Abstract

We analyze the physics behind the newest generation of rapidly wavelength tunable sources for optical coherence tomography (OCT), retaining a single longitudinal cavity mode during operation without repeated build up of lasing. In this context, we theoretically investigate the currently existing concepts of rapidly wavelength-swept lasers based on tuning of the cavity length or refractive index, leading to an altered optical path length inside the resonator. Specifically, we consider vertical-cavity surface-emitting lasers (VCSELs) with microelectromechanical system (MEMS) mirrors as well as Fourier domain mode-locked (FDML) and Vernier-tuned distributed Bragg reflector (VT-DBR) lasers. Based on heuristic arguments and exact analytical solutions of Maxwell’s equations for a fundamental laser resonator model, we show that adiabatic wavelength tuning is achieved, i.e., hopping between cavity modes associated with a repeated build up of lasing is avoided, and the photon number is conserved. As a consequence, no fundamental limit exists for the wavelength tuning speed, in principle enabling wide-range wavelength sweeps at arbitrary tuning speeds with narrow instantaneous linewidth.

© 2015 Optical Society of America

1. Introduction

Over the last 10 years, rapidly and widely wavelength tunable lasers with sweep rates of several 10kHz and relative wavelength tuning ranges of more than 10% have revolutionized optical imaging and sensing in many applications. The most important impact of these sources is in biomedical imaging. In optical coherence tomography (OCT), especially in highly scattering tissue, such sources have triggered a dramatic increase in imaging speed [16]. Already today, numerous companies use swept source OCT (SS-OCT) in their imaging engines and it is common sense that in the future many more OCT applications will see swept laser based systems. Depending on the laser, SS-OCT can provide superior performance with respect to imaging speed [7], imaging range [8,9], and sensitivity [1013]. Other biomedical imaging applications include fast beam steering in endoscopes [14] and label free molecular imaging with Raman contrast [15].

Besides biomedical applications, these swept laser types are also applied for spectroscopy [1618], non-destructive testing [1921], and dynamic sensing [22,23]. For many applications, a further increase of sweep rate well above 1MHz is highly desirable [7, 10, 12, 24, 25]. However, classical tuning concepts based on wavelength-scanning filters inside the laser cavity are inherently limited in their tuning speed by the build up time of the lasing field from amplified spontaneous emission (ASE) [1, 2, 16]. Such lasers basically tune by hopping between the cavity modes. In the semiconductor optical amplifier, the intracavity field experiences an additional frequency shift due to four-wave mixing, which can have a beneficial effect on the sweeping action [1, 2, 26]. The formation of a discrete mode structure is sometimes intentionally suppressed to achieve continuous tuning [16], but the fundamental limit to tuning speed still exists. A reduction in laser cavity length to increase the optical roundtrip frequency is only beneficial to a certain degree, because shorter laser cavities have a wider mode spacing which prevents dense spectral sampling. Furthermore, the resulting small number of active modes can lead to increased noise with intensity fluctuations of up to 100% [26]. Hence, highly integrated wavelength-swept optical coherence tomography (OCT) lasers sometimes have an external fiber end mirror [27] to provide a sufficiently narrow mode spacing of about 1GHz [28]. Thus, these lasers have an optical roundtrip length of approximately 30cm even though the package is only 10 – 20mm. In addition, these classical tuning concepts suffer from time-bandwidth limitations, i.e., the more rapidly the laser build up dynamics happens the wider the instantaneous spectrum is.

As a consequence, the preferred solution to implement a rapidly swept laser with a sufficiently narrow instantaneous linewidth is to avoid mode hopping. This can be achieved by employing a laser configuration that remains in the same instantaneous cavity eigenmode during sweeping operation, which is here referred to as adiabatic wavelength tuning. Importantly, this does not imply that the frequency tuning is limited to low sweep rates; rather, an active mechanism is employed to continuously wavelength-shift the intracavity light field. At moderate sweep speeds sufficient wavelength shifting can be accomplished by a separate intracavity element [1]. For higher tuning speeds inherent shifting by changing the intracavity optical path length, given by the product of geometric length and cavity refractive index, can be used. In the case of laser tuning by an axial movement of one end mirror the wavelength shift is caused by the Doppler effect [29]. Notably, also so-called Fourier Domain Mode Locked (FDML) lasers take advantage of this concept, as discussed further below. However, not all implementations of changing the laser cavity length lead to a wavelength conversion and enable adiabatic tuning [16]. On the other hand, wavelength shifting can also be achieved by tuning the refractive index inside the laser cavity [3032], a case which is even less obvious.

Currently all rapidly wavelength-swept OCT lasers with narrow linewidth, relative wavelength tuning ranges of ∼ 10% and sweep rates substantially above 100kHz use inherent intracavity wavelength shifting in some form. Although this mechanism is essential for the wavelength-swept laser sources of the next generation OCT systems, it has up to now not been considered and analyzed in detail. Thus, we will give a comprehensive theoretical treatment and interpretation of the physical mechanisms involved, considering the various concepts used to achieve high sweep speeds. The first class of very rapidly wavelength tunable OCT lasers are vertical-cavity surface-emitting lasers (VCSELs) with a microelectromechanical system (MEMS) mirror. They are based on a Fabry-Pérot resonator with tunable cavity length, and the semiconductor quantum well laser gain medium is located inside the resonator. Widely tunable MEMS-based VCSELs have achieved up to ∼ 1MHz sweep rate and tuning ranges of ∼ 100nm [8, 3336]. A second, related concept are Fourier domain mode-locked (FDML) lasers where the Fabry-Pérot cavity serves as an intracavity tunable bandpass filter element, but is separated from the laser gain medium. The resulting optical light field which contains the full wavelength sweep imposed by the Fabry-Pérot filter is stored in an additional delay fiber [37]. With FDML lasers sweep rates of 5.2MHz [7] and tuning ranges of 160nm [38] have been demonstrated. Finally as third approach, Vernier-tuned distributed Bragg reflector (VT-DBR) laser structures achieve wavelength tuning with 200kHz sweep rate and 40nm sweep width based on dynamic refractive index tuning [31, 32], which has recently attracted considerable interest also for other applications such as wavelength conversion of external optical fields [3944]. Although both the tuning of mirror position and refractive index aim at varying the optical path length inside the resonator, there are also fundamental differences between those two cases [45]. Passive concepts such as swept sources based on temporally stretching ultrashort laser pulses [46, 47] do not contain any active tuning element and are not considered here.

Based on heuristic arguments and exact analytical solutions of Maxwell’s equations for a fundamental resonator model without gain and loss, we investigate the underlying mechanisms of rapid wavelength tuning for the above mentioned active concepts. Specifically, we show that the resonance wavelengths are adiabatically adjusted, i.e., a repeated build up of the optical resonator field is avoided, and the photon number is an adiabatic invariant of the tuning process [41, 48]. Thus, the optical gain only compensates for mirror outcoupling and other loss mechanisms as in fixed-wavelength lasers, while the change in photon energy is provided by the tuning process itself. As a practical consequence, we demonstrate that no fundamental limit exists for the tuning speed which determines the achievable sweep rate and range.

2. Heuristic description of adiabatic wavelength tuning

Heuristic descriptions of the tuning effects complement rigorous physical models and exact calculations by providing intuitive insight. In particular, they are helpful for understanding which tuning methods involving a change of the intracavity optical path length feature implicit wavelength conversion and enable adiabatic tuning. Figure 1 contains schematic illustrations of three methods for wavelength tuning by changing the intracavity optical path length. In Figs. 1(a) and 1(b), cavity length and refractive index tuning is shown, respectively. As we will see in the following, both methods feature intrinsic wavelength conversion and are thus not limited in speed by repeated build up of the lasing field. In Fig. 1(c), an example of changing the intracavity optical path length without wavelength conversion is shown.

 figure: Fig. 1

Fig. 1 Schematic representation of various methods for wavelength tuning by changing the intracavity optical path length: (a) Resonator with moving end mirror; (b) resonator with time dependent refractive index; (c) grating-based wavelength tuning mechanism.

Download Full Size | PPT Slide | PDF

2.1. Resonator with moving mirror

Here we investigate a linear Fabry-Pérot resonator with moving end mirror, schematically illustrated in Fig. 1(a). This serves for example as a model for wavelength tuning in MEMS-VCSELs [33, 34]. For a cavity with length L, refractive index n = 1 and mirror reflection coefficients r1,2 = |r1,2| exp(iϕ1,2), the resonance frequency of the mth longitudinal mode is given by ω = [ − (ϕ1 +ϕ2) /2] c/L [29], where c denotes the vacuum speed of light. Moving the right mirror with a velocity v leads to a cavity length change δL = vTR during one roundtrip with roundtrip time TR = 2L/c, which results in an associated resonance frequency change δω = −[ − (ϕ1 +ϕ2) /2] cδL/L2 = −2ωv/c. Upon reflection at the moving mirror, the electromagnetic wave experiences a Doppler shift which is in non-relativistic approximation given by δω = −2ωv/c [49] and thus compensates for the change in resonance frequency. In this way, the mode wavelength and the corresponding photon energy are adiabatically tuned, and a repeated build up of the lasing field is not necessary [29]. From energetic considerations, the force exerted on the moving mirror due to radiation pressure is F = 2P/c [50], where P = W/TR = Wc/(2L) is the optical power incident on the mirror, and W is the intracavity electromagnetic field energy. The change in energy of the system is thus

δW=FδL=WδLL.
Moving the mirror in −z direction leads to a positive δW in Eq. (1), i.e., mechanical work against the radiation pressure has to be applied which is transferred to the electromagnetic field. This results in an increased photon energy and frequency which corresponds to the Doppler shift discussed above.

2.2. Resonator with time dependent refractive index

Besides changing the geometric cavity length, the optical path length can also be varied by tuning the intracavity refractive index [3032]. This is for example achieved by exploiting the linear or quadratic electro-optic effect [50], or through current injection [31, 51]. An intuitive description of refractive index tuning can be obtained based on an extended Lorentz oscillator model of light-matter interaction, as illustrated in Fig. 1(b). The atomic response to an electric field is here described by a classical equation of motion me = −eE(t) − eE0 + F(x), where x is the displacement between the nucleus and the center of the electron cloud [52]. Furthermore, e and me denote the elementary charge and electron mass, respectively. The damping term has been neglected, i.e., gain and loss are here not considered. E (z,t) = 2Ê sin(kz) cos (ω0t) is the time-varying cavity field with the amplitude Ê in x direction, frequency ω0, and wavenumber k, which is a multiple of π/L in a cavity of length L [29]. The corresponding field energy in the cavity with volume V and refractive index n is given by [29]

W=Vε0n2E^2,
where ε0 denotes the vacuum permittivity. For ease of interpretation, we assume that n is tuned using the linear electro-optic effect, i.e., by applying an additional electric field E0. The restoring force is modeled by a spring-like ansatz,
F(x)=k0x+k1x2,
where in addition to the linear term with spring constant k0 a nonlinear term with constant k1 is included to describe the linear electro-optic effect. The field E0 shifts the point of equilibrium to x0k01eE0, and the equation of motion for small-amplitude oscillations around x0 is given by me = −eE(t) − k′ (xx0), with the modified spring constant
k=dF(x0)dx=k02k1x0.
From the solution x(t) = x0 + sin (kz) cos (ω0t) with x^=2eE^/(ω02mek), the refractive index is obtained as [52]
n=(1+χNeVε0x^2E^)1/2=(1+χ+Ne2Vε01kω02me),
where N is the number of atoms in the cavity volume V, and χ is the background susceptibility. Now we consider a small change of E0 leading to a shift of x0 by δx. This results with Eqs. (5) and (4) in a refractive index change
δn=k1Vε0Ne2n(n21χ)2δx.
Assuming that this process extends over many optical periods, the associated energy change in the system is given by −Fδx. Since the force F in Eq. (3) is space and time dependent, the expectation value has to be taken, yielding
Nω02πLδx02π/ω00LF[x0+x^sin(kz)cos(ω0t)]dzdt=N(k0x0+k1x02+14k1x^2)δx.
The last term in Eq. (7) becomes with Eqs. (5), (6) and (2)
δW=14Nk1x^2δx=Wδnn,
describing the energy exchanged with the optical field. Reducing the refractive index, δn < 0, leads to a positive δW, i.e., energy is transferred to the electromagnetic field. Since the photon number is conserved, this results in an increased photon energy and frequency. Both Eq. (8) and Eq. (1) can be expressed as δW/W = −δLop/Lop, where Lop = Ln is the optical path length. Thus W and the frequency are inversely proportional to Lop, while the vacuum wavelength is directly proportional to Lop.

2.3. Changing the optical path length without wavelength conversion

Laser wavelength tuning by changing the intracavity optical path length does not always involve intrinsic wavelength conversion [16], which is however necessary to avoid a repeated build up of the optical resonator field. For cavity length tuning by a moving mirror discussed in Section 2.1, the wavelength shift is provided by the Doppler effect. In Fig. 1(c), a method of changing the intracavity optical path length without intrinsic wavelength conversion is illustrated [16]. Here the cavity contains a tilt mirror which directs the laser beam onto a blazed grating, designed to suppress unwanted zeroth-order diffraction [16]. For a certain wavelength which depends on the mirror tilt angle [50], the light is back-reflected onto the mirror, thus enabling wavelength selection. Additionally, the optical path length is changed by tilting the mirror [see Fig. 1(c)]. However, since the laser beam hits the mirror on its rotation axis, no mechanical work is performed against the radiation pressure. Hence, the photon energy remains unchanged, and the wavelength-detuned laser field has to build up again. Such a setup can thus not be used for adiabatic wavelength tuning; rather, the rapid change in cavity length has been exploited to suppress the formation of resonant modes [16]. This clearly demonstrates that not all approaches to change the cavity length and with it the resonance frequencies of the longitudinal modes also generate synchronous wavelength shifting of the intracavity light field.

3. Rigorous theoretical model

The primary goal of the calculations presented in this section is to rigorously show that no fundamental limits in tuning speed exist for the adiabatic tuning concepts considered here. Thus we restrict ourselves to fundamental resonator models which allow for exact analytical solutions of Maxwell’s equations. We consider one-dimensional optical propagation in an ideal Fabry-Pérot resonator, where the optical path length is changed by a moving end mirror [Fig. 2(a)] or by a homogeneous cavity medium with a time dependent refractive index [Fig. 2(b)]. The former case applies to MEMS-VCSELs or FDML lasers, while the latter case serves as a model for VT-DBR lasers. Gain and loss are not considered; thus, perfectly reflecting end mirrors with amplitude reflection coefficients r1,2 = exp (iϕ1,2) are assumed except for the FDML laser, where the Fabry-Pérot resonator is part of a fiber ring cavity. Furthermore, undesirable effects such as dispersion and jitter are not taken into account, assuming that they can in principle be avoided, and also ASE is ignored in our analysis. Magnetization effects are assumed to be negligible at the optical frequencies considered. The evolution of the electromagnetic field inside the cavity is then described by Maxwell’s equations of the form

tHy=μ01zEx,
tDx=zHy,
where z and t are the position and time coordinate, respectively. Hy (z, t) denotes the transverse y component of the magnetic field. Ex (z, t) and Dx (z, t) are the transverse x component of the electric field and the electric displacement, respectively. Furthermore, μ0 denotes the vacuum permeability. The dielectric medium inside the resonator is assumed to be homogeneous, but may be time dependent, so that the constitutive relation between Dx and Ex is given by
Dx(z,t)=ε0n2(t)Ex(z,t).
Here, ε0 is the vacuum permittivity, and n(t) is the refractive index. Differentiation of Eq. (9b) with respect to t and insertion of Eq. (9a) yields with Eq. (10) the wave equation [53]
n2(t)t2Dx=c2z2Dx,
where c = (μ0ε0)−1/2 denotes the vacuum speed of light.

 figure: Fig. 2

Fig. 2 Model parameters for idealized laser resonator with wavelength tuning by (a) moving the end mirror and (b) changing the intracavity refractive index. The optical resonator field is described by a forward and a backward propagating component, denoted by Ex+ and Ex, respectively.

Download Full Size | PPT Slide | PDF

For ease of interpretation and to obtain compact analytical solutions, we assume a linear change of the optical path length with time, i.e., a uniform tuning of mirror position or refractive index, resulting in a linear wavelength sweep corresponding to a ramp. This waveform is commonly used for VT-DBR lasers and constitutes the preferred operating mode for FDML lasers [31, 54]. We note that this model can also be approximately applied to more general sweep functions by local linearization of the corresponding drive waveform.

3.1. Resonator with moving mirror

In the following, a linear Fabry-Pérot resonator with moving end mirror is considered, as employed for wavelength tuning in both MEMS-VCSELs [33, 34] and FDML lasers [37]. As shown in Section 2.1, the Doppler shift at the moving end mirror exactly compensates for the change in resonance frequency due to the change in cavity length. In this way, the mode wavelength and the corresponding photon energy are adiabatically changed, and a repeated build up of the lasing field is not necessary [29]. This concept is contrary to the strategy of rapidly varying the cavity length without changing the photon momentum, sometimes used for conventional wavelength-tuned lasers specifically to prevent mode formation [16].

3.1.1. MEMS-VCSEL

The exact analytical treatment of the MEMS-VCSEL cavity is based on the Fabry-Pérot resonator model shown in Fig. 2(a), comprising a fixed mirror positioned at z1 = −L0 and a mirror moving with constant velocity v, thus located at z2 (t) = vt. The reflection coefficients are r1 and r2, respectively. Furthermore, we here assume a cavity refractive index n = 1. The field inside the resonator is then obtained by solving Eq. (11), where the general (d’Alembert) solution is with Dx = ε0Ex given by [49]

Ex=Ex+(tz/c)+Ex(t+z/c).
Ex+ and Ex are arbitrary functions representing right- and left-traveling waves, respectively. Furthermore, the boundary conditions at the mirrors have to be considered. For the fixed mirror at z1 = −L0, the left- and right-travelling field components are related to each other by
Ex+(tz/c)=r1Ex[t(z+2L0)/c].
For a right-traveling plane wave Ex+=Aexp[iω(tz/c)] incident on the moving mirror at z2 (t) = vt, the reflected field is given by Aγr2 exp [−iγω (t + z/c)] with γ = (1 − v/c)/(1 + v/c), where the frequency change is due to the Doppler shift [49]. More generally, by representing an arbitrary waveform Ex=Ex+(tz/c) as a superposition of plane waves it can be shown that the reflected field is
Ex(t+z/c)=γr2Ex+[γ(t+z/c)].
From Eqs. (13) and (14), we thus obtain with τ = tz/c the condition
Ex+(τ)=γr1r2Ex+[γ(τ2L0/c)].

In the cavity, wavelength tuning is obtained by linearly changing the optical path length. Thus, we expect that also the resonance wavelength changes linearly, λ = λ0 (1 + bt), resulting in a time dependent instantaneous frequency ω(t) = ω0/ (1 + bt). This corresponds to a complex electric field ansatz

Ex+(τ)=E^xexp(i0τω(τ)dτ)=E^xexp[iω0b1ln(1+bτ)],
where Êx denotes the amplitude. Inserting Eq. (16) in Eq. (15), we see that above ansatz actually solves the problem if we allow for complex values of ω0. For perfectly reflecting mirrors r1,2 = exp(iϕ1,2), Eq. (15) yields
b=c1γ2L0γ=cv(cv)L0,ω0=b(2πmϕ1ϕ2lnγ+i),
where m is the mode number. The physical electric field inside the resonator is then given by the real part of the corresponding complex quantity. From Eqs. (12) and (14), we obtain with Eqs. (16) and (17)
Ex={Ex+(tz/c)+Ex(t+z/c)}=|E^x|{cos[δln(1+btbz/c)+ϕ]1+btbz/c+cos[δln(γ1+bt+bz/c)ϕ1+ϕ]γ1+bt+bz/c},
where δ = ℜ{ω0}/b and ϕ = ∠Êx. The magnetic field is found from Eq. (9) as
Hy=|E^x|cμ0{cos[δln(1+btbz/c)+ϕ]1+btbz/ccos[δln(γ1+bt+bz/c)ϕ1+ϕ]γ1+bt+bz/c}.
Based on above exact solution of Maxwell’s equations, quantities such as the instantaneous wavelength, intracavity field energy and photon number can be calculated, see Sections 4.1 and 4.2.

3.1.2. FDML laser

As for the MEMS-VCSEL discussed above, the FDML laser is again based on a linear Fabry-Pérot configuration with moving end mirror, which here serves as a rapidly tuned bandpass filter for the wavelength-swept light stored in an external fiber ring cavity of up to a few km in length [37]. In contrast to conventional rapidly wavelength-tuned lasers [1, 2, 16], the filter does here not impose a hopping between the cavity modes associated with a repeated build up of lasing, but rather enables the formation of a stationary wavelength-swept cavity field which can in principle circulate undisturbed.

We consider a basic model of the FDML laser shown in Fig. 3(a), consisting only of a loss-less optical fiber storing the light field and an ideal tunable bandpass filter which imposes the wavelength sweep. The optical fiber length is chosen so that the propagation time corresponds to the duration of a full (forward and backward) sweep of the bandpass filter, ensuring that the wavelength of the optical field incident on the bandpass filter matches the resonance condition at all times. For ideal filter transmission, the wavelength-swept optical field circulating in the fiber system is then completely transmitted by the bandpass filter, thus resulting in a lossless system with adiabatic wavelength tuning.

 figure: Fig. 3

Fig. 3 (a) Ideal lossless FDML laser model, consisting of an optical fiber for light storage and a tunable bandpass filter. (b) Fabry-Pérot bandpass filter.

Download Full Size | PPT Slide | PDF

The Fabry-Pérot bandpass filter considered in Fig. 3(b) is a generalization of the Fabry-Pérot resonator in Fig. 2(a), in that the end mirrors are now partially transmitting with reflection and transmission coefficients r1,2 = |r1,2| exp(iϕ1,2) and t1,2, respectively. Thus, electromagnetic radiation is allowed to enter and exit the Fabry-Pérot filter cavity. The electromagnetic field solution for the ideal FDML model described above is given by the wavelength-swept field which is completely transmitted by the bandpass filter. We assume a left-incident wave Ex,i+(τ=tz/c) of the form Eqs. (16), (17). The field entering through the left mirror at z = −L0 is then Ex,0+(τ)=t1Ex,i+(τ). The portion outcoupled through the right mirror located at z = vt is t2Ex,0+(τ), and the reflected component circulates in the filter cavity. The corresponding field after one roundtrip is with Eqs. (15), (16) and (17) given by Ex,1+(τ)=γr1r2Ex,0+[γ(τ2L0/c)]=|r1r2|Ex,0+(τ), and for the field component after the mth roundtrip, we consequently obtain

Ex,m+(τ)=|r1r2|mEx,0+(τ).
The total transmitted field is with Eq. (20) given by the sum of all transmitted components,
Ex,t+(τ)=t2m=0Ex,m+(τ)=Ex,i+(τ)t1t2m=0|r1r2|m=Ex,i+(τ)t1t21|r1r2|.
Full transmission of the wavelength-swept light is obtained for non-absorbing mirrors with identical reflectivity, i.e., |r1| = |r2| = r and |t1| = |t2| = t with t2 + r2 = 1. The transmitted field is then given by Ex,t+(τ)=Ex,i+(τ)exp(iθ) with exp (iθ) = t1t2/t2, i.e., apart from a phase shift the wavelength-swept field passes the filter completely unaffected. For the limiting case of non-moving mirrors, v → 0, the incoming field Eqs. (16), (17) becomes a monochromatic wave with angular frequency ω0. In this case, we recover from Eq. (17) the standard resonance condition ω0 = c (2πmϕ1ϕ2) / (2L0), and Eq. (21) gives the transmission for the monochromatic field at resonance [29].

The physical electric field inside the filter cavity becomes with Eqs. (14) and (21)

Ex=m=0|r1r2|m{Ex,0+(tz/c)+γr2Ex,0+[γ(t+z/c)]}=11|r1r2|{Ex,0+(tz/c)+γr2Ex,0+[γ(t+z/c)]}=|E^x|{cos[δln(1+btbz/cϕ)]1+btbz/c+|r2|cos[δln(γ1+bt+bz/c)+ϕϕ1]γ1+bt+bz/c},
where δ = ℜ{ω0}/b, Êx = Êx,it1/ (1 − |r1r2|) with the incoming field amplitude Êx,i, and ϕ = ∠Êx. For the magnetic field, we obtain from Eq. (9)
Hy=|E^x|cμ0{cos[δln(1+btbz/c)+ϕ]1+btbz/c|r2|cos[δln(γ1+bt+bz/c)+ϕϕ1]γ1+bt+bz/c}.
As expected, for |r2| = 1 Eqs. (22) and (23) are identical to the solution for the lossless Fabry-Pérot resonator, Eqs. (18) and (19).

3.2. Resonator with time dependent refractive index

In the VT-DBR laser, the wavelength is continuously tuned by changing the optical cavity path length, which is partly achieved by altering the effective refractive index inside the cavity through current injection [31, 51]. Although the achievable refractive index change is limited to ∼ 1% [51], sweep widths of 40nm are obtained by additionally switching between different longitudinal cavity modes and stitching the data after acquisition [31, 32].

In the following, we are only interested in the continuous tuning process due to the refractive index change of the medium inside the cavity, which is here modeled by a homogeneous dielectric with a time dependent refractive index n(t), see Fig. 2(b). As in Section 3.1, we assume again a linear optical path length change with time in the resonator, achieved by a refractive index n(t) = n0 (1 + bt). For solving Eq. (11), we make the substitutions F = (n0/n)1/2 Dx, τ=n00tn1(t)dt [53], and arrive at

n02b24c2F=z2Fn02c2τ2F.
Eq. (24) is solved by the plane wave ansatz F = Aexp (±ikz − iω0τ). Insertion yields
k=n0cω0(1+14b2ω02)1/2,
and resubstituting τ = b−1 ln (1 + bt) yields with Ex=Dxε01n2=Fε01n01/2n3/2
Ex±(z,t)=E^x±(1+bt)3/2exp[±ikziω0b1ln(1+bt)].
As for the moving mirror field solution Eq. (16), the linear tuning of the optical path length leads again to a linear wavelength change over time, and thus to an instantaneous frequency ω(t) = ω0/ (1 + bt). However, unlike for the resonator with moving mirror, the wavenumber k in Eq. (25) is here constant [55]. From the standard dispersion relation k = nω/c this is to be expected since the time dependence of n(t) and ω(t) cancel out. However we note that k in Eq. (25) deviates from this conventional dispersion relation by a factor (1+ω02b2/4)1/2. The boundary conditions are given by the mirrors at positions z = −L0 and z = 0 with reflection coefficients r1 and r2, respectively. We obtain
Ex+(z,t)=r1Ex(z2L0,t),Ex(z,t)=r2Ex+(z,t),
yielding
Ex+(z,t)=r1r2Ex+(z+2L0,t).
For perfectly reflecting mirrors r1,2 = exp (iϕ1,2), Eq. (28) gives with Eq. (26) the condition
k=(2πmϕ1ϕ2)/(2L0)
and thus with Eq. (25) the resonance frequencies
ω0=[c2n02(2πmϕ1ϕ22L0)214b2]1/2,
where m is the mode number. This differs from the resonance condition in a standard Fabry-Pérot resonator by the additional term ” −b2/4” in Eq. (30).

The physical electric field inside the resonator is given by the real part of the corresponding complex quantity. With Eqs. (26) and (27), we obtain

Ex={Ex+(z,t)+Ex(z,t)}=2|E^x|(1+bt)3/2cos(kzϕ22)cos[ω0bln(1+bt)+ϕ+ϕ22],
where k and ω0 are given by Eqs. (29) and (30), respectively, and E^x+=|E^x|exp(iϕ). The magnetic field is found from Eq. (9) as
Hy=2ε0n02|E^x|k(1+bt)1/2sin(kzϕ22)×{ω0sin[ω0bln(1+bt)+ϕ+ϕ22]+b2cos[ω0bln(1+bt)+ϕ+ϕ22]}.
In Sections 4.1 and 4.2, the field solutions Eqs. (31) and (32) are used to calculate quantities such as the instantaneous wavelength, intracavity field energy, and photon number.

4. Results

4.1. Instantaneous wavelength

Both the tuning of mirror position and refractive index aim at varying the optical path length inside the resonator. As shown in Sections 3.1 and 3.2, for a uniform change in cavity length L(t) = L0 (1 + vt) or refractive index n (t) = n0 (1 + bt) the exact solution of Maxwell’s equations yields linear tuning with the instantaneous vacuum wavelength

λ(t)=2πc/ω(t)=2πc(1+bt)/|{ω0}|.
The angular frequency ω(t) in Eq. (33) is obtained from the temporal derivative of the argument of the cosine function in Eq. (18) and Eq. (31), with ω0 given by Eqs. (17) and (30), respectively. For cavity length tuning, Eq. (33) applies to the right-propagating field component at position z = 0. Importantly, the wavelength tuning speed tλ = vt = 2πcb/|ℜ{ω0}| is only restricted by the tuning mechanism itself, rather than by the build up time of the lasing field from ASE.

This linear wavelength sweep can intuitively be explained based on the conventional resonance condition [29]

λm=2Lop(mϕ1+ϕ22π)1,
where λm is the vacuum wavelength of mode m for a linear cavity with optical length Lop = Ln. Although Eq. (34) is only valid for the stationary cavity, we show that it can in practice also be used for rapidly wavelength-tuned resonators. In the case of cavity length tuning, Eq. (33) yields with Eq. (17) the instantaneous vacuum wavelength
λ(t)=ln(c+vcv)(cvvL0+ct)(mϕ1+ϕ22π)1.
In the limit vc which is fulfilled for all practical purposes, the conventional resonance condition Eq. (34) is recovered from Eq. (35), with the time dependent optical path length Lop = L0 + vt as intuitively expected. In the case of refractive index tuning, the instantaneous vacuum wavelength is with Eqs. (33) and (30) obtained as
λ(t)=(1+bt)[λm02(b4πc)2]1/2,
where λm0 is the resonance frequency of the unswept laser cavity, given by Eq. (34) with Lop = L0n0. For m0/ (4πc) ≪ 1, Eq. (36) assumes the form of the conventional resonance condition Eq. (34) with a time dependent optical path length Lop = L0n (t) = L0n0 (1 + bt). This assumption is always fulfilled in practice; e.g., for a sweep rate of 1MHz over a range of 100nm, we obtain m0/ (4πc) ≈ 2.65 × 10−11.

Above results show that for a uniform change in cavity length or refractive index, a linear wavelength sweep is obtained as intuitively expected, and the wavelength tuning speed is not fundamentally restricted. While the exact expression for the instantaneous wavelength deviates from the conventional resonance condition Eq. (34), this relation can be used for all practical purposes by inserting the time dependent optical path length into Eq. (34). Thus, the laser configuration remains in the same instantaneous cavity eigenmode during sweep operation, enabling rapid wavelength tuning without repeated build up of the optical resonator field.

4.2. Electromagnetic field energy and photon number

The electromagnetic field energy in the resonator is obtained by spatial integration over the energy density of the electromagnetic field (εEx2+μ0Hy2)/2 [41, 49], yielding

W=A2L0z2(εEx2+μ0Hy2)dz.
Here, A is the field cross-sectional area. Furthermore, ε = ε0 and z2 = vt for cavity length tuning [Fig. 2(a)], while ε = ε0n2 (t) and z2 = 0 for refractive index tuning [Fig. 2(b)].

For the three cavity configurations discussed in Sections 3.1 and 3.2, Eq. (37) is evaluated by inserting the corresponding field solutions given by Eqs. (18), (19), Eqs. (22), (23), and Eqs. (31), (32), respectively. The resulting field energy, averaged over an optical cycle, can be brought into the form

W=ε0n02|E^x|21+|r2|22AL01+bt,
where vc and m0/ (4πc) ≪ 1 have been assumed for cavity length and refractive index tuning, respectively (see also Section 4.1). Here, |r2| < 1 for the Fabry-Pérot filter cavity used in the FDML laser, and |r2| = 1 otherwise. Furthermore, n0 is set to 1 for cavity length tuning. The obtained expression for the electromagnetic field energy W is consistent with the heuristically derived results in Eqs. (8) and (1). W varies with time in the same way as the photon energy hc/λ(t), see Eq. (33), where h is Planck’s constant. Thus, as expected in the absence of nonlinear effects [48], the intracavity photon number is conserved, i.e., the photon number is an adiabatic invariant of the tuning process [41, 48]. After one full bidirectional sweep cycle, the initial electromagnetic energy is recovered. For cavity length tuning, the wavelength shift is provided by the Doppler effect [29], and the corresponding energy is extracted (for v > 0) or supplied (for v < 0) by the mechanical displacement work of the mirror [48] (see also Section 2.1). In the case of refractive index tuning, the energy is provided by the external agent causing the refractive index change in the medium [44], as exemplified in Section 2.2.

For the FDML laser discussed in Section 3.1.2, Eq. (38) refers to the Fabry-Pérot filter, while basically the complete wavelength-swept field is stored outside the filter in the fiber ring cavity. Ideally, the filter consists of two lossless mirrors with identical reflectivity. As shown in Section 3.1.2, it then serves as a tunable bandpass filter fully transmitting the field with the proper wavelength sweep, which might be referred to as adiabatic wavelength scanning. For FDML operation, the sweep duration has to be synchronized to the cavity roundtrip time, determined by the fiber length [37]. This enables the formation of a stationary wavelength-swept cavity field which can circulate undisturbed, and the photon number conservation applies to the filter cavity as well as to the total FDML system. In practice, this ideal dynamics is perturbed not only by cavity losses, but also by optical nonlinearities and especially fiber dispersion [56, 57].

5. Discussion

5.1. Differences between cavity length and refractive index tuning

As discussed in Sections 4.1 and 4.2, there are many common features of cavity length and refractive index tuning. Most importantly, inherent wavelength shifting allows for wavelength sweeps without hopping between the cavity modes, thus avoiding a repeated build up of the optical resonator field and the associated limitation in tuning speed. However, there are also fundamental differences between those two processes [45]. Specifically, cavity length tuning relies on the Doppler shift at the moving end mirror which provides an abrupt wavelength change. By contrast, for refractive index tuning the shift is induced over an extended region. Thus, if the refractive index change occurs throughout the whole cavity, as assumed for the model calculation in Section 3.2, the instantaneous wavelength inside the cavity is position independent, as is the wavenumber k [see Eq. (25)]. From a practical point of view, cavity length tuning can provide an arbitrary sweep range. On the other hand, refractive index tuning has the advantage that no moving parts are needed [31, 32], but the achievable refractive index change is limited to ∼ 1% [51]. Thus, additional switching between different longitudinal cavity modes is required to increase the tuning range in VT-DBR lasers [31, 32].

5.2. Comparison to conventional rapidly wavelength-swept lasers

For conventional rapidly wavelength-swept lasers, the maximum wavelength tuning speed tλ = vt where the lasing activity can still fully build up from the ASE background is estimated as vt,max = Δλ/Tb [2, 16]. Here, Δλ is the linewidth or spectral resolution of the laser, which is for conventional rapidly wavelength-swept lasers determined by the filter width of the tuning element [2, 16]. The oscillation build up time from ASE is given by TbTR ln (Is/I0) / ln Gnet [2, 29], where TR = LR/c is the cavity roundtrip time with the optical cavity roundtrip length LR. In a linear cavity with length L and refractive index n, we have LR = 2Ln. Furthermore, Gnet is the net small signal roundtrip gain, I0 denotes the initial noise level due to ASE, and Is is the steady state intracavity intensity. Typically we have Is/I0 = 108..1012 which only appears logarithmically, i.e., ln (Is/I0) = 18..28 [29]. Thus an exact knowledge of these quantities is not essential [29], and we assume in the following ln(Is/I0) ≈ 20, yielding

vt,maxcΔλlnGnet20LR.
For conventional rapidly wavelength-tuned lasers, a typical value is Δλ ≈ 0.1nm [1, 2, 16]. Furthermore assuming LR ≈ 0.54m and Gnet = 106 [16], the sweep rate is limited to vt,max ≈ 4 × 104 nm/ms before a significant decrease in output power is obtained, while for LR ≈ 3.5m and Gnet = 31.6 [2], we obtain vt,max ≈ 1500nm/ms. In fact, a rapid decrease in power has been experimentally observed for increased sweep rates [1, 2]. The limitation of tuning speed set by Eq. (39) does not hold for the novel concepts based on adiabatic wavelength tuning, such as the MEMS-VCSELs, FDML and VT-DBR lasers discussed above. With a typical coherence length of Lc ≈ 1cm [31, 34, 58], the corresponding linewidth can be estimated as [59]
Δλ=2ln2πλ2Lc,
resulting again in Δλ ≈ 0.1nm. Aiming at scan rates in excess of 1MHz over a tuning range > 100nm with at least tens of mW output power [9, 34], a tuning speed exceeding 105 nm/ms without significant loss of output power is required. For typical FDML laser parameters of LR ≈ 1km and Gnet ≈ 50 [60,61], Eq. (39) predicts a maximum tuning speed vt,max ≈ 6nm/ms which is smaller by a factor of 104, clearly showing that this speed limitation for conventional wavelength tuning does not apply to FDML lasers. Combined with ongoing efforts to further increase the coherence length, it becomes clear that vt,max in Eq. (39) poses a serious limitation to conventional wavelength tuning even for short cavity lasers with LR in the cm range. As demonstrated in Sections 3.1 and 3.2, adiabatic wavelength tuning is not subject to this limit, and vt is in principle only restricted by the tuning mechanism itself, i.e., the modulation speed of mirror position or refractive index. Furthermore, the linewidth is here not set by the filter or cavity bandwidth, but rather single mode operation is ideally obtained [31, 34]. For MEMS-VCSELs, Eq. (39) yields vt,max ≈ 1.5×106 nm/ms for typical parameter values of LR ≈ 10μm and Gnet ≈ 1.01 [33, 34], i.e., vt,max is much larger than for FDML lasers due to the short cavity length. Nevertheless, Doppler-induced intracavity wavelength conversion also plays an important role for the performance of MEMS-VCSELs, as discussed in the following section.

5.3. Fundamental time-bandwidth limits: Experimental evidence for Doppler shift

The previous considerations mainly referred to typical elements and implementations used to build today’s swept lasers. One could infer that improved designs with, e.g., reduced cavity length or increased gain of the laser medium might enable high tuning speed in classical lasers. Accordingly, it has been argued that the reason why the MEMS-VCSELs can generate very rapid wavelength sweeping is due to the micron scale cavity length and the resulting fast roundtrip time, enabling a very rapid build up of lasing [62]. For example, if in Eq. (39) a cavity roundtrip length of LR ≈ 10μm is used, wavelength tuning speeds exceeding 107 nm/ms corresponding to sweep rates of many MHz over a 100nm tuning range should be possible. Thus, the fast build up is often used as the only explanation for the rapid tuning of VCSELs. However, this would be impossible and violate the fundamental time-bandwidth relation as the following consideration will show.

The wavelength tuning speed in Eq. (39) is the maximum value where the lasing activity can still fully build up from the ASE background, i.e., higher sweep rates can only be obtained at the expense of output power [1]. Additionally, an upper tuning speed limit exists which cannot be exceeded for fundamental reasons. Grulkowski et al. [63] demonstrated OCT with a MEMS-VCSEL up to 1.52m imaging range corresponding to Lc = 3.04m roundtrip delay, yielding with Eq. (40) an instantaneous optical linewidth of Δλ = 0.168pm or equivalently Δf = 43.5MHz at λ = 1075nm. Using the time-bandwidth product (for a Fourier-limited Gaussian pulse) Δf Δt = 0.44, we obtain a minimum time uncertainty of Δt ≈ 10ns. The wavelength sweep rate was 20kHz, corresponding to a sweep duration of 50μs. The wavelength sweep range was 9nm, corresponding to 2.3THz at 1075nm. This means, 2.3THz/43.5MHz = 52874 spectral points could be resolved. The time duration for the laser to sweep over a 43.5MHz window is then 50μs/52874 ≈ 1ns. This value is clearly below the time uncertainty of ∼ 10ns, i.e., it is impossible that the laser radiation in the VCSEL builds up from noise, because this would at minimum take 10 times longer. However if the light field is already present in the laser and is just shifted in wavelength a much longer photon lifetime is possible, enabling the observed extremely long coherence lengths. So the results in [63] are a direct proof for the adiabatic intracavity wavelength shift discussed in this paper and indicate that the Doppler shift becomes essential for rapidly tunable lasers above a certain tuning rate.

The same considerations of course also apply inversely to the stitching procedure presented by Bonesi et al. [32]. The Vernier tunable laser only sweeps piecewise continuously which necessitates stitching the data after acquisition, see Section 3.2. Over 40nm sweep range 450 resets of the laser are required. If the same coherence performance should be achieved as presented in [63] the maximum sweep rate would be limited to 1/(450 × 10ns) = 220kHz.

6. Conclusion

We have theoretically analyzed the physical key mechanism to enable very rapid wavelength sweeping in the most recent actively tuned high speed OCT lasers. The MEMS-VCSELs, FDML and VT-DBR lasers represent the next generation OCT light sources, featuring several 100kHz sweep repetition rate over wavelength ranges of ∼ 100nm. In all concepts an inherently synchronous wavelength shift of the intracavity light is achieved by changing the optical path length of the laser cavity. This shift ensures that the laser light in the cavity always matches the continuously changing resonance frequency of the corresponding longitudinal mode during wavelength sweep operation. The MEMS-VCSEL and FDML laser employ a linear Fabry-Pérot resonator with a movable end mirror, where the necessary wavelength shift is provided by the Doppler effect. The VT-DBR laser uses a change of the intracavity refractive index to tune the optical path length.

Based on heuristic arguments and exact solutions of Maxwell’s equations, we have shown that a linear change of the optical path length with time by uniform tuning of mirror position or refractive index results in a linear wavelength sweep. Adiabatic wavelength conversion of the intracavity field with conservation of photon number is obtained, and the change in photon energy is compensated by the tuning mechanism itself. Thus, the optical gain only compensates for mirror outcoupling and other losses as in fixed-wavelength lasers. A closely related concept employed in FDML lasers is adiabatic wavelength scanning, where a tunable Fabry-Pérot band-pass filter imposes a wavelength sweep onto an optical field circulating in a fiber ring cavity, which can then pass the filter undisturbed.

In conclusion, it is found that for very rapidly swept lasers inherent wavelength shifting is necessary to avoid limitations in tuning speed. Current implementations of such lasers use the Doppler effect or intracavity refractive index tuning for adiabatic wavelength conversion. In this way, a repeated build up of lasing as in conventional swept sources is avoided, and in principle arbitrary wavelength tuning speeds at narrow instantaneous linewidths can be obtained.

Acknowledgments

This work was supported by the German Research Foundation (DFG) under Grant No. JI115/3-1, JI115/4-1 and HU1006/3-1, and by the European Union project FDML-Raman (ERC, contract No. 259158).

References and links

1. S.-H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981–1983 (2003). [CrossRef]   [PubMed]  

2. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005). [CrossRef]   [PubMed]  

3. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13, 10652–10664 (2005). [CrossRef]   [PubMed]  

4. H. Lim, J. De Boer, B. Park, E. Lee, R. Yelin, and S. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815–870 nm range,” Opt. Express 14, 5937–5944 (2006). [CrossRef]   [PubMed]  

5. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006). [CrossRef]   [PubMed]  

6. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005). [CrossRef]  

7. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18, 14685–14704 (2010). [CrossRef]   [PubMed]  

8. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012). [CrossRef]   [PubMed]  

9. W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express 3, 2647–2657 (2012). [CrossRef]   [PubMed]  

10. T. Klein, R. André, W. Wieser, T. Pfeiffer, and R. Huber, “Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT,” Biomed. Opt. Express 4, 619–634 (2013). [CrossRef]   [PubMed]  

11. C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt. 17, 0705051 (2012). [CrossRef]  

12. T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4, 1890–1908 (2013). [CrossRef]   [PubMed]  

13. W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5, 2963–2977 (2014). [CrossRef]   [PubMed]  

14. D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Spectral-domain spectrally-encoded endoscopy,” Opt. Express 15, 2432–2444 (2007). [CrossRef]   [PubMed]  

15. S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “Time-Encoded Raman: Fiber-based, hyperspectral, broadband stimulated Raman microscopy,” e-print arXiv:1405.4181 [physics.optics] (2014).

16. L. A. Kranendonk, R. J. Bartula, and S. T. Sanders, “Modeless operation of a wavelength-agile laser by high-speed cavity length changes,” Opt. Express 13, 1498–1507 (2005). [CrossRef]   [PubMed]  

17. L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007). [CrossRef]   [PubMed]  

18. L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proceedings of the Combustion Institute 31, 783–790 (2007). [CrossRef]  

19. D. C. Adler, J. Stenger, I. Gorczynska, H. Lie, T. Hensick, R. Spronk, S. Wolohojian, N. Khandekar, J. Y. Jiang, S. Barry, A. E. Cable, R. Huber, and J. G. Fujimoto, “Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies,” Opt. Express 15, 15972–15986 (2007). [CrossRef]   [PubMed]  

20. D. Stifter, P. Burgholzer, O. Höglinger, E. Götzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys. A Mater. Sci. 76, 947–951 (2003). [CrossRef]  

21. J. A. Zeitler and L. F. Gladden, “In-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms,” Eur. J. Pharm. Biopharm. 71, 2–22 (2009). [CrossRef]  

22. E. J. Jung, C.-S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16, 16552–16560 (2008). [PubMed]  

23. Y. Nakazaki and S. Yamashita, “Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing,” Opt. Express 17, 8310–8318 (2009). [CrossRef]   [PubMed]  

24. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050nm Fourier domain mode-locked laser,” Opt. Express 19, 3044–3062 (2011). [CrossRef]   [PubMed]  

25. T. Wang, W. Wieser, G. Springeling, R. Beurskens, C. T. Lancee, T. Pfeiffer, A. F. van der Steen, R. Huber, and G. v. Soest, “Intravascular optical coherence tomography imaging at 3200 frames per second,” Opt. Lett. 38, 1715–1717 (2013). [CrossRef]   [PubMed]  

26. S. Slepneva, B. OShaughnessy, B. Kelleher, S. Hegarty, A. Vladimirov, H.-C. Lyu, K. Karnowski, M. Wojtkowski, and G. Huyet, “Dynamics of a short cavity swept source OCT laser,” Opt. Express 22, 18177–18185 (2014). [CrossRef]   [PubMed]  

27. M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” in Proc. SPIE 7554, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIV p. 75541F (2010). [CrossRef]  

28. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18, 20029–20048 (2010). [CrossRef]   [PubMed]  

29. A. E. Siegman, Lasers (University Science Books, 1986).

30. J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. Minneman, C. Chiccone, and D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” in Proc. SPIE 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI p. 82130T (2012). [CrossRef]  

31. M. P. Minneman, J. Ensher, M. Crawforda, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” in Proc. SPIE 8311, Optical Sensors and Biophotonics III p. 831116 (2011). [CrossRef]  

32. M. Bonesi, M. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. Leitgeb, M. Crawford, and W. Drexler, “Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length,” Opt. Express 22, 2632–2655 (2014). [CrossRef]   [PubMed]  

33. T. Yano, H. Saitou, N. Kanbara, R. Noda, S.-i. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Sel. Top. Quantum Electron. 15, 528–534 (2009). [CrossRef]  

34. V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760kHz axial scan rate using single-mode 1310nm MEMs-tunable VCSELs with >100nm tuning range,” in CLEO: Science and Innovations p. PDPB2 (2011).

35. O. O. Ahsen, Y. K. Tao, B. M. Potsaid, Y. Sheikine, J. Jiang, I. Grulkowski, T.-H. Tsai, V. Jayaraman, M. F. Kraus, and J. L. Connolly et al., “Swept source optical coherence microscopy using a 1310 nm VCSEL light source,” Opt. Express 21, 18021–18033 (2013). [CrossRef]   [PubMed]  

36. T.-H. Tsai, B. Potsaid, Y. K. Tao, V. Jayaraman, J. Jiang, P. J. Heim, M. F. Kraus, C. Zhou, J. Hornegger, and H. Mashimo et al., “Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology,” Biomed. Opt. Express 4, 1119–1132 (2013). [CrossRef]   [PubMed]  

37. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006). [CrossRef]   [PubMed]  

38. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nature Photon. 1, 709–716 (2007). [CrossRef]  

39. E. J. Reed, M. Soljačić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90, 203904 (2003). [CrossRef]  

40. M. F. Yanik and S. Fan, “Time reversal of light with linear optics and modulators,” Phys. Rev. Lett. 93, 173903 (2004). [CrossRef]   [PubMed]  

41. M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73, 51803 (2006). [CrossRef]  

42. Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, “Photon energy lifter,” Opt. Express 14, 7270–7278 (2006). [CrossRef]   [PubMed]  

43. B. A. Daniel, D. N. Maywar, and G. P. Agrawal, “Efficient adiabatic wavelength conversion in Gires–Tournois resonators,” Opt. Lett. 36, 4155–4157 (2011). [CrossRef]   [PubMed]  

44. J. R. Zurita-Sánchez, J. H. Abundis-Patiño, and P. Halevi, “Pulse propagation through a slab with time-periodic dielectric function ε(t),” Opt. Express 20, 5586 (2012). [CrossRef]  

45. H. Johnston and S. Sarkar, “Moving mirrors and time-varying dielectrics,” Phys. Rev. A 51, 4109–4115 (1995). [CrossRef]   [PubMed]  

46. K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalali, “High-throughput optical coherence tomography at 800 nm,” Opt. Express 20, 19612–19617 (2012). [CrossRef]   [PubMed]  

47. S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14, 11575–11584 (2006). [CrossRef]   [PubMed]  

48. P. T. Rakich, M. A. Popovic, and Z. Wang, “General treatment of optical forces and potentials in mechanically variable photonic systems,” Opt. Express 17, 18116–18135 (2009). [CrossRef]   [PubMed]  

49. S. Orfanidis, Electromagnetic Waves and Antennas (Online book, Rutgers, retrieved March 2014). http://www.ece.rutgers.edu/orfanidi/ewa/

50. E. Hecht, Optics (Addison-Wesley, 2002).

51. H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996). [CrossRef]  

52. M. Fox, Optical Properties of Solids (Oxford University Press, 2001).

53. A. B. Shvartsburg, “Optics of nonstationary media,” Phys.-Usp. 48, 797–823 (2005). [CrossRef]  

54. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16, 8916–8937 (2008). [CrossRef]   [PubMed]  

55. F. Morgenthaler, “Velocity modulation of electromagnetic waves,” IRE Trans. Microwave Theory Tech. 6, 167–172 (1958). [CrossRef]  

56. S. Todor, B. Biedermann, R. Huber, and C. Jirauschek, “Balance of physical effects causing stationary operation of Fourier domain mode-locked lasers,” J. Opt. Soc. Am. B 29, 656–664 (2012). [CrossRef]  

57. S. Slepneva, B. Kelleher, B. OShaughnessy, S. P. Hegarty, A. G. Vladimirov, and G. Huyet, “Dynamics of Fourier domain mode-locked lasers,” Opt. Express 21, 19240–19251 (2013). [CrossRef]   [PubMed]  

58. D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Extended coherence length Fourier domain mode locked lasers at 1310 nm,” Opt. Express 19, 20930–20939 (2011). [CrossRef]   [PubMed]  

59. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008). [CrossRef]  

60. C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4, 1848 (2013). [CrossRef]   [PubMed]  

61. S. Todor, B. Biedermann, W. Wieser, R. Huber, and C. Jirauschek, “Instantaneous lineshape analysis of Fourier domain mode-locked lasers,” Opt. Express 19, 8802–8807 (2011). [CrossRef]   [PubMed]  

62. B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz – 1MHz axial scan rate and long range centimeter class OCT imaging,” in Proc. SPIE 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI p. 82130M (2012). [CrossRef]  

63. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38, 673–675 (2013). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. S.-H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981–1983 (2003).
    [Crossref] [PubMed]
  2. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
    [Crossref] [PubMed]
  3. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13, 10652–10664 (2005).
    [Crossref] [PubMed]
  4. H. Lim, J. De Boer, B. Park, E. Lee, R. Yelin, and S. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815–870 nm range,” Opt. Express 14, 5937–5944 (2006).
    [Crossref] [PubMed]
  5. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).
    [Crossref] [PubMed]
  6. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005).
    [Crossref]
  7. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18, 14685–14704 (2010).
    [Crossref] [PubMed]
  8. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
    [Crossref] [PubMed]
  9. W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express 3, 2647–2657 (2012).
    [Crossref] [PubMed]
  10. T. Klein, R. André, W. Wieser, T. Pfeiffer, and R. Huber, “Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT,” Biomed. Opt. Express 4, 619–634 (2013).
    [Crossref] [PubMed]
  11. C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt. 17, 0705051 (2012).
    [Crossref]
  12. T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4, 1890–1908 (2013).
    [Crossref] [PubMed]
  13. W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5, 2963–2977 (2014).
    [Crossref] [PubMed]
  14. D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Spectral-domain spectrally-encoded endoscopy,” Opt. Express 15, 2432–2444 (2007).
    [Crossref] [PubMed]
  15. S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “Time-Encoded Raman: Fiber-based, hyperspectral, broadband stimulated Raman microscopy,” e-print arXiv:1405.4181 [physics.optics] (2014).
  16. L. A. Kranendonk, R. J. Bartula, and S. T. Sanders, “Modeless operation of a wavelength-agile laser by high-speed cavity length changes,” Opt. Express 13, 1498–1507 (2005).
    [Crossref] [PubMed]
  17. L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007).
    [Crossref] [PubMed]
  18. L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proceedings of the Combustion Institute 31, 783–790 (2007).
    [Crossref]
  19. D. C. Adler, J. Stenger, I. Gorczynska, H. Lie, T. Hensick, R. Spronk, S. Wolohojian, N. Khandekar, J. Y. Jiang, S. Barry, A. E. Cable, R. Huber, and J. G. Fujimoto, “Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies,” Opt. Express 15, 15972–15986 (2007).
    [Crossref] [PubMed]
  20. D. Stifter, P. Burgholzer, O. Höglinger, E. Götzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys. A Mater. Sci. 76, 947–951 (2003).
    [Crossref]
  21. J. A. Zeitler and L. F. Gladden, “In-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms,” Eur. J. Pharm. Biopharm. 71, 2–22 (2009).
    [Crossref]
  22. E. J. Jung, C.-S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16, 16552–16560 (2008).
    [PubMed]
  23. Y. Nakazaki and S. Yamashita, “Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing,” Opt. Express 17, 8310–8318 (2009).
    [Crossref] [PubMed]
  24. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050nm Fourier domain mode-locked laser,” Opt. Express 19, 3044–3062 (2011).
    [Crossref] [PubMed]
  25. T. Wang, W. Wieser, G. Springeling, R. Beurskens, C. T. Lancee, T. Pfeiffer, A. F. van der Steen, R. Huber, and G. v. Soest, “Intravascular optical coherence tomography imaging at 3200 frames per second,” Opt. Lett. 38, 1715–1717 (2013).
    [Crossref] [PubMed]
  26. S. Slepneva, B. OShaughnessy, B. Kelleher, S. Hegarty, A. Vladimirov, H.-C. Lyu, K. Karnowski, M. Wojtkowski, and G. Huyet, “Dynamics of a short cavity swept source OCT laser,” Opt. Express 22, 18177–18185 (2014).
    [Crossref] [PubMed]
  27. M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” in Proc. SPIE 7554, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIV p. 75541F (2010).
    [Crossref]
  28. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18, 20029–20048 (2010).
    [Crossref] [PubMed]
  29. A. E. Siegman, Lasers (University Science Books, 1986).
  30. J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. Minneman, C. Chiccone, and D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” in Proc. SPIE 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI p. 82130T (2012).
    [Crossref]
  31. M. P. Minneman, J. Ensher, M. Crawforda, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” in Proc. SPIE 8311, Optical Sensors and Biophotonics III p. 831116 (2011).
    [Crossref]
  32. M. Bonesi, M. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. Leitgeb, M. Crawford, and W. Drexler, “Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length,” Opt. Express 22, 2632–2655 (2014).
    [Crossref] [PubMed]
  33. T. Yano, H. Saitou, N. Kanbara, R. Noda, S.-i. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Sel. Top. Quantum Electron. 15, 528–534 (2009).
    [Crossref]
  34. V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760kHz axial scan rate using single-mode 1310nm MEMs-tunable VCSELs with >100nm tuning range,” in CLEO: Science and Innovations p. PDPB2 (2011).
  35. O. O. Ahsen, Y. K. Tao, B. M. Potsaid, Y. Sheikine, J. Jiang, I. Grulkowski, T.-H. Tsai, V. Jayaraman, M. F. Kraus, J. L. Connolly, and et al., “Swept source optical coherence microscopy using a 1310 nm VCSEL light source,” Opt. Express 21, 18021–18033 (2013).
    [Crossref] [PubMed]
  36. T.-H. Tsai, B. Potsaid, Y. K. Tao, V. Jayaraman, J. Jiang, P. J. Heim, M. F. Kraus, C. Zhou, J. Hornegger, H. Mashimo, and et al., “Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology,” Biomed. Opt. Express 4, 1119–1132 (2013).
    [Crossref] [PubMed]
  37. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
    [Crossref] [PubMed]
  38. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nature Photon. 1, 709–716 (2007).
    [Crossref]
  39. E. J. Reed, M. Soljačić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90, 203904 (2003).
    [Crossref]
  40. M. F. Yanik and S. Fan, “Time reversal of light with linear optics and modulators,” Phys. Rev. Lett. 93, 173903 (2004).
    [Crossref] [PubMed]
  41. M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73, 51803 (2006).
    [Crossref]
  42. Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, “Photon energy lifter,” Opt. Express 14, 7270–7278 (2006).
    [Crossref] [PubMed]
  43. B. A. Daniel, D. N. Maywar, and G. P. Agrawal, “Efficient adiabatic wavelength conversion in Gires–Tournois resonators,” Opt. Lett. 36, 4155–4157 (2011).
    [Crossref] [PubMed]
  44. J. R. Zurita-Sánchez, J. H. Abundis-Patiño, and P. Halevi, “Pulse propagation through a slab with time-periodic dielectric function ε(t),” Opt. Express 20, 5586 (2012).
    [Crossref]
  45. H. Johnston and S. Sarkar, “Moving mirrors and time-varying dielectrics,” Phys. Rev. A 51, 4109–4115 (1995).
    [Crossref] [PubMed]
  46. K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalali, “High-throughput optical coherence tomography at 800 nm,” Opt. Express 20, 19612–19617 (2012).
    [Crossref] [PubMed]
  47. S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14, 11575–11584 (2006).
    [Crossref] [PubMed]
  48. P. T. Rakich, M. A. Popovic, and Z. Wang, “General treatment of optical forces and potentials in mechanically variable photonic systems,” Opt. Express 17, 18116–18135 (2009).
    [Crossref] [PubMed]
  49. S. Orfanidis, Electromagnetic Waves and Antennas (Online book, Rutgers, retrieved March 2014). http://www.ece.rutgers.edu/orfanidi/ewa/
  50. E. Hecht, Optics (Addison-Wesley, 2002).
  51. H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
    [Crossref]
  52. M. Fox, Optical Properties of Solids (Oxford University Press, 2001).
  53. A. B. Shvartsburg, “Optics of nonstationary media,” Phys.-Usp. 48, 797–823 (2005).
    [Crossref]
  54. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16, 8916–8937 (2008).
    [Crossref] [PubMed]
  55. F. Morgenthaler, “Velocity modulation of electromagnetic waves,” IRE Trans. Microwave Theory Tech. 6, 167–172 (1958).
    [Crossref]
  56. S. Todor, B. Biedermann, R. Huber, and C. Jirauschek, “Balance of physical effects causing stationary operation of Fourier domain mode-locked lasers,” J. Opt. Soc. Am. B 29, 656–664 (2012).
    [Crossref]
  57. S. Slepneva, B. Kelleher, B. OShaughnessy, S. P. Hegarty, A. G. Vladimirov, and G. Huyet, “Dynamics of Fourier domain mode-locked lasers,” Opt. Express 21, 19240–19251 (2013).
    [Crossref] [PubMed]
  58. D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Extended coherence length Fourier domain mode locked lasers at 1310 nm,” Opt. Express 19, 20930–20939 (2011).
    [Crossref] [PubMed]
  59. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008).
    [Crossref]
  60. C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4, 1848 (2013).
    [Crossref] [PubMed]
  61. S. Todor, B. Biedermann, W. Wieser, R. Huber, and C. Jirauschek, “Instantaneous lineshape analysis of Fourier domain mode-locked lasers,” Opt. Express 19, 8802–8807 (2011).
    [Crossref] [PubMed]
  62. B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz – 1MHz axial scan rate and long range centimeter class OCT imaging,” in Proc. SPIE 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI p. 82130M (2012).
    [Crossref]
  63. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38, 673–675 (2013).
    [Crossref] [PubMed]

2014 (3)

2013 (8)

O. O. Ahsen, Y. K. Tao, B. M. Potsaid, Y. Sheikine, J. Jiang, I. Grulkowski, T.-H. Tsai, V. Jayaraman, M. F. Kraus, J. L. Connolly, and et al., “Swept source optical coherence microscopy using a 1310 nm VCSEL light source,” Opt. Express 21, 18021–18033 (2013).
[Crossref] [PubMed]

T.-H. Tsai, B. Potsaid, Y. K. Tao, V. Jayaraman, J. Jiang, P. J. Heim, M. F. Kraus, C. Zhou, J. Hornegger, H. Mashimo, and et al., “Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology,” Biomed. Opt. Express 4, 1119–1132 (2013).
[Crossref] [PubMed]

T. Wang, W. Wieser, G. Springeling, R. Beurskens, C. T. Lancee, T. Pfeiffer, A. F. van der Steen, R. Huber, and G. v. Soest, “Intravascular optical coherence tomography imaging at 3200 frames per second,” Opt. Lett. 38, 1715–1717 (2013).
[Crossref] [PubMed]

T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4, 1890–1908 (2013).
[Crossref] [PubMed]

T. Klein, R. André, W. Wieser, T. Pfeiffer, and R. Huber, “Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT,” Biomed. Opt. Express 4, 619–634 (2013).
[Crossref] [PubMed]

S. Slepneva, B. Kelleher, B. OShaughnessy, S. P. Hegarty, A. G. Vladimirov, and G. Huyet, “Dynamics of Fourier domain mode-locked lasers,” Opt. Express 21, 19240–19251 (2013).
[Crossref] [PubMed]

C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4, 1848 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38, 673–675 (2013).
[Crossref] [PubMed]

2012 (6)

2011 (4)

2010 (2)

2009 (4)

Y. Nakazaki and S. Yamashita, “Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing,” Opt. Express 17, 8310–8318 (2009).
[Crossref] [PubMed]

J. A. Zeitler and L. F. Gladden, “In-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms,” Eur. J. Pharm. Biopharm. 71, 2–22 (2009).
[Crossref]

T. Yano, H. Saitou, N. Kanbara, R. Noda, S.-i. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Sel. Top. Quantum Electron. 15, 528–534 (2009).
[Crossref]

P. T. Rakich, M. A. Popovic, and Z. Wang, “General treatment of optical forces and potentials in mechanically variable photonic systems,” Opt. Express 17, 18116–18135 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (5)

2006 (6)

2005 (5)

2004 (1)

M. F. Yanik and S. Fan, “Time reversal of light with linear optics and modulators,” Phys. Rev. Lett. 93, 173903 (2004).
[Crossref] [PubMed]

2003 (3)

D. Stifter, P. Burgholzer, O. Höglinger, E. Götzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys. A Mater. Sci. 76, 947–951 (2003).
[Crossref]

S.-H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981–1983 (2003).
[Crossref] [PubMed]

E. J. Reed, M. Soljačić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90, 203904 (2003).
[Crossref]

1996 (1)

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

1995 (1)

H. Johnston and S. Sarkar, “Moving mirrors and time-varying dielectrics,” Phys. Rev. A 51, 4109–4115 (1995).
[Crossref] [PubMed]

1958 (1)

F. Morgenthaler, “Velocity modulation of electromagnetic waves,” IRE Trans. Microwave Theory Tech. 6, 167–172 (1958).
[Crossref]

Abundis-Patiño, J. H.

Adler, D. C.

Agrawal, G. P.

Ahsen, O. O.

Akiba, M.

An, X.

Andre, R.

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt. 17, 0705051 (2012).
[Crossref]

André, R.

Atia, W.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” in Proc. SPIE 7554, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIV p. 75541F (2010).
[Crossref]

Barry, S.

Bartula, R. J.

Baumann, B.

Beurskens, R.

Biedermann, B.

Biedermann, B. R.

Blatter, C.

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt. 17, 0705051 (2012).
[Crossref]

Bonesi, M.

Boschert, P.

M. Bonesi, M. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. Leitgeb, M. Crawford, and W. Drexler, “Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length,” Opt. Express 22, 2632–2655 (2014).
[Crossref] [PubMed]

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. Minneman, C. Chiccone, and D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” in Proc. SPIE 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI p. 82130T (2012).
[Crossref]

Boudoux, C.

Bouma, B. E.

Burgholzer, P.

D. Stifter, P. Burgholzer, O. Höglinger, E. Götzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys. A Mater. Sci. 76, 947–951 (2003).
[Crossref]

Cable, A.

V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760kHz axial scan rate using single-mode 1310nm MEMs-tunable VCSELs with >100nm tuning range,” in CLEO: Science and Innovations p. PDPB2 (2011).

Cable, A. E.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38, 673–675 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[Crossref] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18, 20029–20048 (2010).
[Crossref] [PubMed]

D. C. Adler, J. Stenger, I. Gorczynska, H. Lie, T. Hensick, R. Spronk, S. Wolohojian, N. Khandekar, J. Y. Jiang, S. Barry, A. E. Cable, R. Huber, and J. G. Fujimoto, “Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies,” Opt. Express 15, 15972–15986 (2007).
[Crossref] [PubMed]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz – 1MHz axial scan rate and long range centimeter class OCT imaging,” in Proc. SPIE 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI p. 82130M (2012).
[Crossref]

Carusotto, I.

Caswell, A. W.

Chan, K.-P.

Chan, R. C.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).
[Crossref] [PubMed]

Chen, Y.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nature Photon. 1, 709–716 (2007).
[Crossref]

Chen, Z.

Chiccone, C.

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. Minneman, C. Chiccone, and D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” in Proc. SPIE 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI p. 82130T (2012).
[Crossref]

Choma, M. A.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005).
[Crossref]

Chong, C.

Cole, G.

V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760kHz axial scan rate using single-mode 1310nm MEMs-tunable VCSELs with >100nm tuning range,” in CLEO: Science and Innovations p. PDPB2 (2011).

Connolly, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nature Photon. 1, 709–716 (2007).
[Crossref]

Connolly, J. L.

Crawford, M.

M. Bonesi, M. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. Leitgeb, M. Crawford, and W. Drexler, “Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length,” Opt. Express 22, 2632–2655 (2014).
[Crossref] [PubMed]

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. Minneman, C. Chiccone, and D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” in Proc. SPIE 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI p. 82130T (2012).
[Crossref]

Crawforda, M.

M. P. Minneman, J. Ensher, M. Crawforda, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” in Proc. SPIE 8311, Optical Sensors and Biophotonics III p. 831116 (2011).
[Crossref]

Daniel, B. A.

De Boer, J.

de Boer, J. F.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).
[Crossref] [PubMed]

Derickson, D.

M. P. Minneman, J. Ensher, M. Crawforda, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” in Proc. SPIE 8311, Optical Sensors and Biophotonics III p. 831116 (2011).
[Crossref]

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. Minneman, C. Chiccone, and D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” in Proc. SPIE 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI p. 82130T (2012).
[Crossref]

Desjardins, A. E.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).
[Crossref] [PubMed]

Draxinger, W.

Drexler, W.

Duker, J. S.

Eibl, M.

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “Time-Encoded Raman: Fiber-based, hyperspectral, broadband stimulated Raman microscopy,” e-print arXiv:1405.4181 [physics.optics] (2014).

Eigenwillig, C. M.

Ensher, J.

M. Bonesi, M. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. Leitgeb, M. Crawford, and W. Drexler, “Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length,” Opt. Express 22, 2632–2655 (2014).
[Crossref] [PubMed]

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. Minneman, C. Chiccone, and D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” in Proc. SPIE 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI p. 82130T (2012).
[Crossref]

M. P. Minneman, J. Ensher, M. Crawforda, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” in Proc. SPIE 8311, Optical Sensors and Biophotonics III p. 831116 (2011).
[Crossref]

Evans, J. A.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).
[Crossref] [PubMed]

Fan, S.

M. F. Yanik and S. Fan, “Time reversal of light with linear optics and modulators,” Phys. Rev. Lett. 93, 173903 (2004).
[Crossref] [PubMed]

Fard, A.

Featherston, K.

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. Minneman, C. Chiccone, and D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” in Proc. SPIE 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI p. 82130T (2012).
[Crossref]

Flanders, D.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” in Proc. SPIE 7554, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIV p. 75541F (2010).
[Crossref]

Fox, M.

M. Fox, Optical Properties of Solids (Oxford University Press, 2001).

Fu, G.

Fujimoto, J. G.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38, 673–675 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[Crossref] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18, 20029–20048 (2010).
[Crossref] [PubMed]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nature Photon. 1, 709–716 (2007).
[Crossref]

D. C. Adler, J. Stenger, I. Gorczynska, H. Lie, T. Hensick, R. Spronk, S. Wolohojian, N. Khandekar, J. Y. Jiang, S. Barry, A. E. Cable, R. Huber, and J. G. Fujimoto, “Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies,” Opt. Express 15, 15972–15986 (2007).
[Crossref] [PubMed]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007).
[Crossref] [PubMed]

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proceedings of the Combustion Institute 31, 783–790 (2007).
[Crossref]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
[Crossref] [PubMed]

V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760kHz axial scan rate using single-mode 1310nm MEMs-tunable VCSELs with >100nm tuning range,” in CLEO: Science and Innovations p. PDPB2 (2011).

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz – 1MHz axial scan rate and long range centimeter class OCT imaging,” in Proc. SPIE 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI p. 82130M (2012).
[Crossref]

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008).
[Crossref]

Fujimura, N.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S.-i. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Sel. Top. Quantum Electron. 15, 528–534 (2009).
[Crossref]

Gaburro, Z.

Ghulinyan, M.

Gladden, L. F.

J. A. Zeitler and L. F. Gladden, “In-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms,” Eur. J. Pharm. Biopharm. 71, 2–22 (2009).
[Crossref]

Goda, K.

Gorczynska, I.

Götzinger, E.

D. Stifter, P. Burgholzer, O. Höglinger, E. Götzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys. A Mater. Sci. 76, 947–951 (2003).
[Crossref]

Grajciar, B.

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt. 17, 0705051 (2012).
[Crossref]

Grulkowski, I.

Halevi, P.

Hecht, E.

E. Hecht, Optics (Addison-Wesley, 2002).

Hegarty, S.

Hegarty, S. P.

Heim, P.

V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760kHz axial scan rate using single-mode 1310nm MEMs-tunable VCSELs with >100nm tuning range,” in CLEO: Science and Innovations p. PDPB2 (2011).

Heim, P. J.

Heim, P. J. S.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz – 1MHz axial scan rate and long range centimeter class OCT imaging,” in Proc. SPIE 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI p. 82130M (2012).
[Crossref]

Hensick, T.

Herold, R. E.

Hirata, T.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S.-i. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Sel. Top. Quantum Electron. 15, 528–534 (2009).
[Crossref]

Hitzenberger, C. K.

D. Stifter, P. Burgholzer, O. Höglinger, E. Götzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys. A Mater. Sci. 76, 947–951 (2003).
[Crossref]

Höglinger, O.

D. Stifter, P. Burgholzer, O. Höglinger, E. Götzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys. A Mater. Sci. 76, 947–951 (2003).
[Crossref]

Hoover, E.

Hornegger, J.

Hsu, K.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005).
[Crossref]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
[Crossref] [PubMed]

Huang, D.

Huber, J.

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. Minneman, C. Chiccone, and D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” in Proc. SPIE 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI p. 82130T (2012).
[Crossref]

Huber, R.

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5, 2963–2977 (2014).
[Crossref] [PubMed]

T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4, 1890–1908 (2013).
[Crossref] [PubMed]

T. Klein, R. André, W. Wieser, T. Pfeiffer, and R. Huber, “Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT,” Biomed. Opt. Express 4, 619–634 (2013).
[Crossref] [PubMed]

T. Wang, W. Wieser, G. Springeling, R. Beurskens, C. T. Lancee, T. Pfeiffer, A. F. van der Steen, R. Huber, and G. v. Soest, “Intravascular optical coherence tomography imaging at 3200 frames per second,” Opt. Lett. 38, 1715–1717 (2013).
[Crossref] [PubMed]

C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4, 1848 (2013).
[Crossref] [PubMed]

S. Todor, B. Biedermann, R. Huber, and C. Jirauschek, “Balance of physical effects causing stationary operation of Fourier domain mode-locked lasers,” J. Opt. Soc. Am. B 29, 656–664 (2012).
[Crossref]

W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express 3, 2647–2657 (2012).
[Crossref] [PubMed]

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt. 17, 0705051 (2012).
[Crossref]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050nm Fourier domain mode-locked laser,” Opt. Express 19, 3044–3062 (2011).
[Crossref] [PubMed]

S. Todor, B. Biedermann, W. Wieser, R. Huber, and C. Jirauschek, “Instantaneous lineshape analysis of Fourier domain mode-locked lasers,” Opt. Express 19, 8802–8807 (2011).
[Crossref] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18, 14685–14704 (2010).
[Crossref] [PubMed]

C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16, 8916–8937 (2008).
[Crossref] [PubMed]

D. C. Adler, J. Stenger, I. Gorczynska, H. Lie, T. Hensick, R. Spronk, S. Wolohojian, N. Khandekar, J. Y. Jiang, S. Barry, A. E. Cable, R. Huber, and J. G. Fujimoto, “Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies,” Opt. Express 15, 15972–15986 (2007).
[Crossref] [PubMed]

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proceedings of the Combustion Institute 31, 783–790 (2007).
[Crossref]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007).
[Crossref] [PubMed]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nature Photon. 1, 709–716 (2007).
[Crossref]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
[Crossref] [PubMed]

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “Time-Encoded Raman: Fiber-based, hyperspectral, broadband stimulated Raman microscopy,” e-print arXiv:1405.4181 [physics.optics] (2014).

Huber, R. A.

Huyet, G.

Ishii, H.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

Itoh, M.

Izatt, J. A.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005).
[Crossref]

Jalali, B.

Jang, I.-K.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).
[Crossref] [PubMed]

Jayaraman, V.

T.-H. Tsai, B. Potsaid, Y. K. Tao, V. Jayaraman, J. Jiang, P. J. Heim, M. F. Kraus, C. Zhou, J. Hornegger, H. Mashimo, and et al., “Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology,” Biomed. Opt. Express 4, 1119–1132 (2013).
[Crossref] [PubMed]

O. O. Ahsen, Y. K. Tao, B. M. Potsaid, Y. Sheikine, J. Jiang, I. Grulkowski, T.-H. Tsai, V. Jayaraman, M. F. Kraus, J. L. Connolly, and et al., “Swept source optical coherence microscopy using a 1310 nm VCSEL light source,” Opt. Express 21, 18021–18033 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38, 673–675 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[Crossref] [PubMed]

V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760kHz axial scan rate using single-mode 1310nm MEMs-tunable VCSELs with >100nm tuning range,” in CLEO: Science and Innovations p. PDPB2 (2011).

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz – 1MHz axial scan rate and long range centimeter class OCT imaging,” in Proc. SPIE 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI p. 82130M (2012).
[Crossref]

Jeon, M. Y.

Jeong, M. Y.

Jiang, J.

O. O. Ahsen, Y. K. Tao, B. M. Potsaid, Y. Sheikine, J. Jiang, I. Grulkowski, T.-H. Tsai, V. Jayaraman, M. F. Kraus, J. L. Connolly, and et al., “Swept source optical coherence microscopy using a 1310 nm VCSEL light source,” Opt. Express 21, 18021–18033 (2013).
[Crossref] [PubMed]

T.-H. Tsai, B. Potsaid, Y. K. Tao, V. Jayaraman, J. Jiang, P. J. Heim, M. F. Kraus, C. Zhou, J. Hornegger, H. Mashimo, and et al., “Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology,” Biomed. Opt. Express 4, 1119–1132 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38, 673–675 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[Crossref] [PubMed]

V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760kHz axial scan rate using single-mode 1310nm MEMs-tunable VCSELs with >100nm tuning range,” in CLEO: Science and Innovations p. PDPB2 (2011).

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz – 1MHz axial scan rate and long range centimeter class OCT imaging,” in Proc. SPIE 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI p. 82130M (2012).
[Crossref]

Jiang, J. Y.

Jirauschek, C.

Joannopoulos, J. D.

E. J. Reed, M. Soljačić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90, 203904 (2003).
[Crossref]

Johnson, B.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” in Proc. SPIE 7554, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIV p. 75541F (2010).
[Crossref]

Johnston, H.

H. Johnston and S. Sarkar, “Moving mirrors and time-varying dielectrics,” Phys. Rev. A 51, 4109–4115 (1995).
[Crossref] [PubMed]

Jung, E. J.

Jung, W.

Kampik, A.

Kanbara, N.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S.-i. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Sel. Top. Quantum Electron. 15, 528–534 (2009).
[Crossref]

Kano, F.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

Karnowski, K.

Karpf, S.

Kelleher, B.

Khandekar, N.

Kim, C.-S.

Kim, D. Y.

Kim, M. K.

Klein, T.

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5, 2963–2977 (2014).
[Crossref] [PubMed]

T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4, 1890–1908 (2013).
[Crossref] [PubMed]

T. Klein, R. André, W. Wieser, T. Pfeiffer, and R. Huber, “Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT,” Biomed. Opt. Express 4, 619–634 (2013).
[Crossref] [PubMed]

C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4, 1848 (2013).
[Crossref] [PubMed]

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt. 17, 0705051 (2012).
[Crossref]

W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express 3, 2647–2657 (2012).
[Crossref] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050nm Fourier domain mode-locked laser,” Opt. Express 19, 3044–3062 (2011).
[Crossref] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18, 14685–14704 (2010).
[Crossref] [PubMed]

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “Time-Encoded Raman: Fiber-based, hyperspectral, broadband stimulated Raman microscopy,” e-print arXiv:1405.4181 [physics.optics] (2014).

Kondo, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

Kranendonk, L. A.

Kraus, M. F.

Kuznetsov, M.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” in Proc. SPIE 7554, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIV p. 75541F (2010).
[Crossref]

Lancee, C. T.

Lee, E.

Leitgeb, R.

Leitgeb, R. A.

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt. 17, 0705051 (2012).
[Crossref]

Li, H.

V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760kHz axial scan rate using single-mode 1310nm MEMs-tunable VCSELs with >100nm tuning range,” in CLEO: Science and Innovations p. PDPB2 (2011).

Lie, H.

Lim, H.

Liu, J. J.

Lu, C. D.

Lyu, H.-C.

Madjarova, V. D.

Makita, S.

Malik, O.

Mashimo, H.

Maywar, D. N.

Minneman, M.

M. Bonesi, M. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. Leitgeb, M. Crawford, and W. Drexler, “Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length,” Opt. Express 22, 2632–2655 (2014).
[Crossref] [PubMed]

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. Minneman, C. Chiccone, and D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” in Proc. SPIE 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI p. 82130T (2012).
[Crossref]

Minneman, M. P.

M. P. Minneman, J. Ensher, M. Crawforda, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” in Proc. SPIE 8311, Optical Sensors and Biophotonics III p. 831116 (2011).
[Crossref]

Mitsugi, S.

M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73, 51803 (2006).
[Crossref]

Moon, S.

Morgenthaler, F.

F. Morgenthaler, “Velocity modulation of electromagnetic waves,” IRE Trans. Microwave Theory Tech. 6, 167–172 (1958).
[Crossref]

Morosawa, A.

Motz, J. T.

Nakazaki, Y.

Neubauer, A.

Nishioka, N. S.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).
[Crossref] [PubMed]

Nishiyama, N.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S.-i. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Sel. Top. Quantum Electron. 15, 528–534 (2009).
[Crossref]

Noda, R.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S.-i. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Sel. Top. Quantum Electron. 15, 528–534 (2009).
[Crossref]

Notomi, M.

M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73, 51803 (2006).
[Crossref]

Oh, W. Y.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).
[Crossref] [PubMed]

Okura, Y.

Ooyama, M.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S.-i. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Sel. Top. Quantum Electron. 15, 528–534 (2009).
[Crossref]

OShaughnessy, B.

Palte, G.

Park, B.

Pavesi, L.

Pfeiffer, T.

Popovic, M. A.

Potsaid, B.

T.-H. Tsai, B. Potsaid, Y. K. Tao, V. Jayaraman, J. Jiang, P. J. Heim, M. F. Kraus, C. Zhou, J. Hornegger, H. Mashimo, and et al., “Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology,” Biomed. Opt. Express 4, 1119–1132 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38, 673–675 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[Crossref] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18, 20029–20048 (2010).
[Crossref] [PubMed]

V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760kHz axial scan rate using single-mode 1310nm MEMs-tunable VCSELs with >100nm tuning range,” in CLEO: Science and Innovations p. PDPB2 (2011).

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz – 1MHz axial scan rate and long range centimeter class OCT imaging,” in Proc. SPIE 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI p. 82130M (2012).
[Crossref]

Potsaid, B. M.

Quach, A.

Rakich, P. T.

Recati, A.

Reed, E. J.

E. J. Reed, M. Soljačić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90, 203904 (2003).
[Crossref]

Reznicek, L.

Riboli, F.

Saitou, H.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S.-i. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Sel. Top. Quantum Electron. 15, 528–534 (2009).
[Crossref]

Sakai, T.

Sanders, S. T.

Sarkar, S.

H. Johnston and S. Sarkar, “Moving mirrors and time-varying dielectrics,” Phys. Rev. A 51, 4109–4115 (1995).
[Crossref] [PubMed]

Sattmann, H.

Schmitt, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nature Photon. 1, 709–716 (2007).
[Crossref]

Schmitt, J. M.

Schmoll, T.

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt. 17, 0705051 (2012).
[Crossref]

Schuman, J. S.

Sheikine, Y.

Shishkov, M.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).
[Crossref] [PubMed]

Shvartsburg, A. B.

A. B. Shvartsburg, “Optics of nonstationary media,” Phys.-Usp. 48, 797–823 (2005).
[Crossref]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Slepneva, S.

Soest, G. v.

Soljacic, M.

E. J. Reed, M. Soljačić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90, 203904 (2003).
[Crossref]

Springeling, G.

Spronk, R.

Stenger, J.

Stifter, D.

D. Stifter, P. Burgholzer, O. Höglinger, E. Götzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys. A Mater. Sci. 76, 947–951 (2003).
[Crossref]

Suter, M. J.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).
[Crossref] [PubMed]

Taira, K.

Tanobe, H.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

Tao, Y. K.

Tearney, G. J.

Tezuka, S.-i.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S.-i. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Sel. Top. Quantum Electron. 15, 528–534 (2009).
[Crossref]

Todor, S.

Tohmori, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

Trepanier, F.

Trépanier, F.

Tsai, T.-H.

Urata, Y.

Vakoc, B. J.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).
[Crossref] [PubMed]

van der Steen, A. F.

Vladimirov, A.

Vladimirov, A. G.

Wang, T.

Wang, Z.

Watanabe, T.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S.-i. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Sel. Top. Quantum Electron. 15, 528–534 (2009).
[Crossref]

White, W. M.

Wieser, W.

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5, 2963–2977 (2014).
[Crossref] [PubMed]

T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4, 1890–1908 (2013).
[Crossref] [PubMed]

T. Klein, R. André, W. Wieser, T. Pfeiffer, and R. Huber, “Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT,” Biomed. Opt. Express 4, 619–634 (2013).
[Crossref] [PubMed]

T. Wang, W. Wieser, G. Springeling, R. Beurskens, C. T. Lancee, T. Pfeiffer, A. F. van der Steen, R. Huber, and G. v. Soest, “Intravascular optical coherence tomography imaging at 3200 frames per second,” Opt. Lett. 38, 1715–1717 (2013).
[Crossref] [PubMed]

C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4, 1848 (2013).
[Crossref] [PubMed]

W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express 3, 2647–2657 (2012).
[Crossref] [PubMed]

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt. 17, 0705051 (2012).
[Crossref]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050nm Fourier domain mode-locked laser,” Opt. Express 19, 3044–3062 (2011).
[Crossref] [PubMed]

D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Extended coherence length Fourier domain mode locked lasers at 1310 nm,” Opt. Express 19, 20930–20939 (2011).
[Crossref] [PubMed]

S. Todor, B. Biedermann, W. Wieser, R. Huber, and C. Jirauschek, “Instantaneous lineshape analysis of Fourier domain mode-locked lasers,” Opt. Express 19, 8802–8807 (2011).
[Crossref] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18, 14685–14704 (2010).
[Crossref] [PubMed]

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “Time-Encoded Raman: Fiber-based, hyperspectral, broadband stimulated Raman microscopy,” e-print arXiv:1405.4181 [physics.optics] (2014).

Wojtkowski, M.

Wolohojian, S.

Yamashita, S.

Yanik, M. F.

M. F. Yanik and S. Fan, “Time reversal of light with linear optics and modulators,” Phys. Rev. Lett. 93, 173903 (2004).
[Crossref] [PubMed]

Yano, T.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S.-i. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Sel. Top. Quantum Electron. 15, 528–534 (2009).
[Crossref]

Yasuno, Y.

Yatagai, T.

Yelin, D.

Yelin, R.

Yoshikuni, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

Yun, S.

Yun, S. H.

D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Spectral-domain spectrally-encoded endoscopy,” Opt. Express 15, 2432–2444 (2007).
[Crossref] [PubMed]

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).
[Crossref] [PubMed]

Yun, S.-H.

Zabihian, B.

Zeitler, J. A.

J. A. Zeitler and L. F. Gladden, “In-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms,” Eur. J. Pharm. Biopharm. 71, 2–22 (2009).
[Crossref]

Zhou, C.

Zurita-Sánchez, J. R.

Appl. Phys. A Mater. Sci. (1)

D. Stifter, P. Burgholzer, O. Höglinger, E. Götzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys. A Mater. Sci. 76, 947–951 (2003).
[Crossref]

Biomed. Opt. Express (6)

T.-H. Tsai, B. Potsaid, Y. K. Tao, V. Jayaraman, J. Jiang, P. J. Heim, M. F. Kraus, C. Zhou, J. Hornegger, H. Mashimo, and et al., “Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology,” Biomed. Opt. Express 4, 1119–1132 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[Crossref] [PubMed]

W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express 3, 2647–2657 (2012).
[Crossref] [PubMed]

T. Klein, R. André, W. Wieser, T. Pfeiffer, and R. Huber, “Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT,” Biomed. Opt. Express 4, 619–634 (2013).
[Crossref] [PubMed]

T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4, 1890–1908 (2013).
[Crossref] [PubMed]

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5, 2963–2977 (2014).
[Crossref] [PubMed]

Eur. J. Pharm. Biopharm. (1)

J. A. Zeitler and L. F. Gladden, “In-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms,” Eur. J. Pharm. Biopharm. 71, 2–22 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Yano, H. Saitou, N. Kanbara, R. Noda, S.-i. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Sel. Top. Quantum Electron. 15, 528–534 (2009).
[Crossref]

IRE Trans. Microwave Theory Tech. (1)

F. Morgenthaler, “Velocity modulation of electromagnetic waves,” IRE Trans. Microwave Theory Tech. 6, 167–172 (1958).
[Crossref]

J. Biomed. Opt. (2)

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005).
[Crossref]

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt. 17, 0705051 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4, 1848 (2013).
[Crossref] [PubMed]

Nat. Med. (1)

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).
[Crossref] [PubMed]

Nature Photon. (1)

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nature Photon. 1, 709–716 (2007).
[Crossref]

Opt. Express (25)

O. O. Ahsen, Y. K. Tao, B. M. Potsaid, Y. Sheikine, J. Jiang, I. Grulkowski, T.-H. Tsai, V. Jayaraman, M. F. Kraus, J. L. Connolly, and et al., “Swept source optical coherence microscopy using a 1310 nm VCSEL light source,” Opt. Express 21, 18021–18033 (2013).
[Crossref] [PubMed]

Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, “Photon energy lifter,” Opt. Express 14, 7270–7278 (2006).
[Crossref] [PubMed]

J. R. Zurita-Sánchez, J. H. Abundis-Patiño, and P. Halevi, “Pulse propagation through a slab with time-periodic dielectric function ε(t),” Opt. Express 20, 5586 (2012).
[Crossref]

C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16, 8916–8937 (2008).
[Crossref] [PubMed]

K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalali, “High-throughput optical coherence tomography at 800 nm,” Opt. Express 20, 19612–19617 (2012).
[Crossref] [PubMed]

S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14, 11575–11584 (2006).
[Crossref] [PubMed]

P. T. Rakich, M. A. Popovic, and Z. Wang, “General treatment of optical forces and potentials in mechanically variable photonic systems,” Opt. Express 17, 18116–18135 (2009).
[Crossref] [PubMed]

S. Todor, B. Biedermann, W. Wieser, R. Huber, and C. Jirauschek, “Instantaneous lineshape analysis of Fourier domain mode-locked lasers,” Opt. Express 19, 8802–8807 (2011).
[Crossref] [PubMed]

S. Slepneva, B. Kelleher, B. OShaughnessy, S. P. Hegarty, A. G. Vladimirov, and G. Huyet, “Dynamics of Fourier domain mode-locked lasers,” Opt. Express 21, 19240–19251 (2013).
[Crossref] [PubMed]

D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Extended coherence length Fourier domain mode locked lasers at 1310 nm,” Opt. Express 19, 20930–20939 (2011).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
[Crossref] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13, 10652–10664 (2005).
[Crossref] [PubMed]

H. Lim, J. De Boer, B. Park, E. Lee, R. Yelin, and S. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815–870 nm range,” Opt. Express 14, 5937–5944 (2006).
[Crossref] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18, 14685–14704 (2010).
[Crossref] [PubMed]

L. A. Kranendonk, R. J. Bartula, and S. T. Sanders, “Modeless operation of a wavelength-agile laser by high-speed cavity length changes,” Opt. Express 13, 1498–1507 (2005).
[Crossref] [PubMed]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007).
[Crossref] [PubMed]

D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Spectral-domain spectrally-encoded endoscopy,” Opt. Express 15, 2432–2444 (2007).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
[Crossref] [PubMed]

S. Slepneva, B. OShaughnessy, B. Kelleher, S. Hegarty, A. Vladimirov, H.-C. Lyu, K. Karnowski, M. Wojtkowski, and G. Huyet, “Dynamics of a short cavity swept source OCT laser,” Opt. Express 22, 18177–18185 (2014).
[Crossref] [PubMed]

D. C. Adler, J. Stenger, I. Gorczynska, H. Lie, T. Hensick, R. Spronk, S. Wolohojian, N. Khandekar, J. Y. Jiang, S. Barry, A. E. Cable, R. Huber, and J. G. Fujimoto, “Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies,” Opt. Express 15, 15972–15986 (2007).
[Crossref] [PubMed]

M. Bonesi, M. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. Leitgeb, M. Crawford, and W. Drexler, “Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length,” Opt. Express 22, 2632–2655 (2014).
[Crossref] [PubMed]

E. J. Jung, C.-S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16, 16552–16560 (2008).
[PubMed]

Y. Nakazaki and S. Yamashita, “Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing,” Opt. Express 17, 8310–8318 (2009).
[Crossref] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050nm Fourier domain mode-locked laser,” Opt. Express 19, 3044–3062 (2011).
[Crossref] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18, 20029–20048 (2010).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. A (2)

H. Johnston and S. Sarkar, “Moving mirrors and time-varying dielectrics,” Phys. Rev. A 51, 4109–4115 (1995).
[Crossref] [PubMed]

M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73, 51803 (2006).
[Crossref]

Phys. Rev. Lett. (2)

E. J. Reed, M. Soljačić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90, 203904 (2003).
[Crossref]

M. F. Yanik and S. Fan, “Time reversal of light with linear optics and modulators,” Phys. Rev. Lett. 93, 173903 (2004).
[Crossref] [PubMed]

Phys.-Usp. (1)

A. B. Shvartsburg, “Optics of nonstationary media,” Phys.-Usp. 48, 797–823 (2005).
[Crossref]

Proceedings of the Combustion Institute (1)

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proceedings of the Combustion Institute 31, 783–790 (2007).
[Crossref]

Other (11)

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “Time-Encoded Raman: Fiber-based, hyperspectral, broadband stimulated Raman microscopy,” e-print arXiv:1405.4181 [physics.optics] (2014).

A. E. Siegman, Lasers (University Science Books, 1986).

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. Minneman, C. Chiccone, and D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” in Proc. SPIE 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI p. 82130T (2012).
[Crossref]

M. P. Minneman, J. Ensher, M. Crawforda, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” in Proc. SPIE 8311, Optical Sensors and Biophotonics III p. 831116 (2011).
[Crossref]

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” in Proc. SPIE 7554, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIV p. 75541F (2010).
[Crossref]

V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760kHz axial scan rate using single-mode 1310nm MEMs-tunable VCSELs with >100nm tuning range,” in CLEO: Science and Innovations p. PDPB2 (2011).

M. Fox, Optical Properties of Solids (Oxford University Press, 2001).

S. Orfanidis, Electromagnetic Waves and Antennas (Online book, Rutgers, retrieved March 2014). http://www.ece.rutgers.edu/orfanidi/ewa/

E. Hecht, Optics (Addison-Wesley, 2002).

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz – 1MHz axial scan rate and long range centimeter class OCT imaging,” in Proc. SPIE 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI p. 82130M (2012).
[Crossref]

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematic representation of various methods for wavelength tuning by changing the intracavity optical path length: (a) Resonator with moving end mirror; (b) resonator with time dependent refractive index; (c) grating-based wavelength tuning mechanism.
Fig. 2
Fig. 2 Model parameters for idealized laser resonator with wavelength tuning by (a) moving the end mirror and (b) changing the intracavity refractive index. The optical resonator field is described by a forward and a backward propagating component, denoted by E x + and E x , respectively.
Fig. 3
Fig. 3 (a) Ideal lossless FDML laser model, consisting of an optical fiber for light storage and a tunable bandpass filter. (b) Fabry-Pérot bandpass filter.

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

δ W = F δ L = W δ L L .
W = V ε 0 n 2 E ^ 2 ,
F ( x ) = k 0 x + k 1 x 2 ,
k = d F ( x 0 ) d x = k 0 2 k 1 x 0 .
n = ( 1 + χ N e V ε 0 x ^ 2 E ^ ) 1 / 2 = ( 1 + χ + N e 2 V ε 0 1 k ω 0 2 m e ) ,
δ n = k 1 V ε 0 N e 2 n ( n 2 1 χ ) 2 δ x .
N ω 0 2 π L δ x 0 2 π / ω 0 0 L F [ x 0 + x ^ sin ( k z ) cos ( ω 0 t ) ] d z d t = N ( k 0 x 0 + k 1 x 0 2 + 1 4 k 1 x ^ 2 ) δ x .
δ W = 1 4 N k 1 x ^ 2 δ x = W δ n n ,
t H y = μ 0 1 z E x ,
t D x = z H y ,
D x ( z , t ) = ε 0 n 2 ( t ) E x ( z , t ) .
n 2 ( t ) t 2 D x = c 2 z 2 D x ,
E x = E x + ( t z / c ) + E x ( t + z / c ) .
E x + ( t z / c ) = r 1 E x [ t ( z + 2 L 0 ) / c ] .
E x ( t + z / c ) = γ r 2 E x + [ γ ( t + z / c ) ] .
E x + ( τ ) = γ r 1 r 2 E x + [ γ ( τ 2 L 0 / c ) ] .
E x + ( τ ) = E ^ x exp ( i 0 τ ω ( τ ) d τ ) = E ^ x exp [ i ω 0 b 1 ln ( 1 + b τ ) ] ,
b = c 1 γ 2 L 0 γ = c v ( c v ) L 0 , ω 0 = b ( 2 π m ϕ 1 ϕ 2 ln γ + i ) ,
E x = { E x + ( t z / c ) + E x ( t + z / c ) } = | E ^ x | { cos [ δ ln ( 1 + b t b z / c ) + ϕ ] 1 + b t b z / c + cos [ δ ln ( γ 1 + b t + b z / c ) ϕ 1 + ϕ ] γ 1 + b t + b z / c } ,
H y = | E ^ x | c μ 0 { cos [ δ ln ( 1 + b t b z / c ) + ϕ ] 1 + b t b z / c cos [ δ ln ( γ 1 + b t + b z / c ) ϕ 1 + ϕ ] γ 1 + b t + b z / c } .
E x , m + ( τ ) = | r 1 r 2 | m E x , 0 + ( τ ) .
E x , t + ( τ ) = t 2 m = 0 E x , m + ( τ ) = E x , i + ( τ ) t 1 t 2 m = 0 | r 1 r 2 | m = E x , i + ( τ ) t 1 t 2 1 | r 1 r 2 | .
E x = m = 0 | r 1 r 2 | m { E x , 0 + ( t z / c ) + γ r 2 E x , 0 + [ γ ( t + z / c ) ] } = 1 1 | r 1 r 2 | { E x , 0 + ( t z / c ) + γ r 2 E x , 0 + [ γ ( t + z / c ) ] } = | E ^ x | { cos [ δ ln ( 1 + b t b z / c ϕ ) ] 1 + b t b z / c + | r 2 | cos [ δ ln ( γ 1 + b t + b z / c ) + ϕ ϕ 1 ] γ 1 + b t + b z / c } ,
H y = | E ^ x | c μ 0 { cos [ δ ln ( 1 + b t b z / c ) + ϕ ] 1 + b t b z / c | r 2 | cos [ δ ln ( γ 1 + b t + b z / c ) + ϕ ϕ 1 ] γ 1 + b t + b z / c } .
n 0 2 b 2 4 c 2 F = z 2 F n 0 2 c 2 τ 2 F .
k = n 0 c ω 0 ( 1 + 1 4 b 2 ω 0 2 ) 1 / 2 ,
E x ± ( z , t ) = E ^ x ± ( 1 + b t ) 3 / 2 exp [ ± i k z i ω 0 b 1 ln ( 1 + b t ) ] .
E x + ( z , t ) = r 1 E x ( z 2 L 0 , t ) , E x ( z , t ) = r 2 E x + ( z , t ) ,
E x + ( z , t ) = r 1 r 2 E x + ( z + 2 L 0 , t ) .
k = ( 2 π m ϕ 1 ϕ 2 ) / ( 2 L 0 )
ω 0 = [ c 2 n 0 2 ( 2 π m ϕ 1 ϕ 2 2 L 0 ) 2 1 4 b 2 ] 1 / 2 ,
E x = { E x + ( z , t ) + E x ( z , t ) } = 2 | E ^ x | ( 1 + b t ) 3 / 2 cos ( k z ϕ 2 2 ) cos [ ω 0 b ln ( 1 + b t ) + ϕ + ϕ 2 2 ] ,
H y = 2 ε 0 n 0 2 | E ^ x | k ( 1 + b t ) 1 / 2 sin ( k z ϕ 2 2 ) × { ω 0 sin [ ω 0 b ln ( 1 + b t ) + ϕ + ϕ 2 2 ] + b 2 cos [ ω 0 b ln ( 1 + b t ) + ϕ + ϕ 2 2 ] } .
λ ( t ) = 2 π c / ω ( t ) = 2 π c ( 1 + b t ) / | { ω 0 } | .
λ m = 2 L op ( m ϕ 1 + ϕ 2 2 π ) 1 ,
λ ( t ) = ln ( c + v c v ) ( c v v L 0 + c t ) ( m ϕ 1 + ϕ 2 2 π ) 1 .
λ ( t ) = ( 1 + b t ) [ λ m 0 2 ( b 4 π c ) 2 ] 1 / 2 ,
W = A 2 L 0 z 2 ( ε E x 2 + μ 0 H y 2 ) d z .
W = ε 0 n 0 2 | E ^ x | 2 1 + | r 2 | 2 2 A L 0 1 + b t ,
v t , max c Δ λ ln G net 20 L R .
Δ λ = 2 ln 2 π λ 2 L c ,

Metrics