Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 16,
  • Issue 1,
  • pp. 012301-
  • (2018)

Simple Raman scattering sensor integrated with a metallic planar optical waveguide: effective modulation via minor structural adjustment

Not Accessible

Your library or personal account may give you access

Abstract

We report experimental realization of Raman spectra enhancement of copper phthalocyanine, using an on-chip metallic planar waveguide of the sub-millimeter scale. The oscillating ultrahigh order modes excited by the direct coupling method yield high optical intensity at resonance, which is different from the conventional strategy to create localized “hot spots.” The observed excitation efficiency of the Raman signal is significantly enhanced, owing to the high Q factor of the resonant cavity. Furthermore, effective modulation of the Raman intensity is available by adjusting the polymethyl methacrylate (PMMA) thickness in the guiding layer, i.e., by tuning the light–matter interaction length. A large modulation depth is verified through the fact that 10 times variation in the enhancement factor is observed in the experiment as the PMMA thickness varies from 7 to 23 μm.

© 2018 Chinese Laser Press

PDF Article
More Like This
Dependence of surface enhanced Raman scattering on the plasmonic template periodicity

P. Mandal and S. Anantha Ramakrishna
Opt. Lett. 36(18) 3705-3707 (2011)

Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film

Xiangxian Wang, Xuelin Bai, Zhiyuan Pang, Jiankai Zhu, Yuan Wu, Hua Yang, Yunping Qi, and Xiaolei Wen
Opt. Mater. Express 9(4) 1872-1881 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.