Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Biphasic Tumor Oxygenation during Respiratory Challenge may Predict Tumor Response during Chemotherapy

Open Access Open Access

Abstract

Our previous study showed that switching the inhaled gas from hypoxic gas to hyperoxic gas for 10 minutes increased tumor oxygenation and that the magnitude of oxyhemoglobin increase responded earlier than tumor volume change after chemotherapy. During 10 minutes of inhaled-oxygen modulation, oxyhemoglobin concentration first shows a rapid increase and then a slow but gradual increase, which has been fitted with a double-exponential equation in this study. Two amplitude values, amplitudes 1 and 2, respectively represent the magnitudes of rapid and slow increase of oxyhemoglobin. The trends of changes in amplitudes 1 and 2 were different, depending on tumor volume when chemotherapy started. However, both amplitudes 1 and 2 changed earlier than tumor volume, regardless of when chemotherapy was initiated. These results imply that by observing amplitude 1 changes post chemotherapy, we can reduce the time of a respiratory challenge from 10 minutes to less than 2 minutes, to see the chemotherapy response. We believe that by reducing the time of the respiratory challenge, we have taken a step forward to translating our previous study into clinical application.

© 2018 Optical Society of Korea

PDF Article
More Like This
Dynamic response of breast tumor oxygenation to hyperoxic respiratory challenge monitored with three oxygen-sensitive parameters

Yueqing Gu, Vincent A. Bourke, Jae G. Kim, Anca Constantinescu, Ralph P. Mason, and Hanli Liu
Appl. Opt. 42(16) 2960-2967 (2003)

Noninvasive investigation of blood oxygenation dynamics of tumors by near-infrared spectroscopy

Hanli Liu, Yulin Song, Katherine L. Worden, Xin Jiang, Anca Constantinescu, and Ralph P. Mason
Appl. Opt. 39(28) 5231-5243 (2000)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.