuisset, A.

Dai, J. M.

J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627-631 (2010).
[Crossref]

Ding, Y. J.

Y. J. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Topics Quantum Electron. 13, 705-720 (2007).
[Crossref]

Y. J. Ding and W. Shi, “From backward THz difference-frequency generation to parametric oscillation,” IEEE J. Sel. Topics Quantum Electron. 12, 352-359 (2006).
[Crossref]

Ellgehausen, D.

Fertein, E.

Günter, P.

Guo, R.

T. Ikari, R. Guo, H. Minamide, and H. Ito, “Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration,” J. Eur. Opt. Soc. 5, 10054 (2010).

Hindle, F.

Ho, L.

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photon. 2, 541-543 (2008).
[Crossref]

Hurrell, J. P.

D. G. Bozinis and J. P. Hurrell, “Optical modes and dielectric properties of ferroelectric orthorhombic KNbO3,” Phys. Rev. B 13, 3109-3120 (1976).
[Crossref]

Ikari, T.

T. Ikari, R. Guo, H. Minamide, and H. Ito, “Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration,” J. Eur. Opt. Soc. 5, 10054 (2010).

D. Wu and T. Ikari, “Enhancement of the output power of a terahertz parametric oscillator with recycled pump beam,” Appl. Phys. Lett. 95, 141105 (2009).
[Crossref]

T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14, 1604-1610 (2006).
[Crossref]

Ito, H.

T. Ikari, R. Guo, H. Minamide, and H. Ito, “Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration,” J. Eur. Opt. Soc. 5, 10054 (2010).

T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14, 1604-1610 (2006).
[Crossref]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D: Appl. Phys. 35, R1-R14 (2002).
[Crossref]

Kawase, K.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D: Appl. Phys. 35, R1-R14 (2002).
[Crossref]

Kerkoc, P.

Kleine-Ostmann, T.

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared, Millimeter, Terahertz Waves 32, 143-171 (2011).
[Crossref]

Kortz, P.

Liu, J. L.

J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627-631 (2010).
[Crossref]

Matton, S.

Minamide, H.

T. Ikari, R. Guo, H. Minamide, and H. Ito, “Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration,” J. Eur. Opt. Soc. 5, 10054 (2010).

T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14, 1604-1610 (2006).
[Crossref]

Mizell, G.

Molter, D.

Mouret, G.

Nagatsuma, T.

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared, Millimeter, Terahertz Waves 32, 143-171 (2011).
[Crossref]

Pepper, M.

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photon. 2, 541-543 (2008).
[Crossref]

Rytz, D.

Seelert, W.

Shi, W.

Y. J. Ding and W. Shi, “From backward THz difference-frequency generation to parametric oscillation,” IEEE J. Sel. Topics Quantum Electron. 12, 352-359 (2006).
[Crossref]

Shikata, J.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D: Appl. Phys. 35, R1-R14 (2002).
[Crossref]

Sowade, R.

R. Sowade, I. Breunig, C. Tulea, and K. Buse, “Nonlinear coefficient and temperature dependence of the refractive index of lithium niobate crystals in the terahertz regime,” Appl. Phys. B 99, 63-66 (2010).

Sussman, S. S.

S. S. Sussman, Tunable Light Scattering from Transverse Optical Modes in Lithium Niobate (Microwave Laboratory Report No. 1851, Stanford University, 1970), pp. 22-52.

Taday, P.

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photon. 2, 541-543 (2008).
[Crossref]

Theuer, M.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97-105 (2007).
[Crossref]

Tulea, C.

R. Sowade, I. Breunig, C. Tulea, and K. Buse, “Nonlinear coefficient and temperature dependence of the refractive index of lithium niobate crystals in the terahertz regime,” Appl. Phys. B 99, 63-66 (2010).

Wu, D.

D. Wu and T. Ikari, “Enhancement of the output power of a terahertz parametric oscillator with recycled pump beam,” Appl. Phys. Lett. 95, 141105 (2009).
[Crossref]

Wu, L. S.

Zhang, X.

Zhang, X. C.

J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627-631 (2010).
[Crossref]

D. Abbott and X. C. Zhang, “Scanning the issues: T-ray imaging, sensing, and retection,” Proc. IEEE 95, 1509-1513 (2007).

Zysset, B.

Appl. Phys. B (1)

R. Sowade, I. Breunig, C. Tulea, and K. Buse, “Nonlinear coefficient and temperature dependence of the refractive index of lithium niobate crystals in the terahertz regime,” Appl. Phys. B 99, 63-66 (2010).

Appl. Phys. Lett. (1)

D. Wu and T. Ikari, “Enhancement of the output power of a terahertz parametric oscillator with recycled pump beam,” Appl. Phys. Lett. 95, 141105 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15, 415-431 (1979).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (2)

Y. J. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Topics Quantum Electron. 13, 705-720 (2007).
[Crossref]

Y. J. Ding and W. Shi, “From backward THz difference-frequency generation to parametric oscillation,” IEEE J. Sel. Topics Quantum Electron. 12, 352-359 (2006).
[Crossref]

J. Eur. Opt. Soc. (1)

T. Ikari, R. Guo, H. Minamide, and H. Ito, “Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration,” J. Eur. Opt. Soc. 5, 10054 (2010).

J. Infrared, Millimeter, Terahertz Waves (1)

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared, Millimeter, Terahertz Waves 32, 143-171 (2011).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. D: Appl. Phys. (1)

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D: Appl. Phys. 35, R1-R14 (2002).
[Crossref]

Nat. Photon. (3)

J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627-631 (2010).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97-105 (2007).
[Crossref]

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photon. 2, 541-543 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (1)

D. G. Bozinis and J. P. Hurrell, “Optical modes and dielectric properties of ferroelectric orthorhombic KNbO3,” Phys. Rev. B 13, 3109-3120 (1976).
[Crossref]

Other (2)

D. Abbott and X. C. Zhang, “Scanning the issues: T-ray imaging, sensing, and retection,” Proc. IEEE 95, 1509-1513 (2007).

S. S. Sussman, Tunable Light Scattering from Transverse Optical Modes in Lithium Niobate (Microwave Laboratory Report No. 1851, Stanford University, 1970), pp. 22-52.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.