Abstract

We present a fully automatic algorithm to identify fluid-filled regions and seven retinal layers on spectral domain optical coherence tomography images of eyes with diabetic macular edema (DME). To achieve this, we developed a kernel regression (KR)-based classification method to estimate fluid and retinal layer positions. We then used these classification estimates as a guide to more accurately segment the retinal layer boundaries using our previously described graph theory and dynamic programming (GTDP) framework. We validated our algorithm on 110 B-scans from ten patients with severe DME pathology, showing an overall mean Dice coefficient of 0.78 when comparing our KR + GTDP algorithm to an expert grader. This is comparable to the inter-observer Dice coefficient of 0.79. The entire data set is available online, including our automatic and manual segmentation results. To the best of our knowledge, this is the first validated, fully-automated, seven-layer and fluid segmentation method which has been applied to real-world images containing severe DME.

© 2015 Optical Society of America

1. Introduction

Diabetic retinopathy is the leading cause of blindness among working-aged adults in the United States [1]. Among those affected, approximately 21 million people develop diabetic macular edema (DME) [2]. DME results from the breakdown of the blood-retinal barrier as retinal vascular endothelial and mural cells become damaged from chronic hyperglycemia [3]. Retinal hypoxia results in increased production of vascular endothelial growth factors (VEGF) and other signaling cascades [35]. These further progress DME through mechanisms such as cytotoxic damage to retinal fluid transport cells [69]. Ultimately, the imbalance between vascular leakage and fluid transport leads to retinal edema and vision loss.

While clinical trials of several treatment modalities have been conducted for therapies for DME [1019], the significant proportion of subjects that fail to respond to any single therapy suggests that DME pathophysiology is multifactorial, and unfortunately no consensus yet exists for determining which patients are likely to respond to specific therapies. This may be due to the absence of a standard method for stratifying patients based on disease mechanisms [20, 21]. In recent years, the additional depth-resolved dimension of data provided by optical coherence tomography (OCT) imaging has prompted groups to correlate morphological patterns of the retina on OCT with DME and vision outcomes [2226]. For clinical trials, the most commonly used quantitative imaging biomarker of DME severity is currently central subfield thickness, which does not capture details such as edema volume or changes in specific retinal layers. We expect that these parameters will provide valuable prognostic information to guide treatment decisions. However, despite the development of automated retinal layer segmentation methods applicable to normal eyes or eyes with limited pathological deformation or loss of retinal structures [2742], most DME studies require either manual [22, 2426, 43] or semi-automatic [44] evaluation of OCT images. Currently few automated algorithms exist to quantify morphological or pathological features on images with DME [43, 4551].

Furthermore, while averaging-based denoising methods enhance image quality and improve the performance of automated image segmentation algorithms [52], they also result in drastic increases in image acquisition times, which may not be tolerated by ill or uncooperative patients, especially when capturing dense volumetric scans. It is therefore desirable to develop automatic OCT segmentation algorithms which can be applied to lower quality images captured using fast-image scanning protocols, as these are often required in real-world, clinical settings.

Finally, while a few state-of-the-art algorithms provide combined fluid and layer segmentation methods [47, 48, 50], to the best of our knowledge, no fully-automated algorithm has been validated to identify all retinal layers and fluid-filled regions. Furthermore, there is limited rigorous analysis of layer-specific changes in retinal thickness following therapy. As such, the selection of personalized therapeutic strategies for patients remains subjective. As a step towards this goal, we present a fully automated algorithm based on kernel regression (KR) [53] and our previously described graph theory and dynamic programming (GTDP) framework [46, 54, 55] to identify fluid-filled regions and seven retinal layers on spectral domain (SD)-OCT images of eyes with DME. In the first phase of developing our algorithm, we created KR-based classifiers to estimate fluid and retinal layer positions. We then used these classification estimates in the second phase to guide GTDP segmentation for a more accurate result.

In Section 2, we provide an introduction to KR, and in Section 3 we present our new general purpose KR-based classification method. We then combine our KR-based classification method with GTDP segmentation in Section 4 and describe our implementation on OCT images of eyes with DME in Sections 5 and 6. Finally, we validate the performance of our algorithm in Sections 7 and 8.

2. Kernel regression review

KR is a non-parametric method for deriving local estimates of a function using a kernel that weighs the relative importance of nearby points [53]. While traditional KR-based applications include image denoising and interpolation [53], deblurring [56], and object detection [57], we use KR to improve image classification and segmentation. In this section, we provide an overview on the second order iterative Gaussian steering KR method for image denoising as introduced and described in detail in [53].

2.1 Problem formulation

Looking at a small patch of P pixels on a noisy image IM×N, the intensity yp of a pixel can be described by

yp=f(zp)+np,p=1,,P,
where zp=[ip,jp]T is the pth pixel located at row i and column j on I, f() is an unspecified (non-parametric) regression function, and np is an independent and identically distributed zero-mean noise value at zp. Using this formulation, we would like to obtain a local estimate of the regression function f^(zp) to generate a denoised image I^ can approximate f(zp) using the second order Taylor series expansion about a point z near zp following
f(zp)β0+β1T(zpz)+β2Tvech[(zpz)(zpz)T],
whereβ0=f(z),β1=[f(z)if(z)j]T,
β2=12[2f(z)i22f(z)ij2f(z)j2]T,
vech([abbd])=[abd]T.
We next solve for the unknowns β0, β1, and β2 in Eq. (2) using the weighted linear least squares formulation [53, 58] following
b^=argminb[(yZb)TD(yZb)],
wherey=[y1,y2,,yP]T,
b=[β0,β1T,β2T]T,
D=diag[K^(z1z),K^(z2z),,K^(zPz)],
Z=[1(z1z)Tvech(z1z)(z1z)T1(z2z)Tvech(z2z)(z2z)T1(zPz)Tvech(zPz)(zPz)T],
and “diag” defines a diagonal matrix and K^() is a linearly normalized kernel function used to weigh the P observations such that p=1PK^(zPz)=1. Since Eq. (3) is a linear least squares formulation, the solution can be given by Eq. (4), where the first element in b^ is the denoised image I^.

b^=(ZTDZ)1ZTDZy

2.2 Adaptive iterative Gaussian steering kernel

In order to perform KR as described in Section 2.1, an appropriate kernel must be selected. In this section, we describe the popular adaptive iterative Gaussian steering kernel (KiGS) [53]. To summarize, this kernel can be described as a Gaussian function that is elongated (σ), rotated (θ), and scaled (γ) based on the local data to reduce edge blurring.

To compute the Gaussian steering kernel for a pixel z, we first smooth the image using a linear Gaussian filter with standard deviations of hi and hj along the i and j dimensions, and then we compute the image gradients Gi and GjM×N.We then calculate the truncated singular value decomposition following Eq. (5) [53, 59, 60].

USTT=[Gi(z1)Gj(z1)Gi(z2)Gj(z2)Gi(zP)Gj(zP)],whereS=[S1100S22],T=[T11T12T21T22].

Second, we compute the steering parameters σ, θ, and γ as described in Eq. (6), where λ' and λ'' are parameters that prevent undefined or zero values for σ and γ. We then denoise z following Eq. (4) using a linearly normalized version of the kernel defined Eq. (7), where h is the global smoothing parameter.

θ=arctan(T12T22),σ=S11+λ'S22+λ',γ=(S11S12+λ''P)12.
KGS(zpz)=exp[(zpz)TΣ(zpz)2h2],
whereΣ=γΘTΛΘ,Θ=[cos(θ)sin(θ)sin(θ)cos(θ)],Λ=[σ00σ1].

Third, we iteratively improve the denoised image (β^0) by recalculating the steering parameters and kernel using the denoised image gradients (β^1) [53].

An example image and its Gaussian steering KR denoised result are shown in Fig. 1(a) and 1(f), respectively. Figure 1(c) and 1(e) are the iterative Gaussian steering kernels for Fig. 1(b) and 1(d), respectively. The kernel in Fig. 1(c) is wider and more isotropic since its corresponding image patch does not contain strong edges, while the kernel in Fig. 1(e) is narrower and oriented along the image edge. In Fig. 1(f), the regions external to the retina (black) were not denoised with the exception of a padded boundary surrounding the retina. The thickness of this boundary is half the kernel size to encapsulate all pixels required for feature vector computation in Sections 3.2 and 5.8. Parameter values used to generate Fig. 1(f) were chosen empirically using the training data set and include a kernel size of 73.7 × 147.4 µm (11 × 11 pixels,P = 121), 3 iterations for K^iGS, hi=1, hj=3, h=3, λ'=0.1, and λ''=1.

 figure: Fig. 1

Fig. 1 Second order iterative Gaussian steering KR of an SD-OCT image with DME. a) Automatically flattened image, b,d) zoomed-in images of the pink and green boxes in (a), c,e) Gaussian steering kernels used to denoised the central pixel of (b) and (d), and f) KR-denoised image of (a). In (f), regions external to the retina (black) were not denoised with the exception of a padded boundary surrounding the retina required for feature vector computation.

Download Full Size | PPT Slide | PDF

3. Kernel regression-based classification

In this section, we integrate KR with supervised classification [61, 62] to classify noisy images. The following subsections describe our novel, general purpose KR-based classification method. Specific application of this method for segmenting retinal layers is discussed in Sections 5 and 6.

3.1 Steering kernel regression estimation

Since pixels within an image are individually classified, the presence of noise worsens classification results. Thus, the first step is to use the KR method described in Eq. (4) to denoise the image and obtain: 1) direct estimates for the noise-free first and second derivatives (β^1 and β^2), and 2) adaptive directional kernels (K^) for each pixel.

3.2 Computing features

To classify a pixel z, the pixel needs associated descriptors called features. Each feature v is a scalar value used to describe the pixel, and L features comprise a feature vector v=[v1,v2,,vL]. Basic features include pixel intensity, gradient, and location. Other feature types include textural features such as Laws’ Texture Energy Measures [63, 64].

To mitigate the effects of noise on feature computation, we perform weighted averaging. Since the steering kernels in Section 2.2 adapt to the shape of the underlying structure, we use the kernels from Section 3.1 to filter the features following

v^l(z)=p=1Pvl(zp)K^(zp-z),
where vl(zp) is the lth feature for pixel zp and v^l(z) is the lth (now denoised) feature for pixel z. We also use the kernels themselves as features (e.g. kernel height, width, and area) to reveal more indistinct information. Specific feature examples are defined in Section 5.8.

3.3 Defining the true (training) classes

In supervised classification, a set of classes (categories) c={ck}k=1K is pre-defined for a given classifier [62]. Given a training data set, we manually identify the true class c for each training pixel z such that cc. Specific examples of these classes are given in Section 5.2.

3.4 Defining the classifier function

For an image I, we define a classifier φ() which estimates the class c^cfor a pixel z following

c^=φ(v).
Provided that the training data set is composed of R total training pixels, we first combine the feature vectors for all R pixels into the feature vector set V=[v1T,v2T,,vRT]TR×L, where vr is the feature vector for the rth training pixel. For each class ck, we then create a feature vector subset VkV where Vk={vV|c=ck}Rk×L and Rk is the number of training pixels with ck as the true class. From this definition, it can be seen that k=1KRk=R.

We next define the classifier function used to estimate the class. To take into consideration the typical spread of feature values, we use a weighted negative Gaussian classifier function following Eq. (10), whereμk1×L is the mean feature vector across the training feature vector subset Vk, εk1×L is the element-wise reciprocal of the variance feature vector for Vk, ω1×L is a set of constant weights used to alter the relative importance of features, and is the Hadamard product, an element-wise multiplication operation for vectors and matrices. Selection of these weights is described in Section 3.5.

φwNG(v)={ck|argmink[1exp(12[εkω(vμk)][εkω(vμk)]T)]12}

3.5 Weighted sequential forward feature selection

Since not all features in v may be useful for predicting the true class c, we reduce the dimension of v by defining a subset v'v of length L'L containing the most relevant features [6567]. We achieve this by performing weighted sequential forward feature selection (wSFFS), a variation of the classic SFFS method [66] that simultaneously selects features and their corresponding weights. In the classic SFFS method, v' begins as a null set and features are added to it sequentially [66] by minimizing a predefined criterion function E() (e.g. misclassification rate).

A limitation of the SFFS method is that it weighs each feature equally. As a result, we use the wSFFS method to select features along with their optimal weight. Given a set of A possible weight values a=[a1,a2,,aA], we create a new set of weighted feature vectors VA=[a1V,a2V,,aAV]R×LA. We then perform SFFS on VA to find the most relevant weighted feature. After sequentially adding weighted features, the result is a subset of features v' and corresponding weights ω'=[ω1,ω2,,ωL'] where the lth weight ωla. We subsequently use this new set of reduced features and weights in Eq. (10) to classify the pixel in place of the full, non-weighted feature vector v.

Finally, to reduce classifier overfitting, we use K-fold cross-validation [68] during feature selection. We also increase the classification accuracy by using K-means clustering [69] to divide V into K clusters. We then perform wSFFS on each of the clusters to generate K sets of selected feature vectors and weights. When classifying a pixel, the set that minimizes the criterion function is used to determine the final class.

4. Classification-based GTDP segmentation

To improve the KR-based classification method from Section 3, we apply our GTDP segmentation framework introduced in [54] to more accurately isolate class boundaries. This section provides an overview of our GTDP method and describes how the classification results can be used to both improve and simplify GTDP segmentation.

4.1 GTDP layer segmentation review

We represent an image IM×N as a graph, where each pixel is a node on the graph and adjacent nodes are connected by edges. To create a path preference, we assign positive weights to the edges based on features such as image intensity or gradient, where ultimately the lowest weighted path is preferred. For example, to segment the darkest path across an image, we assign weights based on image intensity, where the weight wab of the edge connecting nodes a and b following

wab=Ia+Ib+wmin,
where In is the intensity of I at node n and wmin is a positive number specifying the minimum weight of an edge since a weight equal to zero indicates two unconnected nodes. We also specify that wab=wba for all node pairs, as this generates an undirected graph with half as many weight values.

To segment a horizontal layered structure, we add an additional node to either side of the graph to automatically initialize the start and end nodes of our path. The additional node on the left is connected to all nodes in the leftmost column of the graph, and the right additional node has edges connecting it to all nodes in the rightmost column. These additional edges are assigned a weight of wmin. We then apply Dijkstra’s algorithm [70] to find the shortest path from the start node to the end node, which corresponds to our desired segmentation. For more details referring to our GTDP segmentation algorithm, refer to [54, 55].

4.2 Classification-based search region limitation

For scenarios in which multiple similar features are to be segmented within a given image (e.g. retinal layer boundaries), the graph may be isolated to a smaller region containing only one of the features. This may be done using a priori knowledge of the feature to segment. For example, to segment the inner plexiform layer (IPL) / inner nuclear layer (INL) boundary, we can set all edge weights in the outer half of the retina to zero. This prevents the algorithm from segmenting outer retinal features such as the outer segment (OS) / retinal pigmented epithelium (RPE) boundary. Implementation examples of these types of search region limitation can be found in [45, 46, 54, 55, 71].

To simplify and reduce the complexity of search region limitation, we can modify the edge weights of the graph to emphasize a particular region. For example, let us extend our example in Section 4.1 to segment the darkest path across an image. Given an image I and its classification result CM×N where C[i,j]c is the estimated class of I[i,j], we would like to segment the darkest path across the portion of the image where C[i,j]ck. To do this, we compute the edge weights for n={a,b} following

wab=Ia+Ib+#{n|Cnck}+wmin,
where Cn is the class at node n and #{n|Cnck} represents the number of nodes not equal to ck. From Eq. (12), it can be seen that edges connecting nodes with class ck are given lower weights than edges connecting nodes assigned to other classes. The advantage of this method is that far fewer a priori rules are required to isolate the desired region, as the classification method automatically generates estimates of region locations. Furthermore, hard limits are not set on the search region, as portions of the graph are not excluded.

5. Training the DME classifier

In this Section, we describe an implementation of our KR-based classification method to generate a DME classifier to identify fluid-filled regions and seven retinal layers on SD-OCT images of eyes with DME. An outline of our method is shown on the left side of Fig. 2. All parameter values were either selected empirically based on the training data set or were extensions from our previous segmentation algorithms [45, 54, 55].

 figure: Fig. 2

Fig. 2 Flowchart of the KR-based classification and GTDP-based segmentation algorithm for identifying fluid-filled regions and eight retinal layer boundaries on images with DME pathology.

Download Full Size | PPT Slide | PDF

5.1 DME training data set

To learn our DME classifier, we obtained training data separate from our validation data set. We used the Duke Enterprise Data Unified Content Explorer search engine to retrospectively identify patients within the Duke Eye Center Medical Retina practice with a billing code for DME (ICD-9 362.07) associated with their visit. An ophthalmologist then identified six patients imaged in clinic using the standard Spectralis (Heidelberg Engineering, Heidelberg, Germany) 61-line volume scan protocol with severe DME pathology and varying image quality. Averaging of the B-scans was determined by the photographer, and ranged from 9 to 21 raw images per averaged B-scan. The volumetric scans were Q=61 B-scans × N=768 A-scans with an axial resolution ri=3.87 µm/pixel, lateral resolution (rj) ranging from 11.07 – 11.59 µm/pixel, and azimuthal resolution (rk) ranging from 118 – 128 µm/pixel.

5.2 Target classes

To generate the target classes for classifier training, we manually segmented fluid-filled regions and semi-automatically segmented all eight retinal layer boundaries following the definitions in Fig. 3. This was done for 12 B-scans within the training data set (two from each volume). The B-scans selected consisted of six images near the fovea (B-scan 31 for all volumes) and six peripheral images (B-scans 1, 6, 11, 16, 21, and 26, one for each of the six volumes). We then used the manual segmentations to assign the true class for each pixel, with a total of eight possible classes defined in Table 1 and the classified result shown in Fig. 4(a).

 figure: Fig. 3

Fig. 3 Target retinal layer boundaries and fluid to segment on an SD-OCT B-scan of an eye with DME. A flattened version of the image without markings is shown in Fig. 1(a).

Download Full Size | PPT Slide | PDF

 figure: Fig. 4

Fig. 4 KR-based classification of retinal layers and fluid-filled regions. a) Manual classification of the image in Fig. 1(a) with the classes defined in Table 1. b) Automatic classification using the merged DME classifier.

Download Full Size | PPT Slide | PDF

5.3 Pre-processing the image

Prior to training the classifier, we perform image pre-processing steps for all B-scans within a volume following our validated DME algorithm described in [45]. To summarize, we first remove Spectralis registration boundaries by replacing them with the mirror image of the valid image regions. To standardize the images following [45] and [55], we resize the image to a lateral and axial resolution of rj=13.4µm/pixel and ri=6.7µm/pixel, respectively, and then linearly normalize the image to range from 0 to 1.

5.4 Flattening the retina

Next, we flatten the curved retina to obtain a shorter path for GTDP segmentation. Following [45], we achieve this by first heavily filtering each image using a 40.2 µm × 80.4 µm Gaussian with σ=73.7µm × 147.4 µm. We then threshold the filtered image at 0.5 to extract the inner and outer hyper-reflective complexes. We refine the hyper-reflective mask by 1) opening any gaps in the clusters using a 33.5 µm × 40.2 µm rectangular structuring element, 2) removing all clusters less than 0.018 mm2 in size, and 3) closing any remaining gaps using the same structuring element. Using GTDP, we segment the boundaries of the hyper-reflective complexes as described in [55] which obtains estimates at the middle of the ONL and RPE.

Unlike our previous algorithms which flattened the retina on B-scans individually [45, 54, 55], in this algorithm we perform the above steps for all images in the volume to generate 2D map estimates (Q×N) of the OPL and RPE surfaces. Using the map of the RPE, we linearly interpolate any missing A-scans and B-scans. We then search for outliers by computing the absolute second derivative in the vertical direction and isolating all values greater than three standard deviations above the mean. Outlier clusters within each B-scan are then linearly interpolated, and the map of the RPE is smoothed using a 500 µm Gaussian filter with σ=250µm. Finally, for each B-scan, we circularly shift the A-scans until the RPE estimate is flat. Since the ONL boundary no longer aligns with the flattened RPE and image, we also flatten the ONL using the same flattening transformation.

5.5 Segmenting the total retina

To isolate the retina from the vitreous and choroid, we implement our GTDP layer segmentation framework described in Section 4.1 to segment the ILM using the dark-to-light gradient weights computed following

wab=LinNorm(GaDLGbDL,0,1)+wmin,
where GnDL is the maximum of the dark-to-light vertical (filter=[1,1]T) and diagonal gradients of I at node n after filtering the image using a Gaussian (20.1 µm × 67 µm, σ=13.4µm × 26.8 µm), wmin=1×105, and LinNorm(x,y,z) is a linear normalization of x to range from y to z. While using Dijkstra’s algorithm to segment the ILM, we limit the search region to span from the top of the image down to the RPE estimate generated in Section 5.4. To ensure that hyper-reflective spots or detachments internal to the ILM are not segmented, we re-segment the boundary using the weights in Eq. (14) where Dab is the Euclidean distance from node a to node b. We also limit the search region to span from the initial ILM estimate to 67 µm below the ILM.

wab=LinNorm(GaDLGbDL,0,1)+LinNorm(Dab,0,0.1)+wmin

To segment BM, we compute weights following Eq. (15) where GnLD is the light-to-dark equivalent of GnDL and In is the intensity of the filtered image at node n. We also set the top boundary of the search region to the mean location between the ONL estimate and 100.5 µm below the ILM, and we set the bottom boundary to the bottom of the image.

wab=LinNorm(GaLDGbLD,0,1)+LinNorm(Dab,0,0.4)+LinNorm(IaIb,0,0.4)+wmin

5.6 Locating the fovea

To compute the features in Section 5.8 and gauge the location of the optic nerve and merged retinal layers, we first identify the location of the fovea on the volumetric macular scan. Upon segmenting the ILM and BM across all B-scans, we locate the fovea based on the 2D total retinal thickness (TRT) map computed by subtracting the ILM from BM. To do this, we first filter the TRT map (Q×N) using a Gaussian (120 µm × 89.8 µm and σ = 18.95 µm × 85.8 µm). We then narrow our search region to the central 3 mm of the volumetric macular scan and find all local extrema with a depth greater than 13.4 µm. If the extremum with the lowest or highest TRT resides closest to the center of the volume, then we assign that location as the fovea. Otherwise, we create a summed voxel projection (SVP) by summing pixels ranging from the ILM to 33.5 µm below the ILM across all B-scans. As with the TRT, we smooth the SVP, locate the extrema, and computed distances from the fovea. Looking at the five extrema closest to the center of the volume, we set the extremum with the lowest intensity as the fovea.

5.7 Kernel regression-based denoising

We next perform iterative Gaussian steering KR on each training image as described in Section 2 to 1) extract the normalized kernels K^iGS for every pixel z in the retina, and 2) recover b^ defined in Eq. (4) which contains the denoised image and its first and second order derivatives. Parameter values are listed in Section 2.2, and since only the pixels within the retina need to be classified, we do not denoise pixels within the vitreous and choroid.

5.8 Computing DME training features

To learn the DME classifier, we computed feature vectors for the 12 training images manually segmented in Section 5.2. We generated a total of 22 features (v1v22) for each vector, and only pixels within the retina were processed. The nine KR-based features are defined in Table 2, the four position-related features are listed in Table 3, and the nine Laws’ Texture Energy Measure features [63, 64] are listed in Table 4. We then enhance the texture features in Table 4 using Eq. (8) and further enhance all features except v7v13 using adaptive histogram equalization [72]. Finally, we normalize all features to match the range of the training features. Figure 5 shows Laws’ E5TE5 feature computed with and without KR-based denoising. As can be seen from Fig. 5, utilizing KR reduced the amount of noise present within the feature.

Tables Icon

Table 2. Kernel regression-based DME training features

Tables Icon

Table 3. Position-based DME training features

Tables Icon

Table 4. Laws’ texture training features

 figure: Fig. 5

Fig. 5 Laws’ E5TE5 texture feature computed for the image in Fig. 1(a) with (a) and without (b) KR-based denoising. Both feature images have been enhanced using adaptive histogram equalization.

Download Full Size | PPT Slide | PDF

5.9 Selecting relevant features and weights

To select the most relevant features and weights for fluid and layer classification, we implemented our wSFFS method described in Section 3.5. We used ten-fold cross-validation [73] during this process and adjusted selection parameters until we achieved the desired classification result. During feature selection, we set the maximum number of features in v' to 10, a ranged from 0.1 to 1 in 0.1 increments, used the classifier function defined in Eq. (10), and allowed a maximum of three clusters.

Next, we defined three types of DME classifiers: 1) a layer classifier (φl) for segmenting layer boundaries, 2) a fluid classifier (φf) for identifying fluid-filled regions, and 3) a layer + fluid classifier (φl+f) used to remove false positive fluid detected by the fluid classifier. For each classifier type, we defined the criterion function following Eqs. (16) and (17), where V'=[v'1T,v'2T,,v'RT]TR×L' is the set of reduced feature vectors for all training data, cr is the true class for v'r, and ck is the class that is being analyzed. For the fluid classifier, k=1 so only the fluid class is evaluated by the criterion function. For the layer classifier, k=2,,8 so only the layers are analyzed, and k=1,,8 for the layer + fluid classifier so all classes are analyzed. The resulting feature and weights are shown in Table 5 and Fig. 6, where φl is a 3-cluster classifier, and φf and φl+f are 1-cluster classifiers.

Tables Icon

Table 5. Selected DME classifier features and weights

 figure: Fig. 6

Fig. 6 Visual example of features selected for the DME classifiers. a-l) Features computed for the image in Fig. 1(a).

Download Full Size | PPT Slide | PDF

E(V')={21Kk{1K}TNkTNk+FPk,21Kk{1K}(TNkTNk+FPk+1)21Kk{1K}(TNkTNk+FPk+TPkTPk+FNk)ifTPk=0,FPk>0,FNk=0ifTPk=0,FPk=0,FNk=0otherwise
TPk=#{r|φ(v'r)=ckandck=cr},r=1,,RTNk=#{r|φ(v'r)ckandckcr},r=1,,RFPk=#{r|φ(v'r)=ckandckcr},r=1,,RFNk=#{r|φ(v'r)ckandck=cr},r=1,,R

5.10 Merged DME classifier

Given three classification images Cl, Cf, and Cl+fM×N output by the layer, fluid, and layer + fluid classifiers developed in Section 5.9, we next merge the results to create a single classification result. We achieve this by first setting all regions in Cf and Cl+f to zero if it is not classified as fluid. Next, we remove all fluid clusters in Cf that do not overlap with the fluid in Cl+f. We also examine the shape of the fluid clusters and remove any that are abnormally wide and thin. More specifically, if a cluster is more than 536 µm wide and less than 33.5 µm tall, then we consider the cluster as a false positive. Finally, we generate the merged classification image C by setting C=Cl and subsequently assigning all pixels in C to c1 (fluid) where Cf>0. Figure 4 shows an example training image comparing the true classes (Fig. 4(a)) to the automatically generated classes output by our algorithm (Fig. 4(b)).

6. Automatic classification-based GTDP segmentation algorithm for DME

We next leveraged the classification results from Section 5 to create a fully automatic GTDP segmentation algorithm to identify fluid-filled regions and seven retinal layers on SD-OCT images with DME. An outline of the algorithm is shown on the right side of Fig. 2 and explained in detail in the following subsections.

6.1 Pre-processing, flattening, and segmenting the retina

We pre-process all images in a volumetric scan, flatten the entire retina based on estimates of the RPE, and use GTDP to segment the ILM and BM following Sections 0 – 5.5.

6.2 Classification of fluid and retinal layers

To classify the images, we locate the fovea and perform second order iterative Gaussian KR as described in Sections 5.6 and 5.7, respectively. We then compute the 12 features listed in Table 5 for all pixels residing within the retina following Section 5.8. Finally, we classify the feature vectors using the three classifiers from Section 5.9, and merge the results following Section 5.10 to generate the final image C containing the fluid and layer class estimates.

6.3 GTDP segmentation of intraretinal layers

To segment the six remaining intraretinal layer boundaries, we begin by creating a binary mask of the OS/RPE boundary based on the layer classification image Cl. To generate the binary image B, we set all pixels from the bottom of the classified ISE layer to the bottom of the classified RPE layer to 1. We then segment the OS/RPE boundary using the weights in Eq. (18) and a search region extending from the ILM to BM, where Bn is the value of B at node n, dmax=0.5, and bmax=0.5. Furthermore, for Eq. (18) and for all subsequent weight calculations, we compute GnDL using the denoised image β^0 generated in Section 6.2.

wab=LinNorm(GaDLGbDL,0,1)+LinNorm(Dab,0,dmax)+LinNorm(BaBb,0,bmax)+wmin
Next, we segment the ISM/ISE by setting all pixels in B ranging from the bottom of the classified ONL-ISM to the bottom of the classified ISE. We then segment the boundary using Eq. (18) where dmax=0.5, bmax=0.1, and the search region extends from halfway between the classified ILM and OS/RPE to13.4 µm above the OS/RPE.

The third intraretinal boundary we segment is the NFL/GCL. Since the ILM is oftentimes significantly brighter and creates a pseudo light-dark transition within the NFL, we take the pixel-wise square root of I^ and use the resulting image to compute the light-to-dark gradient image of the NFL/GCL boundary, generating GsqLD. We then compute the graph weights following

wab=LinNorm(GasqLDGbsqLD,0,1)+LinNorm(Dab,0,0.1)+LinNorm(BaBb,0,0.1)+wmin,
where GnsqLD is the light-to-dark gradient of GsqLD at node n and values in B ranging from the middle of the classified NFL to the bottom of the GCL-IPL are set to 1. We then set the search region to range from the ILM to the ISM/ISE. However, since the thickness of the NFL varies more than all other layers and is oftentimes very faint on the temporal side, we provide additional search region steps as follows: 1) the bottom boundary for A-scans less than 1 mm from the fovea is set to the ILM plus 40.2 µm times the distance from the fovea (in mm), 2) the top boundary for A-scans between 1.5 and 3 mm nasal to the fovea is set to the ILM plus 6.7 µm times the distance from the fovea, and 3) the bottom boundary for A-scans greater than 1 mm temporal to the fovea is set to a third of the distance between the ILM and ISM/ISE.

Next, we segment the OPL/ONL using Eq. (20) where bmax=0.5, imax=0.5, and the binary image is set to 1 between the top of the classified OPL and the middle of the classified ONL. We then set the top of the search region to either the NFL/GCL plus the NFL thickness, or 67 µm below the NGL/GCL, whichever is closer to the NFL/GCL. Finally, the bottom of the search region is set to the ISM/ISE.

wab=LinNorm(GaLDGbLD,0,1)+LinNorm(Dab,0,0.1)+LinNorm(BaBb,0,bmax)+LinNorm(Ia+Ib,0,imax)+wmin

To segment the INL/OPL, we set values in B extending from the top of the classified INL to the bottom of the classified OPL to 1. We also morphologically dilate the edges of the fluid in C using a disk structuring element with a radius of 2 pixels. The dilated edges are also set to 1 in B. We then use Eq. (18) with dmax=0.1 and bmax=0.1 to compute graph weights, and we limit the search region extent from 13.4 µm below the NFL to the OPL/ONL.

With the IPL/INL being the last boundary to segment, we set values in B ranging from the bottom of the classified GCL-IPL to the bottom of the INL to 1. To discourage the IPL/INL from running through fluid regions, we set fluid regions to a negative value in B. We then compute graph weights following Eq. (20) with bmax=0.4 and imax=0. Finally, we limit the search region to range from the a third of the distance between the NFL/GCL and INL/OPL, to the INL/OPL.

7. Algorithm validation

7.1 DME validation data set

We obtained our validation data set by identifying ten patients with DME that were not included in the training data set. The method for selecting these data sets is described in Section 5.1, with the difference that the images had to be of adequate quality (i.e. layer and fluid boundaries needed to be visible). The image acquisition parameters were consistent with the training data set, and lateral and azimuthal resolutions ranged from 10.94 – 11.98 µm/pixel and 118 – 128 µm/pixel, respectively. We made the entire data set available online, including the training and validation data sets and their corresponding automatic and manual segmentation results. This data set can be found at www.duke.edu/~sf59/Chiu_BOE_2014_dataset.htm.

7.2 Automatic versus manual segmentation

Two ophthalmologists manually segmented all fluid-filled regions and eight retinal layer boundaries using custom software (DOCTRAP V50.9) for 110 images (11 per patient). The images selected consisted of the foveal scan kfov and scans kfov ± 2, kfov ± 5, kfov ± 10, kfov ± 15, and kfov ± 20. The graders worked in a dimly lit room alone and free of other distractions. A tablet computer was used to allow the grader to utilize a stylus to mark or draw the segmentation as if writing on a flat surface. While marking the images, the ophthalmologists were able to use either a freeform (drawing) or connect-the-dots (piecewise cubic-interpolated clicking) method. They also had the options to hide/show other markings, erase/add/correct markings, and pin/unpin adjacent layer boundaries. The graders first segmented the retinal layers using predominantly the connect-the-dots function with freehand segmentation reserved for particularly complex contours such as those encountered when retinal layers are severely disrupted by edema. In cases where boundaries between layers were completely obscured or lost, the graders made their best estimate. The retinal layer segmentation could then be hidden to allow segmentation of edema without influence by retinal layer segmentation. The graders segmented retinal edema using the freehand function, and all edema was segmented whether it was cystic or non-cystic in nature. Cysts were segmented individually, whereas non-cystic edema was segmented according to the contour of thickening and the perceived location of the edema with respect to the retinal layers. The expert graders (MJA and PSM) are both fellowship-trained medical retina specialists on the faculty at the Duke Eye Center. They each have over five years of clinical experience working with diabetic subjects and reading OCT images. Both have prior experience with manual OCT grading and have each published two manuscripts involving OCT analysis and grading. Outside consultation and discussion between graders was prohibited.

To validate our algorithm, we compared our fully automatic KR + GTDP segmentation to our pre-determined primary grader (MJA) within a 6-mm lateral radius from the fovea. We then measured the Dice coefficient [74, 75] for retinal layer and fluid classification. We also measured the mean layer thickness difference between automatic and manual segmentation for each B-scan, and computed the absolute mean error across all 110 B-scans. To realize the improvement of our new KR + GTDP segmentation algorithm compared to existing methods that do not consider the presence of fluid, we also evaluated the performance of our GTDP algorithm developed for normal eyes on the DME data set. This Normal GTDP algorithm is a modified version of our 2010 algorithm described in [54], where enhancements had been made following our 2010 publication to improve segmentation results and address issues such as registration artifacts seen on Spectralis SD-OCT images. Finally, we computed the mean Dice coefficient and thickness difference for each layer for a given patient and performed the Wilcoxon matched-pairs test across all patients for each automated algorithm compared to the inter-manual results, as well as the Normal and DME algorithms compared to each other.

8. Experimental results

Figure 7 (right) shows the qualitative results of our automatic KR + GTDP segmentation algorithm for varying amounts of edema, including cases where there was no fluid present (Fig. 7(f)). This is in comparison to the automatic GTDP results using the normal algorithm (Fig. 7, middle). Table 6 and Table 7 report quantitative results comparing automatic and manual segmentation, with an overall mean Dice coefficient and thickness difference of 0.78 ± 0.10 and 5.22 ± 5.81 µm, respectively, for our proposed KR + GTDP algorithm. This is comparable to the inter-manual results which yielded an overall mean Dice coefficient and thickness difference of 0.79 ± 0.09 and 4.30 ± 2.38 µm, respectively. On the other hand, our popular GTDP algorithm developed for eyes without pathology had mean overall values of 0.70 ± 0.19 and 11.39 ± 19.11 µm. Table 8 shows the resulting p-values when comparing a) the mean patient Dice and thickness difference values between the automated and gold standard methods, to b) the inter-manual (Columns 1 and 2) or Normal GTDP (Column 3) results. An insignificant result against the inter-manual results indicates that the automated algorithm performed comparably to a second expert grader, while a significant result against the Normal algorithm indicates an improvement in the segmentation algorithm. Finally, Fig. 8 is an example comparison of the segmentations completed by the algorithm (Fig. 8(b)) and by the two graders (Fig. 8(c) and 8(d)), and Fig. 9 shows example errors in automatic segmentation (Fig. 9, bottom) when compared to a manual grader (Fig. 9, middle). The performance of the algorithms in MATLAB (MathWorks, Natick, MA) were 1.8 seconds per image on average for the Normal GTDP algorithm and 11.4 seconds for the KR + GTDP algorithm. This is in comparison to the 5.5 minutes required per image for manual segmentation.

 figure: Fig. 7

Fig. 7 Qualitative results for the identification of fluid and eight retinal layer boundaries on SD-OCT images of eyes with DME. a-c) Images with significant, moderate, and no visible fluid, respectively, d-f) their corresponding automatic segmentation result using the GTDP algorithm developed for normal eyes, and g-i) the automatic KR + GTDP segmentation result.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 6. Dice coefficients for DME segmentation

Tables Icon

Table 7. Layer thickness differences for DME segmentation in µm

Tables Icon

Table 8. Wilcoxon matched-pairs test p-values

 figure: Fig. 8

Fig. 8 Automatic and manual segmentation comparison. a) An SD-OCT B-scan with DME pathology, b) the fully automatic segmentation result, and c-d) the segmentation results completed by two different graders.

Download Full Size | PPT Slide | PDF

 figure: Fig. 9

Fig. 9 Automatic fluid detection errors. Top) Cropped portions of SD-OCT B-scans with DME, middle) manual segmentation of fluid-filled regions by a grader, and bottom) automatic fluid-filled classification. a) An image with hyper-reflective deposits, b) a dim image with a hyper-reflective outlier, and c) a high quality image.

Download Full Size | PPT Slide | PDF

9. Discussion

Despite having two qualified graders to manually mark the validation data sets, their results did not overlap with high accuracy (Table 6). This is likely due to the lower image quality and severe DME pathology present within the data set, as we deliberately chose to use real-world, clinical images in our study. While not necessarily a representative example for all graded images, Fig. 8 shows the challenge faced by both expert and automatic graders when confronted with an image from clinical practice that is affected by severe DME. The massive retinal thickening and punctate inner retinal hyper-reflectivity results in shadowing and loss of detail in the outer retinal layers. While some cysts are well-delineated hypo-reflective spaces in Fig. 8(a), others are minimally hypo-reflective compared to the surrounding tissue and create a judgment call for the grader. In this case, one grader perceived some non-cystic edema (Fig. 8(d)) while the other identified primarily cystic edema (Fig. 8(c)). The subjective nature of complex image segmentation by humans is thus one of the major obstacles to generating robust imaging-based biomarkers and is the primary unmet scientific and clinical need that is addressable using automated algorithms.

Despite the difficulty in managing such a challenging data set, Table 6 indicates that our fully automatic KR + GTDP algorithm generated results with an error close to the inter-observer variability (Dice coefficient of 0.78 versus 0.79). Furthermore, this was a significant improvement from previous algorithms developed by us, as our Normal GTDP method was tested on images without the significant pathology as seen on our DME data set. KR + GTDP classification of fluid-filled regions yielded the lowest Dice coefficient with errors similar to those shown in Fig. 9. In Fig. 9(a), false positives were detected near areas containing hyper-reflective deposits. Since the training data set did not include images with these hyper-reflective spots, the algorithm perceived these areas as “normal” and its surrounding regions as hypo-reflective, thus resulting in false positive classifications. Future versions of the algorithm can include the deposits as an additional class. Figure 9(b), in contrast, is a very dim image. Since the image contained a single hyper-reflective spot, the rest of the image remained dark after linear normalization. In future versions, the image can instead be non-linearly normalized (e.g. histogram equalization) prior to using the DME classifier. Finally, Fig. 9(c) shows the algorithm’s tendency to identify more regions of the ONL as fluid compared to the grader. This may be partially due to the small training data set size of 12 images.

Classification-based GTDP segmentation includes embedded denoising which is advantageous for reducing the noise present within the classification feature vectors (Fig. 5). While many different denoising methods may be also used to reduce the noise, the exciting properties of KR include its direct estimation of the denoised first and second order derivatives (β^1 and β^2), as well as the generation of locally-weighted kernels which can be used directly as features or reused for non-linear feature denoising. A limitation of KR is the dependence of parameter values on the image noise level. Thus in order to optimally denoise images of varying scan types, future versions of the algorithm should adapt the KR parameter values based on the estimated noise level. Adapting alternative image representation models such as sparsity-based techniques, shown to be very efficient in representing retinal OCT images [76], may also improve the performance and is part of our ongoing work.

The need for GTDP segmentation is a limitation to this study, as the KR-based classification method was not sufficient to accurately identify retinal layers as a standalone method. While K-means clustering helped improve the classification of layers with varying thicknesses and positions (e.g. a thicker NFL on the nasal side versus a thinner NFL on the temporal side as shown in Fig. 4(b), the classified intraretinal layers did not merge at the fovea. Furthermore, three separate classifiers were required to achieve the final classification result. While Cl+f provided a balance in accuracy between the layer and fluid classifiers, Cl generated the most accurate layer classifications and Cf achieved better fluid classifications but with more false positives. We therefore merged all three classifiers to achieve the best possible classification result. Finally, since there was no hard constraint on layer ordering, Fig. 4(b) shows the OS-RPE layer sometimes appearing above the ISE. Nevertheless, the classification example shown in Fig. 4(b) shows that our method provides a significant starting point that is helpful in simplifying the GTDP search region step. Other more advanced classification methods (e.g. support vector machines) may also be implemented in place of our described method to possibly improve the classifier performance.

The classifier features and weights shown in Fig. 6 and Table 5 provide insight into the characteristics that are important for fluid and layer identification. For example, the denoised intensity feature (v1) was the most important feature for identifying fluid, likely due to the dark intensity exhibited by fluid. In contrast, for both cases where the classifier was required to identify layers, the vertical position within the retina (v11) was most important. This is due to the layered nature of the retina. Adapting alternative image representation models such as sparsity-based techniques, shown to be very efficient in representing retinal OCT images [76], may improve the performance and is part of our ongoing work.

Finally, our randomly selected validation data set did not include many images with subretinal fluid, a relatively uncommon feature in DME. Thus, its performance for such images is unknown. Furthermore, our algorithm does not yet distinguish between cystic and non-cystic fluid. Incorporating the ability to identify and categorize different types of fluid (e.g. subretinal, cystic, non-cystic) is a necessary step in our future work, as this will enable rigorous DME subtyping. While the correlation between DME subtype and response to therapy is still unknown, the potential clinical implications of personalized therapy and improved treatment outcomes are vast.

10. Conclusion

We developed a fully automatic algorithm to identify fluid and eight retinal layer boundaries on SD-OCT images with DME pathology. Results showed that our automatic algorithm performed comparably to manual graders. This is the first validated, fully-automated, and multi-layer segmentation method which has been applied to real-world, clinical images containing severe DME. Accurate identification of DME imaging biomarkers is extremely important, as it will facilitate the quantification and understanding of DME.

Acknowledgments

This work was supported by the NIH R01 EY022691, K12 EY016333-08, 1R01EY023039, and the U.S. Army Medical Research Acquisition Activity Contract W81XWH-12-1-0397.

References and links

1. J. A. Davidson, T. A. Ciulla, J. B. McGill, K. A. Kles, and P. W. Anderson, “How the diabetic eye loses vision,” Endocrine 32(1), 107–116 (2007). [CrossRef]   [PubMed]  

2. J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012). [CrossRef]   [PubMed]  

3. V. Kumar, A. K. Abbas, N. Fausto, S. L. Robbins, and R. S. Cotran, Robbins and Cotran pathologic basis of disease, 7th ed. (Elsevier Saunders, Philadelphia, 2005), pp. xv, 1525 p.

4. J. Pe’er, R. Folberg, A. Itin, H. Gnessin, I. Hemo, and E. Keshet, “Upregulated expression of vascular endothelial growth factor in proliferative diabetic retinopathy,” Br. J. Ophthalmol. 80(3), 241–245 (1996). [CrossRef]   [PubMed]  

5. M. J. Tolentino, D. S. McLeod, M. Taomoto, T. Otsuji, A. P. Adamis, and G. A. Lutty, “Pathologic features of vascular endothelial growth factor-induced retinopathy in the nonhuman primate,” Am. J. Ophthalmol. 133(3), 373–385 (2002). [CrossRef]   [PubMed]  

6. A. Bringmann, T. Pannicke, J. Grosche, M. Francke, P. Wiedemann, S. N. Skatchkov, N. N. Osborne, and A. Reichenbach, “Müller cells in the healthy and diseased retina,” Prog. Retin. Eye Res. 25(4), 397–424 (2006). [CrossRef]   [PubMed]  

7. A. Bringmann, A. Reichenbach, and P. Wiedemann, “Pathomechanisms of cystoid macular edema,” Ophthalmic Res. 36(5), 241–249 (2004). [CrossRef]   [PubMed]  

8. A. Negi and M. F. Marmor, “The resorption of subretinal fluid after diffuse damage to the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 24(11), 1475–1479 (1983). [PubMed]  

9. M. F. Marmor, “Mechanisms of fluid accumulation in retinal edema,” Doc. Ophthalmol. 97(3/4), 239–249 (1999). [CrossRef]   [PubMed]  

10. Early Treatment Diabetic Retinopathy Study Research Group, “Treatment techniques and clinical guidelines for photocoagulation of diabetic macular edema. Early Treatment Diabetic Retinopathy Study Report Number 2,” Ophthalmology 94(7), 761–774 (1987). [CrossRef]   [PubMed]  

11. E. T. Cunningham Jr, A. P. Adamis, M. Altaweel, L. P. Aiello, N. M. Bressler, D. J. D’Amico, M. Goldbaum, D. R. Guyer, B. Katz, M. Patel, S. D. Schwartz, and Macugen Diabetic Retinopathy Study Group, “A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema,” Ophthalmology 112(10), 1747–1757 (2005). [CrossRef]   [PubMed]  

12. M. J. Elman, L. P. Aiello, R. W. Beck, N. M. Bressler, S. B. Bressler, A. R. Edwards, F. L. Ferris 3rd, S. M. Friedman, A. R. Glassman, K. M. Miller, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 117(6), 1064–1077 (2010). [CrossRef]   [PubMed]  

13. P. Mitchell, F. Bandello, U. Schmidt-Erfurth, G. E. Lang, P. Massin, R. O. Schlingemann, F. Sutter, C. Simader, G. Burian, O. Gerstner, A. Weichselberger, and RESTORE study group, “The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema,” Ophthalmology 118(4), 615–625 (2011). [CrossRef]   [PubMed]  

14. M. J. Elman, N. M. Bressler, H. Qin, R. W. Beck, F. L. Ferris 3rd, S. M. Friedman, A. R. Glassman, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 118(4), 609–614 (2011). [CrossRef]   [PubMed]  

15. D. V. Do, U. Schmidt-Erfurth, V. H. Gonzalez, C. M. Gordon, M. Tolentino, A. J. Berliner, R. Vitti, R. Rückert, R. Sandbrink, D. Stein, K. Yang, K. Beckmann, and J. S. Heier, “The DA VINCI Study: phase 2 primary results of VEGF Trap-Eye in patients with diabetic macular edema,” Ophthalmology 118(9), 1819–1826 (2011). [CrossRef]   [PubMed]  

16. M. C. Gillies, J. M. Simpson, C. Gaston, G. Hunt, H. Ali, M. Zhu, and F. Sutter, “Five-year results of a randomized trial with open-label extension of triamcinolone acetonide for refractory diabetic macular edema,” Ophthalmology 116(11), 2182–2187 (2009). [CrossRef]   [PubMed]  

17. A. I. Kotsolis, E. Tsianta, M. Niskopoulou, P. Masaoutis, S. Baltatzis, and I. D. Ladas, “Ranibizumab for diabetic macular edema difficult to treat with focal/grid laser,” Graefe's archive for clinical and experimental ophthalmology = Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 248(11), 1553–1557 (2010). [CrossRef]  

18. Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010). [CrossRef]   [PubMed]  

19. P. Massin, F. Bandello, J. G. Garweg, L. L. Hansen, S. P. Harding, M. Larsen, P. Mitchell, D. Sharp, U. E. Wolf-Schnurrbusch, M. Gekkieva, A. Weichselberger, and S. Wolf, “Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study,” Diabetes Care 33(11), 2399–2405 (2010). [CrossRef]   [PubMed]  

20. D. J. Browning, M. M. Altaweel, N. M. Bressler, S. B. Bressler, I. U. Scott, and Diabetic Retinopathy Clinical Research Network, “Diabetic macular edema: what is focal and what is diffuse?” Am. J. Ophthalmol. 146(5), 649–655 (2008). [CrossRef]   [PubMed]  

21. A. Hunter, E. K. Chin, and D. G. Telander, “Macular edema in the era of spectral-domain optical coherence tomography,” Clin. Ophthalmol. 7, 2085–2089 (2013). [CrossRef]   [PubMed]  

22. Y. M. Helmy and H. R. Atta Allah, “Optical coherence tomography classification of diabetic cystoid macular edema,” Clin. Ophthalmol. 7, 1731–1737 (2013). [PubMed]  

23. B. L. Sikorski, G. Malukiewicz, J. Stafiej, H. Lesiewska-Junk, and D. Raczynska, “The diagnostic function of OCT in diabetic maculopathy,” Mediators Inflamm. 2013, 434560 (2013). [CrossRef]   [PubMed]  

24. S. Sonoda, T. Sakamoto, M. Shirasawa, T. Yamashita, H. Otsuka, and H. Terasaki, “Correlation between reflectivity of subretinal fluid in OCT images and concentration of intravitreal VEGF in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 54(8), 5367–5374 (2013). [CrossRef]   [PubMed]  

25. D. A. Sim, P. A. Keane, S. Fung, M. Karampelas, S. R. Sadda, M. Fruttiger, P. J. Patel, A. Tufail, and C. A. Egan, “Quantitative analysis of diabetic macular ischemia using optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 55(1), 417–423 (2014). [CrossRef]   [PubMed]  

26. S. Ghosh, P. Bansal, H. Shejao, R. Hegde, D. Roy, and S. Biswas, “Correlation of morphological pattern of optical coherence tomography in diabetic macular edema with systemic risk factors in middle aged males,” Int. Ophthalmol. 35, 3–10 (2014). [PubMed]  

27. B. J. Antony, M. D. Abràmoff, M. M. Harper, W. Jeong, E. H. Sohn, Y. H. Kwon, R. Kardon, and M. K. Garvin, “A combined machine-learning and graph-based framework for the segmentation of retinal surfaces in SD-OCT volumes,” Biomed. Opt. Express 4(12), 2712–2728 (2013). [CrossRef]   [PubMed]  

28. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010). [CrossRef]   [PubMed]  

29. D. C. DeBuc, G. M. Somfai, S. Ranganathan, E. Tátrai, M. Ferencz, and C. A. Puliafito, “Reliability and reproducibility of macular segmentation using a custom-built optical coherence tomography retinal image analysis software,” J. Biomed. Opt. 14(6), 064023 (2009). [CrossRef]   [PubMed]  

30. H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular Segmentation with Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005). [CrossRef]   [PubMed]  

31. K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images,” Biomed. Opt. Express 2(6), 1743–1756 (2011). [CrossRef]   [PubMed]  

32. M. Shahidi, Z. Wang, and R. Zelkha, “Quantitative thickness measurement of retinal layers imaged by optical coherence tomography,” Am. J. Ophthalmol. 139(6), 1056–1061 (2005). [CrossRef]   [PubMed]  

33. Q. Yang, C. A. Reisman, K. Chan, R. Ramachandran, A. Raza, and D. C. Hood, “Automated segmentation of outer retinal layers in macular OCT images of patients with retinitis pigmentosa,” Biomed. Opt. Express 2(9), 2493–2503 (2011). [CrossRef]   [PubMed]  

34. D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express 13(25), 10200–10216 (2005). [CrossRef]   [PubMed]  

35. S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated Automatic Segmentation of AMD Pathology Including Drusen and Geographic Atrophy in SD-OCT Images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012). [CrossRef]   [PubMed]  

36. A. Lang, A. Carass, M. Hauser, E. S. Sotirchos, P. A. Calabresi, H. S. Ying, and J. L. Prince, “Retinal layer segmentation of macular OCT images using boundary classification,” Biomed. Opt. Express 4(7), 1133–1152 (2013). [CrossRef]   [PubMed]  

37. A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express 17(26), 23719–23728 (2009). [CrossRef]   [PubMed]  

38. L. A. Paunescu, J. S. Schuman, L. L. Price, P. C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, and J. G. Fujimoto, “Reproducibility of Nerve Fiber Thickness, Macular Thickness, and Optic Nerve Head Measurements Using StratusOCT,” Invest. Ophthalmol. Vis. Sci. 45(6), 1716–1724 (2004). [CrossRef]   [PubMed]  

39. M. A. Mayer, J. Hornegger, C. Y. Mardin, and R. P. Tornow, “Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients,” Biomed. Opt. Express 1(5), 1358–1383 (2010). [CrossRef]   [PubMed]  

40. M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express 13(23), 9480–9491 (2005). [CrossRef]   [PubMed]  

41. A. Carass, A. Lang, M. Hauser, P. A. Calabresi, H. S. Ying, and J. L. Prince, “Multiple-object geometric deformable model for segmentation of macular OCT,” Biomed. Opt. Express 5(4), 1062–1074 (2014). [CrossRef]   [PubMed]  

42. G. M. Somfai, E. Tátrai, L. Laurik, B. E. Varga, V. Ölvedy, W. E. Smiddy, R. Tchitnga, A. Somogyi, and D. C. DeBuc, “Fractal-based analysis of optical coherence tomography data to quantify retinal tissue damage,” BMC Bioinformatics 15(1), 295 (2014). [CrossRef]   [PubMed]  

43. E. H. Sohn, J. J. Chen, K. Lee, M. Niemeijer, M. Sonka, and M. D. Abràmoff, “Reproducibility of diabetic macular edema estimates from SD-OCT is affected by the choice of image analysis algorithm,” Invest. Ophthalmol. Vis. Sci. 54(6), 4184–4188 (2013). [CrossRef]   [PubMed]  

44. Y. Huang, R. P. Danis, J. W. Pak, S. Luo, J. White, X. Zhang, A. Narkar, and A. Domalpally, “Development of a semi-automatic segmentation method for retinal OCT images tested in patients with diabetic macular edema,” PLoS ONE 8(12), e82922 (2013). [CrossRef]   [PubMed]  

45. J. Y. Lee, S. J. Chiu, P. P. Srinivasan, J. A. Izatt, C. A. Toth, S. Farsiu, and G. J. Jaffe, “Fully automatic software for retinal thickness in eyes with diabetic macular edema from images acquired by cirrus and spectralis systems,” Invest. Ophthalmol. Vis. Sci. 54(12), 7595–7602 (2013). [CrossRef]   [PubMed]  

46. S. J. Chiu, C. A. Toth, C. Bowes Rickman, J. A. Izatt, and S. Farsiu, “Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming,” Biomed. Opt. Express 3(5), 1127–1140 (2012). [CrossRef]   [PubMed]  

47. G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abràmoff, and M. Sonka, “Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula,” IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010). [CrossRef]   [PubMed]  

48. X. Chen, M. Niemeijer, L. Zhang, K. Lee, M. D. Abramoff, and M. Sonka, “Three-dimensional segmentation of fluid-associated abnormalities in retinal OCT: probability constrained graph-search-graph-cut,” IEEE Trans. Med. Imaging 31(8), 1521–1531 (2012). [CrossRef]   [PubMed]  

49. M. Pilch, K. Stieger, Y. Wenner, M. N. Preising, C. Friedburg, E. Meyer zu Bexten, and B. Lorenz, “Automated segmentation of pathological cavities in optical coherence tomography scans,” Invest. Ophthalmol. Vis. Sci. 54(6), 4385–4393 (2013). [CrossRef]   [PubMed]  

50. S. Roychowdhury, D. D. Koozekanani, S. Radwan, and K. K. Parhi, “Automated localization of cysts in diabetic macular edema using optical coherence tomography images,” Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference. 2013, 1426–1429 (2013).

51. A. Lang, A. Carass, E. K. Swingle, O. Al-Louzi, P. Bhargava, S. Saidha, H. S. Ying, P. A. Calabresi, and J. L. Prince, “Automatic segmentation of microcystic macular edema in OCT,” Biomed. Opt. Express 6(1), 155–169 (2015). [CrossRef]   [PubMed]  

52. J. Tian, P. Marziliano, M. Baskaran, T. A. Tun, and T. Aung, “Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images,” Biomed. Opt. Express 4(3), 397–411 (2013). [CrossRef]   [PubMed]  

53. H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image processing and reconstruction,” IEEE Trans. Image Process. 16, 349–366 (2007).

54. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010). [CrossRef]   [PubMed]  

55. S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012). [CrossRef]   [PubMed]  

56. H. Takeda, S. Farsiu, and P. Milanfar, “Deblurring Using Regularized Locally Adaptive Kernel Regression,” IEEE Trans. Image Process. 17(4), 550–563 (2008). [CrossRef]   [PubMed]  

57. H. J. Seo and P. Milanfar, “Training-Free, Generic Object Detection Using Locally Adaptive Regression Kernels,” IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1688–1704 (2010). [CrossRef]   [PubMed]  

58. D. Ruppert and M. P. Wand, “Multivariate locally weighted least squares regression,” Ann. Stat. 22(3), 1346–1370 (1994). [CrossRef]  

59. P. C. Hansen, “The truncated svd as a method for regularization,” BIT Numerical Mathematics 27(4), 534–553 (1987). [CrossRef]  

60. X. G. Feng and P. Milanfar, “Multiscale principal components analysis for image local orientation estimation,” in Signals, Systems and Computers,2002. Conference Record of the Thirty-Sixth Asilomar Conference on, 2002), 478–482 vol.471.

61. R. M. Cormack, “A review of classification,” J. R. Stat. Soc. [Ser A] 134(3), 321–367 (1971). [CrossRef]  

62. S. B. Kotsiantis, “Supervised Machine Learning: A Review of Classification Techniques,” in Proceedings of the 2007 conference on Emerging Artificial Intelligence Applications in Computer Engineering: Real Word AI Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies, (IOS Press, 2007), pp. 3–24.

63. K. I. Laws, “Textured Image Segmentation,” (DTIC Document, 1980).

64. L. Shapiro and G. C. Stockman, “Computer Vision. 2001,” ed: Prentice Hall (2001).

65. A. Jain and D. Zongker, “Feature selection: evaluation, application, and small sample performance,” IEEE Trans. Pattern Anal. Machine Intell. 19(2), 153–158 (1997). [CrossRef]  

66. R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artif. Intell. 97(1-2), 273–324 (1997). [CrossRef]  

67. I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” J. Mach. Learn. Res. 3, 1157–1182 (2003).

68. F. Mosteller and J. W. Tukey, Data analysis, including statistics (1968).

69. S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory 28(2), 129–137 (1982). [CrossRef]  

70. E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik. 1(1), 269–271 (1959). [CrossRef]  

71. S. J. Chiu, Y. Lokhnygina, A. M. Dubis, A. Dubra, J. Carroll, J. A. Izatt, and S. Farsiu, “Automatic cone photoreceptor segmentation using graph theory and dynamic programming,” Biomed. Opt. Express 4(6), 924–937 (2013). [CrossRef]   [PubMed]  

72. K. Zuiderveld, “Contrast limited adaptive histogram equalization,” in Graphics Gems IV, S. H. Paul, ed. (Academic Press Professional, Inc., 1994), pp. 474–485.

73. R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and model selection,” in IJCAI, 1995), 1137–1145.

74. T. Sørensen, “A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons,” Biol. Skr. 5, 1–34 (1948).

75. L. R. Dice, “Measures of the amount of ecologic association between species,” Ecology 26(3), 297–302 (1945). [CrossRef]  

76. L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation,” IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. J. A. Davidson, T. A. Ciulla, J. B. McGill, K. A. Kles, and P. W. Anderson, “How the diabetic eye loses vision,” Endocrine 32(1), 107–116 (2007).
    [Crossref] [PubMed]
  2. J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
    [Crossref] [PubMed]
  3. V. Kumar, A. K. Abbas, N. Fausto, S. L. Robbins, and R. S. Cotran, Robbins and Cotran pathologic basis of disease, 7th ed. (Elsevier Saunders, Philadelphia, 2005), pp. xv, 1525 p.
  4. J. Pe’er, R. Folberg, A. Itin, H. Gnessin, I. Hemo, and E. Keshet, “Upregulated expression of vascular endothelial growth factor in proliferative diabetic retinopathy,” Br. J. Ophthalmol. 80(3), 241–245 (1996).
    [Crossref] [PubMed]
  5. M. J. Tolentino, D. S. McLeod, M. Taomoto, T. Otsuji, A. P. Adamis, and G. A. Lutty, “Pathologic features of vascular endothelial growth factor-induced retinopathy in the nonhuman primate,” Am. J. Ophthalmol. 133(3), 373–385 (2002).
    [Crossref] [PubMed]
  6. A. Bringmann, T. Pannicke, J. Grosche, M. Francke, P. Wiedemann, S. N. Skatchkov, N. N. Osborne, and A. Reichenbach, “Müller cells in the healthy and diseased retina,” Prog. Retin. Eye Res. 25(4), 397–424 (2006).
    [Crossref] [PubMed]
  7. A. Bringmann, A. Reichenbach, and P. Wiedemann, “Pathomechanisms of cystoid macular edema,” Ophthalmic Res. 36(5), 241–249 (2004).
    [Crossref] [PubMed]
  8. A. Negi and M. F. Marmor, “The resorption of subretinal fluid after diffuse damage to the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 24(11), 1475–1479 (1983).
    [PubMed]
  9. M. F. Marmor, “Mechanisms of fluid accumulation in retinal edema,” Doc. Ophthalmol. 97(3/4), 239–249 (1999).
    [Crossref] [PubMed]
  10. Early Treatment Diabetic Retinopathy Study Research Group, “Treatment techniques and clinical guidelines for photocoagulation of diabetic macular edema. Early Treatment Diabetic Retinopathy Study Report Number 2,” Ophthalmology 94(7), 761–774 (1987).
    [Crossref] [PubMed]
  11. E. T. Cunningham, A. P. Adamis, M. Altaweel, L. P. Aiello, N. M. Bressler, D. J. D’Amico, M. Goldbaum, D. R. Guyer, B. Katz, M. Patel, S. D. Schwartz, and Macugen Diabetic Retinopathy Study Group, “A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema,” Ophthalmology 112(10), 1747–1757 (2005).
    [Crossref] [PubMed]
  12. M. J. Elman, L. P. Aiello, R. W. Beck, N. M. Bressler, S. B. Bressler, A. R. Edwards, F. L. Ferris, S. M. Friedman, A. R. Glassman, K. M. Miller, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 117(6), 1064–1077 (2010).
    [Crossref] [PubMed]
  13. P. Mitchell, F. Bandello, U. Schmidt-Erfurth, G. E. Lang, P. Massin, R. O. Schlingemann, F. Sutter, C. Simader, G. Burian, O. Gerstner, A. Weichselberger, and RESTORE study group, “The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema,” Ophthalmology 118(4), 615–625 (2011).
    [Crossref] [PubMed]
  14. M. J. Elman, N. M. Bressler, H. Qin, R. W. Beck, F. L. Ferris, S. M. Friedman, A. R. Glassman, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 118(4), 609–614 (2011).
    [Crossref] [PubMed]
  15. D. V. Do, U. Schmidt-Erfurth, V. H. Gonzalez, C. M. Gordon, M. Tolentino, A. J. Berliner, R. Vitti, R. Rückert, R. Sandbrink, D. Stein, K. Yang, K. Beckmann, and J. S. Heier, “The DA VINCI Study: phase 2 primary results of VEGF Trap-Eye in patients with diabetic macular edema,” Ophthalmology 118(9), 1819–1826 (2011).
    [Crossref] [PubMed]
  16. M. C. Gillies, J. M. Simpson, C. Gaston, G. Hunt, H. Ali, M. Zhu, and F. Sutter, “Five-year results of a randomized trial with open-label extension of triamcinolone acetonide for refractory diabetic macular edema,” Ophthalmology 116(11), 2182–2187 (2009).
    [Crossref] [PubMed]
  17. A. I. Kotsolis, E. Tsianta, M. Niskopoulou, P. Masaoutis, S. Baltatzis, and I. D. Ladas, “Ranibizumab for diabetic macular edema difficult to treat with focal/grid laser,” Graefe's archive for clinical and experimental ophthalmology = Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 248(11), 1553–1557 (2010).
    [Crossref]
  18. Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
    [Crossref] [PubMed]
  19. P. Massin, F. Bandello, J. G. Garweg, L. L. Hansen, S. P. Harding, M. Larsen, P. Mitchell, D. Sharp, U. E. Wolf-Schnurrbusch, M. Gekkieva, A. Weichselberger, and S. Wolf, “Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study,” Diabetes Care 33(11), 2399–2405 (2010).
    [Crossref] [PubMed]
  20. D. J. Browning, M. M. Altaweel, N. M. Bressler, S. B. Bressler, I. U. Scott, and Diabetic Retinopathy Clinical Research Network, “Diabetic macular edema: what is focal and what is diffuse?” Am. J. Ophthalmol. 146(5), 649–655 (2008).
    [Crossref] [PubMed]
  21. A. Hunter, E. K. Chin, and D. G. Telander, “Macular edema in the era of spectral-domain optical coherence tomography,” Clin. Ophthalmol. 7, 2085–2089 (2013).
    [Crossref] [PubMed]
  22. Y. M. Helmy and H. R. Atta Allah, “Optical coherence tomography classification of diabetic cystoid macular edema,” Clin. Ophthalmol. 7, 1731–1737 (2013).
    [PubMed]
  23. B. L. Sikorski, G. Malukiewicz, J. Stafiej, H. Lesiewska-Junk, and D. Raczynska, “The diagnostic function of OCT in diabetic maculopathy,” Mediators Inflamm. 2013, 434560 (2013).
    [Crossref] [PubMed]
  24. S. Sonoda, T. Sakamoto, M. Shirasawa, T. Yamashita, H. Otsuka, and H. Terasaki, “Correlation between reflectivity of subretinal fluid in OCT images and concentration of intravitreal VEGF in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 54(8), 5367–5374 (2013).
    [Crossref] [PubMed]
  25. D. A. Sim, P. A. Keane, S. Fung, M. Karampelas, S. R. Sadda, M. Fruttiger, P. J. Patel, A. Tufail, and C. A. Egan, “Quantitative analysis of diabetic macular ischemia using optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 55(1), 417–423 (2014).
    [Crossref] [PubMed]
  26. S. Ghosh, P. Bansal, H. Shejao, R. Hegde, D. Roy, and S. Biswas, “Correlation of morphological pattern of optical coherence tomography in diabetic macular edema with systemic risk factors in middle aged males,” Int. Ophthalmol. 35, 3–10 (2014).
    [PubMed]
  27. B. J. Antony, M. D. Abràmoff, M. M. Harper, W. Jeong, E. H. Sohn, Y. H. Kwon, R. Kardon, and M. K. Garvin, “A combined machine-learning and graph-based framework for the segmentation of retinal surfaces in SD-OCT volumes,” Biomed. Opt. Express 4(12), 2712–2728 (2013).
    [Crossref] [PubMed]
  28. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
    [Crossref] [PubMed]
  29. D. C. DeBuc, G. M. Somfai, S. Ranganathan, E. Tátrai, M. Ferencz, and C. A. Puliafito, “Reliability and reproducibility of macular segmentation using a custom-built optical coherence tomography retinal image analysis software,” J. Biomed. Opt. 14(6), 064023 (2009).
    [Crossref] [PubMed]
  30. H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular Segmentation with Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
    [Crossref] [PubMed]
  31. K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images,” Biomed. Opt. Express 2(6), 1743–1756 (2011).
    [Crossref] [PubMed]
  32. M. Shahidi, Z. Wang, and R. Zelkha, “Quantitative thickness measurement of retinal layers imaged by optical coherence tomography,” Am. J. Ophthalmol. 139(6), 1056–1061 (2005).
    [Crossref] [PubMed]
  33. Q. Yang, C. A. Reisman, K. Chan, R. Ramachandran, A. Raza, and D. C. Hood, “Automated segmentation of outer retinal layers in macular OCT images of patients with retinitis pigmentosa,” Biomed. Opt. Express 2(9), 2493–2503 (2011).
    [Crossref] [PubMed]
  34. D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express 13(25), 10200–10216 (2005).
    [Crossref] [PubMed]
  35. S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated Automatic Segmentation of AMD Pathology Including Drusen and Geographic Atrophy in SD-OCT Images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
    [Crossref] [PubMed]
  36. A. Lang, A. Carass, M. Hauser, E. S. Sotirchos, P. A. Calabresi, H. S. Ying, and J. L. Prince, “Retinal layer segmentation of macular OCT images using boundary classification,” Biomed. Opt. Express 4(7), 1133–1152 (2013).
    [Crossref] [PubMed]
  37. A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express 17(26), 23719–23728 (2009).
    [Crossref] [PubMed]
  38. L. A. Paunescu, J. S. Schuman, L. L. Price, P. C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, and J. G. Fujimoto, “Reproducibility of Nerve Fiber Thickness, Macular Thickness, and Optic Nerve Head Measurements Using StratusOCT,” Invest. Ophthalmol. Vis. Sci. 45(6), 1716–1724 (2004).
    [Crossref] [PubMed]
  39. M. A. Mayer, J. Hornegger, C. Y. Mardin, and R. P. Tornow, “Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients,” Biomed. Opt. Express 1(5), 1358–1383 (2010).
    [Crossref] [PubMed]
  40. M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express 13(23), 9480–9491 (2005).
    [Crossref] [PubMed]
  41. A. Carass, A. Lang, M. Hauser, P. A. Calabresi, H. S. Ying, and J. L. Prince, “Multiple-object geometric deformable model for segmentation of macular OCT,” Biomed. Opt. Express 5(4), 1062–1074 (2014).
    [Crossref] [PubMed]
  42. G. M. Somfai, E. Tátrai, L. Laurik, B. E. Varga, V. Ölvedy, W. E. Smiddy, R. Tchitnga, A. Somogyi, and D. C. DeBuc, “Fractal-based analysis of optical coherence tomography data to quantify retinal tissue damage,” BMC Bioinformatics 15(1), 295 (2014).
    [Crossref] [PubMed]
  43. E. H. Sohn, J. J. Chen, K. Lee, M. Niemeijer, M. Sonka, and M. D. Abràmoff, “Reproducibility of diabetic macular edema estimates from SD-OCT is affected by the choice of image analysis algorithm,” Invest. Ophthalmol. Vis. Sci. 54(6), 4184–4188 (2013).
    [Crossref] [PubMed]
  44. Y. Huang, R. P. Danis, J. W. Pak, S. Luo, J. White, X. Zhang, A. Narkar, and A. Domalpally, “Development of a semi-automatic segmentation method for retinal OCT images tested in patients with diabetic macular edema,” PLoS ONE 8(12), e82922 (2013).
    [Crossref] [PubMed]
  45. J. Y. Lee, S. J. Chiu, P. P. Srinivasan, J. A. Izatt, C. A. Toth, S. Farsiu, and G. J. Jaffe, “Fully automatic software for retinal thickness in eyes with diabetic macular edema from images acquired by cirrus and spectralis systems,” Invest. Ophthalmol. Vis. Sci. 54(12), 7595–7602 (2013).
    [Crossref] [PubMed]
  46. S. J. Chiu, C. A. Toth, C. Bowes Rickman, J. A. Izatt, and S. Farsiu, “Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming,” Biomed. Opt. Express 3(5), 1127–1140 (2012).
    [Crossref] [PubMed]
  47. G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abràmoff, and M. Sonka, “Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula,” IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010).
    [Crossref] [PubMed]
  48. X. Chen, M. Niemeijer, L. Zhang, K. Lee, M. D. Abramoff, and M. Sonka, “Three-dimensional segmentation of fluid-associated abnormalities in retinal OCT: probability constrained graph-search-graph-cut,” IEEE Trans. Med. Imaging 31(8), 1521–1531 (2012).
    [Crossref] [PubMed]
  49. M. Pilch, K. Stieger, Y. Wenner, M. N. Preising, C. Friedburg, E. Meyer zu Bexten, and B. Lorenz, “Automated segmentation of pathological cavities in optical coherence tomography scans,” Invest. Ophthalmol. Vis. Sci. 54(6), 4385–4393 (2013).
    [Crossref] [PubMed]
  50. S. Roychowdhury, D. D. Koozekanani, S. Radwan, and K. K. Parhi, “Automated localization of cysts in diabetic macular edema using optical coherence tomography images,” Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference. 2013, 1426–1429 (2013).
  51. A. Lang, A. Carass, E. K. Swingle, O. Al-Louzi, P. Bhargava, S. Saidha, H. S. Ying, P. A. Calabresi, and J. L. Prince, “Automatic segmentation of microcystic macular edema in OCT,” Biomed. Opt. Express 6(1), 155–169 (2015).
    [Crossref] [PubMed]
  52. J. Tian, P. Marziliano, M. Baskaran, T. A. Tun, and T. Aung, “Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images,” Biomed. Opt. Express 4(3), 397–411 (2013).
    [Crossref] [PubMed]
  53. H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image processing and reconstruction,” IEEE Trans. Image Process. 16, 349–366 (2007).
  54. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
    [Crossref] [PubMed]
  55. S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
    [Crossref] [PubMed]
  56. H. Takeda, S. Farsiu, and P. Milanfar, “Deblurring Using Regularized Locally Adaptive Kernel Regression,” IEEE Trans. Image Process. 17(4), 550–563 (2008).
    [Crossref] [PubMed]
  57. H. J. Seo and P. Milanfar, “Training-Free, Generic Object Detection Using Locally Adaptive Regression Kernels,” IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1688–1704 (2010).
    [Crossref] [PubMed]
  58. D. Ruppert and M. P. Wand, “Multivariate locally weighted least squares regression,” Ann. Stat. 22(3), 1346–1370 (1994).
    [Crossref]
  59. P. C. Hansen, “The truncated svd as a method for regularization,” BIT Numerical Mathematics 27(4), 534–553 (1987).
    [Crossref]
  60. X. G. Feng and P. Milanfar, “Multiscale principal components analysis for image local orientation estimation,” in Signals, Systems and Computers,2002. Conference Record of the Thirty-Sixth Asilomar Conference on, 2002), 478–482 vol.471.
  61. R. M. Cormack, “A review of classification,” J. R. Stat. Soc. [Ser A] 134(3), 321–367 (1971).
    [Crossref]
  62. S. B. Kotsiantis, “Supervised Machine Learning: A Review of Classification Techniques,” in Proceedings of the 2007 conference on Emerging Artificial Intelligence Applications in Computer Engineering: Real Word AI Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies, (IOS Press, 2007), pp. 3–24.
  63. K. I. Laws, “Textured Image Segmentation,” (DTIC Document, 1980).
  64. L. Shapiro and G. C. Stockman, “Computer Vision. 2001,” ed: Prentice Hall (2001).
  65. A. Jain and D. Zongker, “Feature selection: evaluation, application, and small sample performance,” IEEE Trans. Pattern Anal. Machine Intell. 19(2), 153–158 (1997).
    [Crossref]
  66. R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artif. Intell. 97(1-2), 273–324 (1997).
    [Crossref]
  67. I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” J. Mach. Learn. Res. 3, 1157–1182 (2003).
  68. F. Mosteller and J. W. Tukey, Data analysis, including statistics (1968).
  69. S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory 28(2), 129–137 (1982).
    [Crossref]
  70. E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik. 1(1), 269–271 (1959).
    [Crossref]
  71. S. J. Chiu, Y. Lokhnygina, A. M. Dubis, A. Dubra, J. Carroll, J. A. Izatt, and S. Farsiu, “Automatic cone photoreceptor segmentation using graph theory and dynamic programming,” Biomed. Opt. Express 4(6), 924–937 (2013).
    [Crossref] [PubMed]
  72. K. Zuiderveld, “Contrast limited adaptive histogram equalization,” in Graphics Gems IV, S. H. Paul, ed. (Academic Press Professional, Inc., 1994), pp. 474–485.
  73. R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and model selection,” in IJCAI, 1995), 1137–1145.
  74. T. Sørensen, “A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons,” Biol. Skr. 5, 1–34 (1948).
  75. L. R. Dice, “Measures of the amount of ecologic association between species,” Ecology 26(3), 297–302 (1945).
    [Crossref]
  76. L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation,” IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013).
    [Crossref] [PubMed]

2015 (1)

2014 (4)

A. Carass, A. Lang, M. Hauser, P. A. Calabresi, H. S. Ying, and J. L. Prince, “Multiple-object geometric deformable model for segmentation of macular OCT,” Biomed. Opt. Express 5(4), 1062–1074 (2014).
[Crossref] [PubMed]

G. M. Somfai, E. Tátrai, L. Laurik, B. E. Varga, V. Ölvedy, W. E. Smiddy, R. Tchitnga, A. Somogyi, and D. C. DeBuc, “Fractal-based analysis of optical coherence tomography data to quantify retinal tissue damage,” BMC Bioinformatics 15(1), 295 (2014).
[Crossref] [PubMed]

D. A. Sim, P. A. Keane, S. Fung, M. Karampelas, S. R. Sadda, M. Fruttiger, P. J. Patel, A. Tufail, and C. A. Egan, “Quantitative analysis of diabetic macular ischemia using optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 55(1), 417–423 (2014).
[Crossref] [PubMed]

S. Ghosh, P. Bansal, H. Shejao, R. Hegde, D. Roy, and S. Biswas, “Correlation of morphological pattern of optical coherence tomography in diabetic macular edema with systemic risk factors in middle aged males,” Int. Ophthalmol. 35, 3–10 (2014).
[PubMed]

2013 (13)

B. J. Antony, M. D. Abràmoff, M. M. Harper, W. Jeong, E. H. Sohn, Y. H. Kwon, R. Kardon, and M. K. Garvin, “A combined machine-learning and graph-based framework for the segmentation of retinal surfaces in SD-OCT volumes,” Biomed. Opt. Express 4(12), 2712–2728 (2013).
[Crossref] [PubMed]

A. Hunter, E. K. Chin, and D. G. Telander, “Macular edema in the era of spectral-domain optical coherence tomography,” Clin. Ophthalmol. 7, 2085–2089 (2013).
[Crossref] [PubMed]

Y. M. Helmy and H. R. Atta Allah, “Optical coherence tomography classification of diabetic cystoid macular edema,” Clin. Ophthalmol. 7, 1731–1737 (2013).
[PubMed]

B. L. Sikorski, G. Malukiewicz, J. Stafiej, H. Lesiewska-Junk, and D. Raczynska, “The diagnostic function of OCT in diabetic maculopathy,” Mediators Inflamm. 2013, 434560 (2013).
[Crossref] [PubMed]

S. Sonoda, T. Sakamoto, M. Shirasawa, T. Yamashita, H. Otsuka, and H. Terasaki, “Correlation between reflectivity of subretinal fluid in OCT images and concentration of intravitreal VEGF in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 54(8), 5367–5374 (2013).
[Crossref] [PubMed]

A. Lang, A. Carass, M. Hauser, E. S. Sotirchos, P. A. Calabresi, H. S. Ying, and J. L. Prince, “Retinal layer segmentation of macular OCT images using boundary classification,” Biomed. Opt. Express 4(7), 1133–1152 (2013).
[Crossref] [PubMed]

E. H. Sohn, J. J. Chen, K. Lee, M. Niemeijer, M. Sonka, and M. D. Abràmoff, “Reproducibility of diabetic macular edema estimates from SD-OCT is affected by the choice of image analysis algorithm,” Invest. Ophthalmol. Vis. Sci. 54(6), 4184–4188 (2013).
[Crossref] [PubMed]

Y. Huang, R. P. Danis, J. W. Pak, S. Luo, J. White, X. Zhang, A. Narkar, and A. Domalpally, “Development of a semi-automatic segmentation method for retinal OCT images tested in patients with diabetic macular edema,” PLoS ONE 8(12), e82922 (2013).
[Crossref] [PubMed]

J. Y. Lee, S. J. Chiu, P. P. Srinivasan, J. A. Izatt, C. A. Toth, S. Farsiu, and G. J. Jaffe, “Fully automatic software for retinal thickness in eyes with diabetic macular edema from images acquired by cirrus and spectralis systems,” Invest. Ophthalmol. Vis. Sci. 54(12), 7595–7602 (2013).
[Crossref] [PubMed]

J. Tian, P. Marziliano, M. Baskaran, T. A. Tun, and T. Aung, “Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images,” Biomed. Opt. Express 4(3), 397–411 (2013).
[Crossref] [PubMed]

M. Pilch, K. Stieger, Y. Wenner, M. N. Preising, C. Friedburg, E. Meyer zu Bexten, and B. Lorenz, “Automated segmentation of pathological cavities in optical coherence tomography scans,” Invest. Ophthalmol. Vis. Sci. 54(6), 4385–4393 (2013).
[Crossref] [PubMed]

S. J. Chiu, Y. Lokhnygina, A. M. Dubis, A. Dubra, J. Carroll, J. A. Izatt, and S. Farsiu, “Automatic cone photoreceptor segmentation using graph theory and dynamic programming,” Biomed. Opt. Express 4(6), 924–937 (2013).
[Crossref] [PubMed]

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation,” IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref] [PubMed]

2012 (5)

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

S. J. Chiu, C. A. Toth, C. Bowes Rickman, J. A. Izatt, and S. Farsiu, “Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming,” Biomed. Opt. Express 3(5), 1127–1140 (2012).
[Crossref] [PubMed]

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated Automatic Segmentation of AMD Pathology Including Drusen and Geographic Atrophy in SD-OCT Images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

X. Chen, M. Niemeijer, L. Zhang, K. Lee, M. D. Abramoff, and M. Sonka, “Three-dimensional segmentation of fluid-associated abnormalities in retinal OCT: probability constrained graph-search-graph-cut,” IEEE Trans. Med. Imaging 31(8), 1521–1531 (2012).
[Crossref] [PubMed]

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

2011 (5)

P. Mitchell, F. Bandello, U. Schmidt-Erfurth, G. E. Lang, P. Massin, R. O. Schlingemann, F. Sutter, C. Simader, G. Burian, O. Gerstner, A. Weichselberger, and RESTORE study group, “The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema,” Ophthalmology 118(4), 615–625 (2011).
[Crossref] [PubMed]

M. J. Elman, N. M. Bressler, H. Qin, R. W. Beck, F. L. Ferris, S. M. Friedman, A. R. Glassman, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 118(4), 609–614 (2011).
[Crossref] [PubMed]

D. V. Do, U. Schmidt-Erfurth, V. H. Gonzalez, C. M. Gordon, M. Tolentino, A. J. Berliner, R. Vitti, R. Rückert, R. Sandbrink, D. Stein, K. Yang, K. Beckmann, and J. S. Heier, “The DA VINCI Study: phase 2 primary results of VEGF Trap-Eye in patients with diabetic macular edema,” Ophthalmology 118(9), 1819–1826 (2011).
[Crossref] [PubMed]

Q. Yang, C. A. Reisman, K. Chan, R. Ramachandran, A. Raza, and D. C. Hood, “Automated segmentation of outer retinal layers in macular OCT images of patients with retinitis pigmentosa,” Biomed. Opt. Express 2(9), 2493–2503 (2011).
[Crossref] [PubMed]

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images,” Biomed. Opt. Express 2(6), 1743–1756 (2011).
[Crossref] [PubMed]

2010 (9)

M. J. Elman, L. P. Aiello, R. W. Beck, N. M. Bressler, S. B. Bressler, A. R. Edwards, F. L. Ferris, S. M. Friedman, A. R. Glassman, K. M. Miller, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 117(6), 1064–1077 (2010).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

A. I. Kotsolis, E. Tsianta, M. Niskopoulou, P. Masaoutis, S. Baltatzis, and I. D. Ladas, “Ranibizumab for diabetic macular edema difficult to treat with focal/grid laser,” Graefe's archive for clinical and experimental ophthalmology = Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 248(11), 1553–1557 (2010).
[Crossref]

Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
[Crossref] [PubMed]

P. Massin, F. Bandello, J. G. Garweg, L. L. Hansen, S. P. Harding, M. Larsen, P. Mitchell, D. Sharp, U. E. Wolf-Schnurrbusch, M. Gekkieva, A. Weichselberger, and S. Wolf, “Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study,” Diabetes Care 33(11), 2399–2405 (2010).
[Crossref] [PubMed]

M. A. Mayer, J. Hornegger, C. Y. Mardin, and R. P. Tornow, “Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients,” Biomed. Opt. Express 1(5), 1358–1383 (2010).
[Crossref] [PubMed]

G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abràmoff, and M. Sonka, “Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula,” IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

H. J. Seo and P. Milanfar, “Training-Free, Generic Object Detection Using Locally Adaptive Regression Kernels,” IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1688–1704 (2010).
[Crossref] [PubMed]

2009 (3)

M. C. Gillies, J. M. Simpson, C. Gaston, G. Hunt, H. Ali, M. Zhu, and F. Sutter, “Five-year results of a randomized trial with open-label extension of triamcinolone acetonide for refractory diabetic macular edema,” Ophthalmology 116(11), 2182–2187 (2009).
[Crossref] [PubMed]

D. C. DeBuc, G. M. Somfai, S. Ranganathan, E. Tátrai, M. Ferencz, and C. A. Puliafito, “Reliability and reproducibility of macular segmentation using a custom-built optical coherence tomography retinal image analysis software,” J. Biomed. Opt. 14(6), 064023 (2009).
[Crossref] [PubMed]

A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express 17(26), 23719–23728 (2009).
[Crossref] [PubMed]

2008 (2)

D. J. Browning, M. M. Altaweel, N. M. Bressler, S. B. Bressler, I. U. Scott, and Diabetic Retinopathy Clinical Research Network, “Diabetic macular edema: what is focal and what is diffuse?” Am. J. Ophthalmol. 146(5), 649–655 (2008).
[Crossref] [PubMed]

H. Takeda, S. Farsiu, and P. Milanfar, “Deblurring Using Regularized Locally Adaptive Kernel Regression,” IEEE Trans. Image Process. 17(4), 550–563 (2008).
[Crossref] [PubMed]

2007 (2)

H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image processing and reconstruction,” IEEE Trans. Image Process. 16, 349–366 (2007).

J. A. Davidson, T. A. Ciulla, J. B. McGill, K. A. Kles, and P. W. Anderson, “How the diabetic eye loses vision,” Endocrine 32(1), 107–116 (2007).
[Crossref] [PubMed]

2006 (1)

A. Bringmann, T. Pannicke, J. Grosche, M. Francke, P. Wiedemann, S. N. Skatchkov, N. N. Osborne, and A. Reichenbach, “Müller cells in the healthy and diseased retina,” Prog. Retin. Eye Res. 25(4), 397–424 (2006).
[Crossref] [PubMed]

2005 (5)

D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express 13(25), 10200–10216 (2005).
[Crossref] [PubMed]

E. T. Cunningham, A. P. Adamis, M. Altaweel, L. P. Aiello, N. M. Bressler, D. J. D’Amico, M. Goldbaum, D. R. Guyer, B. Katz, M. Patel, S. D. Schwartz, and Macugen Diabetic Retinopathy Study Group, “A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema,” Ophthalmology 112(10), 1747–1757 (2005).
[Crossref] [PubMed]

M. Shahidi, Z. Wang, and R. Zelkha, “Quantitative thickness measurement of retinal layers imaged by optical coherence tomography,” Am. J. Ophthalmol. 139(6), 1056–1061 (2005).
[Crossref] [PubMed]

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular Segmentation with Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express 13(23), 9480–9491 (2005).
[Crossref] [PubMed]

2004 (2)

L. A. Paunescu, J. S. Schuman, L. L. Price, P. C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, and J. G. Fujimoto, “Reproducibility of Nerve Fiber Thickness, Macular Thickness, and Optic Nerve Head Measurements Using StratusOCT,” Invest. Ophthalmol. Vis. Sci. 45(6), 1716–1724 (2004).
[Crossref] [PubMed]

A. Bringmann, A. Reichenbach, and P. Wiedemann, “Pathomechanisms of cystoid macular edema,” Ophthalmic Res. 36(5), 241–249 (2004).
[Crossref] [PubMed]

2003 (1)

I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” J. Mach. Learn. Res. 3, 1157–1182 (2003).

2002 (1)

M. J. Tolentino, D. S. McLeod, M. Taomoto, T. Otsuji, A. P. Adamis, and G. A. Lutty, “Pathologic features of vascular endothelial growth factor-induced retinopathy in the nonhuman primate,” Am. J. Ophthalmol. 133(3), 373–385 (2002).
[Crossref] [PubMed]

1999 (1)

M. F. Marmor, “Mechanisms of fluid accumulation in retinal edema,” Doc. Ophthalmol. 97(3/4), 239–249 (1999).
[Crossref] [PubMed]

1997 (2)

A. Jain and D. Zongker, “Feature selection: evaluation, application, and small sample performance,” IEEE Trans. Pattern Anal. Machine Intell. 19(2), 153–158 (1997).
[Crossref]

R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artif. Intell. 97(1-2), 273–324 (1997).
[Crossref]

1996 (1)

J. Pe’er, R. Folberg, A. Itin, H. Gnessin, I. Hemo, and E. Keshet, “Upregulated expression of vascular endothelial growth factor in proliferative diabetic retinopathy,” Br. J. Ophthalmol. 80(3), 241–245 (1996).
[Crossref] [PubMed]

1994 (1)

D. Ruppert and M. P. Wand, “Multivariate locally weighted least squares regression,” Ann. Stat. 22(3), 1346–1370 (1994).
[Crossref]

1987 (2)

P. C. Hansen, “The truncated svd as a method for regularization,” BIT Numerical Mathematics 27(4), 534–553 (1987).
[Crossref]

Early Treatment Diabetic Retinopathy Study Research Group, “Treatment techniques and clinical guidelines for photocoagulation of diabetic macular edema. Early Treatment Diabetic Retinopathy Study Report Number 2,” Ophthalmology 94(7), 761–774 (1987).
[Crossref] [PubMed]

1983 (1)

A. Negi and M. F. Marmor, “The resorption of subretinal fluid after diffuse damage to the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 24(11), 1475–1479 (1983).
[PubMed]

1982 (1)

S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory 28(2), 129–137 (1982).
[Crossref]

1971 (1)

R. M. Cormack, “A review of classification,” J. R. Stat. Soc. [Ser A] 134(3), 321–367 (1971).
[Crossref]

1959 (1)

E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik. 1(1), 269–271 (1959).
[Crossref]

1948 (1)

T. Sørensen, “A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons,” Biol. Skr. 5, 1–34 (1948).

1945 (1)

L. R. Dice, “Measures of the amount of ecologic association between species,” Ecology 26(3), 297–302 (1945).
[Crossref]

Abraham, P.

Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
[Crossref] [PubMed]

Abramoff, M. D.

X. Chen, M. Niemeijer, L. Zhang, K. Lee, M. D. Abramoff, and M. Sonka, “Three-dimensional segmentation of fluid-associated abnormalities in retinal OCT: probability constrained graph-search-graph-cut,” IEEE Trans. Med. Imaging 31(8), 1521–1531 (2012).
[Crossref] [PubMed]

Abràmoff, M. D.

E. H. Sohn, J. J. Chen, K. Lee, M. Niemeijer, M. Sonka, and M. D. Abràmoff, “Reproducibility of diabetic macular edema estimates from SD-OCT is affected by the choice of image analysis algorithm,” Invest. Ophthalmol. Vis. Sci. 54(6), 4184–4188 (2013).
[Crossref] [PubMed]

B. J. Antony, M. D. Abràmoff, M. M. Harper, W. Jeong, E. H. Sohn, Y. H. Kwon, R. Kardon, and M. K. Garvin, “A combined machine-learning and graph-based framework for the segmentation of retinal surfaces in SD-OCT volumes,” Biomed. Opt. Express 4(12), 2712–2728 (2013).
[Crossref] [PubMed]

G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abràmoff, and M. Sonka, “Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula,” IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010).
[Crossref] [PubMed]

Adamis, A. P.

E. T. Cunningham, A. P. Adamis, M. Altaweel, L. P. Aiello, N. M. Bressler, D. J. D’Amico, M. Goldbaum, D. R. Guyer, B. Katz, M. Patel, S. D. Schwartz, and Macugen Diabetic Retinopathy Study Group, “A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema,” Ophthalmology 112(10), 1747–1757 (2005).
[Crossref] [PubMed]

M. J. Tolentino, D. S. McLeod, M. Taomoto, T. Otsuji, A. P. Adamis, and G. A. Lutty, “Pathologic features of vascular endothelial growth factor-induced retinopathy in the nonhuman primate,” Am. J. Ophthalmol. 133(3), 373–385 (2002).
[Crossref] [PubMed]

Aiello, L. P.

M. J. Elman, L. P. Aiello, R. W. Beck, N. M. Bressler, S. B. Bressler, A. R. Edwards, F. L. Ferris, S. M. Friedman, A. R. Glassman, K. M. Miller, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 117(6), 1064–1077 (2010).
[Crossref] [PubMed]

E. T. Cunningham, A. P. Adamis, M. Altaweel, L. P. Aiello, N. M. Bressler, D. J. D’Amico, M. Goldbaum, D. R. Guyer, B. Katz, M. Patel, S. D. Schwartz, and Macugen Diabetic Retinopathy Study Group, “A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema,” Ophthalmology 112(10), 1747–1757 (2005).
[Crossref] [PubMed]

Akkin, T.

Ali, H.

M. C. Gillies, J. M. Simpson, C. Gaston, G. Hunt, H. Ali, M. Zhu, and F. Sutter, “Five-year results of a randomized trial with open-label extension of triamcinolone acetonide for refractory diabetic macular edema,” Ophthalmology 116(11), 2182–2187 (2009).
[Crossref] [PubMed]

Al-Louzi, O.

Altaweel, M.

E. T. Cunningham, A. P. Adamis, M. Altaweel, L. P. Aiello, N. M. Bressler, D. J. D’Amico, M. Goldbaum, D. R. Guyer, B. Katz, M. Patel, S. D. Schwartz, and Macugen Diabetic Retinopathy Study Group, “A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema,” Ophthalmology 112(10), 1747–1757 (2005).
[Crossref] [PubMed]

Altaweel, M. M.

D. J. Browning, M. M. Altaweel, N. M. Bressler, S. B. Bressler, I. U. Scott, and Diabetic Retinopathy Clinical Research Network, “Diabetic macular edema: what is focal and what is diffuse?” Am. J. Ophthalmol. 146(5), 649–655 (2008).
[Crossref] [PubMed]

Anderson, P. W.

J. A. Davidson, T. A. Ciulla, J. B. McGill, K. A. Kles, and P. W. Anderson, “How the diabetic eye loses vision,” Endocrine 32(1), 107–116 (2007).
[Crossref] [PubMed]

Antony, B. J.

Atta Allah, H. R.

Y. M. Helmy and H. R. Atta Allah, “Optical coherence tomography classification of diabetic cystoid macular edema,” Clin. Ophthalmol. 7, 1731–1737 (2013).
[PubMed]

Aung, T.

Baltatzis, S.

A. I. Kotsolis, E. Tsianta, M. Niskopoulou, P. Masaoutis, S. Baltatzis, and I. D. Ladas, “Ranibizumab for diabetic macular edema difficult to treat with focal/grid laser,” Graefe's archive for clinical and experimental ophthalmology = Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 248(11), 1553–1557 (2010).
[Crossref]

Bandello, F.

P. Mitchell, F. Bandello, U. Schmidt-Erfurth, G. E. Lang, P. Massin, R. O. Schlingemann, F. Sutter, C. Simader, G. Burian, O. Gerstner, A. Weichselberger, and RESTORE study group, “The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema,” Ophthalmology 118(4), 615–625 (2011).
[Crossref] [PubMed]

P. Massin, F. Bandello, J. G. Garweg, L. L. Hansen, S. P. Harding, M. Larsen, P. Mitchell, D. Sharp, U. E. Wolf-Schnurrbusch, M. Gekkieva, A. Weichselberger, and S. Wolf, “Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study,” Diabetes Care 33(11), 2399–2405 (2010).
[Crossref] [PubMed]

Bansal, P.

S. Ghosh, P. Bansal, H. Shejao, R. Hegde, D. Roy, and S. Biswas, “Correlation of morphological pattern of optical coherence tomography in diabetic macular edema with systemic risk factors in middle aged males,” Int. Ophthalmol. 35, 3–10 (2014).
[PubMed]

Baskaran, M.

Beaton, S.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular Segmentation with Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

L. A. Paunescu, J. S. Schuman, L. L. Price, P. C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, and J. G. Fujimoto, “Reproducibility of Nerve Fiber Thickness, Macular Thickness, and Optic Nerve Head Measurements Using StratusOCT,” Invest. Ophthalmol. Vis. Sci. 45(6), 1716–1724 (2004).
[Crossref] [PubMed]

Beck, R. W.

M. J. Elman, N. M. Bressler, H. Qin, R. W. Beck, F. L. Ferris, S. M. Friedman, A. R. Glassman, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 118(4), 609–614 (2011).
[Crossref] [PubMed]

M. J. Elman, L. P. Aiello, R. W. Beck, N. M. Bressler, S. B. Bressler, A. R. Edwards, F. L. Ferris, S. M. Friedman, A. R. Glassman, K. M. Miller, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 117(6), 1064–1077 (2010).
[Crossref] [PubMed]

Beckmann, K.

D. V. Do, U. Schmidt-Erfurth, V. H. Gonzalez, C. M. Gordon, M. Tolentino, A. J. Berliner, R. Vitti, R. Rückert, R. Sandbrink, D. Stein, K. Yang, K. Beckmann, and J. S. Heier, “The DA VINCI Study: phase 2 primary results of VEGF Trap-Eye in patients with diabetic macular edema,” Ophthalmology 118(9), 1819–1826 (2011).
[Crossref] [PubMed]

Bek, T.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Berliner, A. J.

D. V. Do, U. Schmidt-Erfurth, V. H. Gonzalez, C. M. Gordon, M. Tolentino, A. J. Berliner, R. Vitti, R. Rückert, R. Sandbrink, D. Stein, K. Yang, K. Beckmann, and J. S. Heier, “The DA VINCI Study: phase 2 primary results of VEGF Trap-Eye in patients with diabetic macular edema,” Ophthalmology 118(9), 1819–1826 (2011).
[Crossref] [PubMed]

Bhargava, P.

Biswas, S.

S. Ghosh, P. Bansal, H. Shejao, R. Hegde, D. Roy, and S. Biswas, “Correlation of morphological pattern of optical coherence tomography in diabetic macular edema with systemic risk factors in middle aged males,” Int. Ophthalmol. 35, 3–10 (2014).
[PubMed]

Bizheva, K.

Bowes Rickman, C.

Boyer, D.

Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
[Crossref] [PubMed]

Bressler, N. M.

M. J. Elman, N. M. Bressler, H. Qin, R. W. Beck, F. L. Ferris, S. M. Friedman, A. R. Glassman, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 118(4), 609–614 (2011).
[Crossref] [PubMed]

M. J. Elman, L. P. Aiello, R. W. Beck, N. M. Bressler, S. B. Bressler, A. R. Edwards, F. L. Ferris, S. M. Friedman, A. R. Glassman, K. M. Miller, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 117(6), 1064–1077 (2010).
[Crossref] [PubMed]

D. J. Browning, M. M. Altaweel, N. M. Bressler, S. B. Bressler, I. U. Scott, and Diabetic Retinopathy Clinical Research Network, “Diabetic macular edema: what is focal and what is diffuse?” Am. J. Ophthalmol. 146(5), 649–655 (2008).
[Crossref] [PubMed]

E. T. Cunningham, A. P. Adamis, M. Altaweel, L. P. Aiello, N. M. Bressler, D. J. D’Amico, M. Goldbaum, D. R. Guyer, B. Katz, M. Patel, S. D. Schwartz, and Macugen Diabetic Retinopathy Study Group, “A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema,” Ophthalmology 112(10), 1747–1757 (2005).
[Crossref] [PubMed]

Bressler, S. B.

M. J. Elman, L. P. Aiello, R. W. Beck, N. M. Bressler, S. B. Bressler, A. R. Edwards, F. L. Ferris, S. M. Friedman, A. R. Glassman, K. M. Miller, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 117(6), 1064–1077 (2010).
[Crossref] [PubMed]

D. J. Browning, M. M. Altaweel, N. M. Bressler, S. B. Bressler, I. U. Scott, and Diabetic Retinopathy Clinical Research Network, “Diabetic macular edema: what is focal and what is diffuse?” Am. J. Ophthalmol. 146(5), 649–655 (2008).
[Crossref] [PubMed]

Bringmann, A.

A. Bringmann, T. Pannicke, J. Grosche, M. Francke, P. Wiedemann, S. N. Skatchkov, N. N. Osborne, and A. Reichenbach, “Müller cells in the healthy and diseased retina,” Prog. Retin. Eye Res. 25(4), 397–424 (2006).
[Crossref] [PubMed]

A. Bringmann, A. Reichenbach, and P. Wiedemann, “Pathomechanisms of cystoid macular edema,” Ophthalmic Res. 36(5), 241–249 (2004).
[Crossref] [PubMed]

Browning, D. J.

D. J. Browning, M. M. Altaweel, N. M. Bressler, S. B. Bressler, I. U. Scott, and Diabetic Retinopathy Clinical Research Network, “Diabetic macular edema: what is focal and what is diffuse?” Am. J. Ophthalmol. 146(5), 649–655 (2008).
[Crossref] [PubMed]

Burian, G.

P. Mitchell, F. Bandello, U. Schmidt-Erfurth, G. E. Lang, P. Massin, R. O. Schlingemann, F. Sutter, C. Simader, G. Burian, O. Gerstner, A. Weichselberger, and RESTORE study group, “The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema,” Ophthalmology 118(4), 615–625 (2011).
[Crossref] [PubMed]

Cabrera Fernández, D.

Calabresi, P. A.

Campochiaro, P. A.

Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
[Crossref] [PubMed]

Carass, A.

Carroll, J.

Cense, B.

Chan, K.

Chan, R.

Chang, T.

Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
[Crossref] [PubMed]

Channa, R.

Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
[Crossref] [PubMed]

Chen, J. J.

E. H. Sohn, J. J. Chen, K. Lee, M. Niemeijer, M. Sonka, and M. D. Abràmoff, “Reproducibility of diabetic macular edema estimates from SD-OCT is affected by the choice of image analysis algorithm,” Invest. Ophthalmol. Vis. Sci. 54(6), 4184–4188 (2013).
[Crossref] [PubMed]

Chen, S. J.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Chen, T.

Chen, X.

X. Chen, M. Niemeijer, L. Zhang, K. Lee, M. D. Abramoff, and M. Sonka, “Three-dimensional segmentation of fluid-associated abnormalities in retinal OCT: probability constrained graph-search-graph-cut,” IEEE Trans. Med. Imaging 31(8), 1521–1531 (2012).
[Crossref] [PubMed]

Chin, E. K.

A. Hunter, E. K. Chin, and D. G. Telander, “Macular edema in the era of spectral-domain optical coherence tomography,” Clin. Ophthalmol. 7, 2085–2089 (2013).
[Crossref] [PubMed]

Chiu, S. J.

J. Y. Lee, S. J. Chiu, P. P. Srinivasan, J. A. Izatt, C. A. Toth, S. Farsiu, and G. J. Jaffe, “Fully automatic software for retinal thickness in eyes with diabetic macular edema from images acquired by cirrus and spectralis systems,” Invest. Ophthalmol. Vis. Sci. 54(12), 7595–7602 (2013).
[Crossref] [PubMed]

S. J. Chiu, Y. Lokhnygina, A. M. Dubis, A. Dubra, J. Carroll, J. A. Izatt, and S. Farsiu, “Automatic cone photoreceptor segmentation using graph theory and dynamic programming,” Biomed. Opt. Express 4(6), 924–937 (2013).
[Crossref] [PubMed]

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

S. J. Chiu, C. A. Toth, C. Bowes Rickman, J. A. Izatt, and S. Farsiu, “Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming,” Biomed. Opt. Express 3(5), 1127–1140 (2012).
[Crossref] [PubMed]

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated Automatic Segmentation of AMD Pathology Including Drusen and Geographic Atrophy in SD-OCT Images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

Ciulla, T. A.

Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
[Crossref] [PubMed]

J. A. Davidson, T. A. Ciulla, J. B. McGill, K. A. Kles, and P. W. Anderson, “How the diabetic eye loses vision,” Endocrine 32(1), 107–116 (2007).
[Crossref] [PubMed]

Clausi, D. A.

Cormack, R. M.

R. M. Cormack, “A review of classification,” J. R. Stat. Soc. [Ser A] 134(3), 321–367 (1971).
[Crossref]

Cunningham, E. T.

E. T. Cunningham, A. P. Adamis, M. Altaweel, L. P. Aiello, N. M. Bressler, D. J. D’Amico, M. Goldbaum, D. R. Guyer, B. Katz, M. Patel, S. D. Schwartz, and Macugen Diabetic Retinopathy Study Group, “A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema,” Ophthalmology 112(10), 1747–1757 (2005).
[Crossref] [PubMed]

D’Amico, D. J.

E. T. Cunningham, A. P. Adamis, M. Altaweel, L. P. Aiello, N. M. Bressler, D. J. D’Amico, M. Goldbaum, D. R. Guyer, B. Katz, M. Patel, S. D. Schwartz, and Macugen Diabetic Retinopathy Study Group, “A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema,” Ophthalmology 112(10), 1747–1757 (2005).
[Crossref] [PubMed]

Danis, R. P.

Y. Huang, R. P. Danis, J. W. Pak, S. Luo, J. White, X. Zhang, A. Narkar, and A. Domalpally, “Development of a semi-automatic segmentation method for retinal OCT images tested in patients with diabetic macular edema,” PLoS ONE 8(12), e82922 (2013).
[Crossref] [PubMed]

Das, A.

Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
[Crossref] [PubMed]

Davidson, J. A.

J. A. Davidson, T. A. Ciulla, J. B. McGill, K. A. Kles, and P. W. Anderson, “How the diabetic eye loses vision,” Endocrine 32(1), 107–116 (2007).
[Crossref] [PubMed]

de Boer, J.

de Boer, J. F.

DeBuc, D. C.

G. M. Somfai, E. Tátrai, L. Laurik, B. E. Varga, V. Ölvedy, W. E. Smiddy, R. Tchitnga, A. Somogyi, and D. C. DeBuc, “Fractal-based analysis of optical coherence tomography data to quantify retinal tissue damage,” BMC Bioinformatics 15(1), 295 (2014).
[Crossref] [PubMed]

D. C. DeBuc, G. M. Somfai, S. Ranganathan, E. Tátrai, M. Ferencz, and C. A. Puliafito, “Reliability and reproducibility of macular segmentation using a custom-built optical coherence tomography retinal image analysis software,” J. Biomed. Opt. 14(6), 064023 (2009).
[Crossref] [PubMed]

Dekker, J. M.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Dice, L. R.

L. R. Dice, “Measures of the amount of ecologic association between species,” Ecology 26(3), 297–302 (1945).
[Crossref]

Dijkstra, E. W.

E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik. 1(1), 269–271 (1959).
[Crossref]

Do, D. V.

D. V. Do, U. Schmidt-Erfurth, V. H. Gonzalez, C. M. Gordon, M. Tolentino, A. J. Berliner, R. Vitti, R. Rückert, R. Sandbrink, D. Stein, K. Yang, K. Beckmann, and J. S. Heier, “The DA VINCI Study: phase 2 primary results of VEGF Trap-Eye in patients with diabetic macular edema,” Ophthalmology 118(9), 1819–1826 (2011).
[Crossref] [PubMed]

Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
[Crossref] [PubMed]

Dolejsi, M.

G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abràmoff, and M. Sonka, “Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula,” IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010).
[Crossref] [PubMed]

Domalpally, A.

Y. Huang, R. P. Danis, J. W. Pak, S. Luo, J. White, X. Zhang, A. Narkar, and A. Domalpally, “Development of a semi-automatic segmentation method for retinal OCT images tested in patients with diabetic macular edema,” PLoS ONE 8(12), e82922 (2013).
[Crossref] [PubMed]

Dubis, A. M.

Dubra, A.

Dugel, P.

Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
[Crossref] [PubMed]

Edwards, A. R.

M. J. Elman, L. P. Aiello, R. W. Beck, N. M. Bressler, S. B. Bressler, A. R. Edwards, F. L. Ferris, S. M. Friedman, A. R. Glassman, K. M. Miller, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 117(6), 1064–1077 (2010).
[Crossref] [PubMed]

Egan, C. A.

D. A. Sim, P. A. Keane, S. Fung, M. Karampelas, S. R. Sadda, M. Fruttiger, P. J. Patel, A. Tufail, and C. A. Egan, “Quantitative analysis of diabetic macular ischemia using optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 55(1), 417–423 (2014).
[Crossref] [PubMed]

Eliott, D.

Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
[Crossref] [PubMed]

Elisseeff, A.

I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” J. Mach. Learn. Res. 3, 1157–1182 (2003).

Elman, M. J.

M. J. Elman, N. M. Bressler, H. Qin, R. W. Beck, F. L. Ferris, S. M. Friedman, A. R. Glassman, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 118(4), 609–614 (2011).
[Crossref] [PubMed]

M. J. Elman, L. P. Aiello, R. W. Beck, N. M. Bressler, S. B. Bressler, A. R. Edwards, F. L. Ferris, S. M. Friedman, A. R. Glassman, K. M. Miller, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 117(6), 1064–1077 (2010).
[Crossref] [PubMed]

Fang, L.

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation,” IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref] [PubMed]

Farsiu, S.

S. J. Chiu, Y. Lokhnygina, A. M. Dubis, A. Dubra, J. Carroll, J. A. Izatt, and S. Farsiu, “Automatic cone photoreceptor segmentation using graph theory and dynamic programming,” Biomed. Opt. Express 4(6), 924–937 (2013).
[Crossref] [PubMed]

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation,” IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref] [PubMed]

J. Y. Lee, S. J. Chiu, P. P. Srinivasan, J. A. Izatt, C. A. Toth, S. Farsiu, and G. J. Jaffe, “Fully automatic software for retinal thickness in eyes with diabetic macular edema from images acquired by cirrus and spectralis systems,” Invest. Ophthalmol. Vis. Sci. 54(12), 7595–7602 (2013).
[Crossref] [PubMed]

S. J. Chiu, C. A. Toth, C. Bowes Rickman, J. A. Izatt, and S. Farsiu, “Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming,” Biomed. Opt. Express 3(5), 1127–1140 (2012).
[Crossref] [PubMed]

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated Automatic Segmentation of AMD Pathology Including Drusen and Geographic Atrophy in SD-OCT Images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

H. Takeda, S. Farsiu, and P. Milanfar, “Deblurring Using Regularized Locally Adaptive Kernel Regression,” IEEE Trans. Image Process. 17(4), 550–563 (2008).
[Crossref] [PubMed]

H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image processing and reconstruction,” IEEE Trans. Image Process. 16, 349–366 (2007).

Ferencz, M.

D. C. DeBuc, G. M. Somfai, S. Ranganathan, E. Tátrai, M. Ferencz, and C. A. Puliafito, “Reliability and reproducibility of macular segmentation using a custom-built optical coherence tomography retinal image analysis software,” J. Biomed. Opt. 14(6), 064023 (2009).
[Crossref] [PubMed]

Ferris, F. L.

M. J. Elman, N. M. Bressler, H. Qin, R. W. Beck, F. L. Ferris, S. M. Friedman, A. R. Glassman, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 118(4), 609–614 (2011).
[Crossref] [PubMed]

M. J. Elman, L. P. Aiello, R. W. Beck, N. M. Bressler, S. B. Bressler, A. R. Edwards, F. L. Ferris, S. M. Friedman, A. R. Glassman, K. M. Miller, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 117(6), 1064–1077 (2010).
[Crossref] [PubMed]

Fletcher, A.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Folberg, R.

J. Pe’er, R. Folberg, A. Itin, H. Gnessin, I. Hemo, and E. Keshet, “Upregulated expression of vascular endothelial growth factor in proliferative diabetic retinopathy,” Br. J. Ophthalmol. 80(3), 241–245 (1996).
[Crossref] [PubMed]

Foster, B. S.

Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
[Crossref] [PubMed]

Francke, M.

A. Bringmann, T. Pannicke, J. Grosche, M. Francke, P. Wiedemann, S. N. Skatchkov, N. N. Osborne, and A. Reichenbach, “Müller cells in the healthy and diseased retina,” Prog. Retin. Eye Res. 25(4), 397–424 (2006).
[Crossref] [PubMed]

Friedburg, C.

M. Pilch, K. Stieger, Y. Wenner, M. N. Preising, C. Friedburg, E. Meyer zu Bexten, and B. Lorenz, “Automated segmentation of pathological cavities in optical coherence tomography scans,” Invest. Ophthalmol. Vis. Sci. 54(6), 4385–4393 (2013).
[Crossref] [PubMed]

Friedman, S. M.

M. J. Elman, N. M. Bressler, H. Qin, R. W. Beck, F. L. Ferris, S. M. Friedman, A. R. Glassman, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 118(4), 609–614 (2011).
[Crossref] [PubMed]

M. J. Elman, L. P. Aiello, R. W. Beck, N. M. Bressler, S. B. Bressler, A. R. Edwards, F. L. Ferris, S. M. Friedman, A. R. Glassman, K. M. Miller, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 117(6), 1064–1077 (2010).
[Crossref] [PubMed]

Fruttiger, M.

D. A. Sim, P. A. Keane, S. Fung, M. Karampelas, S. R. Sadda, M. Fruttiger, P. J. Patel, A. Tufail, and C. A. Egan, “Quantitative analysis of diabetic macular ischemia using optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 55(1), 417–423 (2014).
[Crossref] [PubMed]

Fujimoto, J. G.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular Segmentation with Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

L. A. Paunescu, J. S. Schuman, L. L. Price, P. C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, and J. G. Fujimoto, “Reproducibility of Nerve Fiber Thickness, Macular Thickness, and Optic Nerve Head Measurements Using StratusOCT,” Invest. Ophthalmol. Vis. Sci. 45(6), 1716–1724 (2004).
[Crossref] [PubMed]

Fung, S.

D. A. Sim, P. A. Keane, S. Fung, M. Karampelas, S. R. Sadda, M. Fruttiger, P. J. Patel, A. Tufail, and C. A. Egan, “Quantitative analysis of diabetic macular ischemia using optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 55(1), 417–423 (2014).
[Crossref] [PubMed]

Garvin, M. K.

B. J. Antony, M. D. Abràmoff, M. M. Harper, W. Jeong, E. H. Sohn, Y. H. Kwon, R. Kardon, and M. K. Garvin, “A combined machine-learning and graph-based framework for the segmentation of retinal surfaces in SD-OCT volumes,” Biomed. Opt. Express 4(12), 2712–2728 (2013).
[Crossref] [PubMed]

G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abràmoff, and M. Sonka, “Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula,” IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010).
[Crossref] [PubMed]

Garweg, J. G.

P. Massin, F. Bandello, J. G. Garweg, L. L. Hansen, S. P. Harding, M. Larsen, P. Mitchell, D. Sharp, U. E. Wolf-Schnurrbusch, M. Gekkieva, A. Weichselberger, and S. Wolf, “Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study,” Diabetes Care 33(11), 2399–2405 (2010).
[Crossref] [PubMed]

Gaston, C.

M. C. Gillies, J. M. Simpson, C. Gaston, G. Hunt, H. Ali, M. Zhu, and F. Sutter, “Five-year results of a randomized trial with open-label extension of triamcinolone acetonide for refractory diabetic macular edema,” Ophthalmology 116(11), 2182–2187 (2009).
[Crossref] [PubMed]

Gekkieva, M.

P. Massin, F. Bandello, J. G. Garweg, L. L. Hansen, S. P. Harding, M. Larsen, P. Mitchell, D. Sharp, U. E. Wolf-Schnurrbusch, M. Gekkieva, A. Weichselberger, and S. Wolf, “Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study,” Diabetes Care 33(11), 2399–2405 (2010).
[Crossref] [PubMed]

Gerstner, O.

P. Mitchell, F. Bandello, U. Schmidt-Erfurth, G. E. Lang, P. Massin, R. O. Schlingemann, F. Sutter, C. Simader, G. Burian, O. Gerstner, A. Weichselberger, and RESTORE study group, “The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema,” Ophthalmology 118(4), 615–625 (2011).
[Crossref] [PubMed]

Ghosh, S.

S. Ghosh, P. Bansal, H. Shejao, R. Hegde, D. Roy, and S. Biswas, “Correlation of morphological pattern of optical coherence tomography in diabetic macular edema with systemic risk factors in middle aged males,” Int. Ophthalmol. 35, 3–10 (2014).
[PubMed]

Gillies, M. C.

M. C. Gillies, J. M. Simpson, C. Gaston, G. Hunt, H. Ali, M. Zhu, and F. Sutter, “Five-year results of a randomized trial with open-label extension of triamcinolone acetonide for refractory diabetic macular edema,” Ophthalmology 116(11), 2182–2187 (2009).
[Crossref] [PubMed]

Glassman, A. R.

M. J. Elman, N. M. Bressler, H. Qin, R. W. Beck, F. L. Ferris, S. M. Friedman, A. R. Glassman, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 118(4), 609–614 (2011).
[Crossref] [PubMed]

M. J. Elman, L. P. Aiello, R. W. Beck, N. M. Bressler, S. B. Bressler, A. R. Edwards, F. L. Ferris, S. M. Friedman, A. R. Glassman, K. M. Miller, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 117(6), 1064–1077 (2010).
[Crossref] [PubMed]

Gnessin, H.

J. Pe’er, R. Folberg, A. Itin, H. Gnessin, I. Hemo, and E. Keshet, “Upregulated expression of vascular endothelial growth factor in proliferative diabetic retinopathy,” Br. J. Ophthalmol. 80(3), 241–245 (1996).
[Crossref] [PubMed]

Goldbaum, M.

E. T. Cunningham, A. P. Adamis, M. Altaweel, L. P. Aiello, N. M. Bressler, D. J. D’Amico, M. Goldbaum, D. R. Guyer, B. Katz, M. Patel, S. D. Schwartz, and Macugen Diabetic Retinopathy Study Group, “A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema,” Ophthalmology 112(10), 1747–1757 (2005).
[Crossref] [PubMed]

Gonzalez, V. H.

D. V. Do, U. Schmidt-Erfurth, V. H. Gonzalez, C. M. Gordon, M. Tolentino, A. J. Berliner, R. Vitti, R. Rückert, R. Sandbrink, D. Stein, K. Yang, K. Beckmann, and J. S. Heier, “The DA VINCI Study: phase 2 primary results of VEGF Trap-Eye in patients with diabetic macular edema,” Ophthalmology 118(9), 1819–1826 (2011).
[Crossref] [PubMed]

Gordon, C. M.

D. V. Do, U. Schmidt-Erfurth, V. H. Gonzalez, C. M. Gordon, M. Tolentino, A. J. Berliner, R. Vitti, R. Rückert, R. Sandbrink, D. Stein, K. Yang, K. Beckmann, and J. S. Heier, “The DA VINCI Study: phase 2 primary results of VEGF Trap-Eye in patients with diabetic macular edema,” Ophthalmology 118(9), 1819–1826 (2011).
[Crossref] [PubMed]

Grauslund, J.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Grosche, J.

A. Bringmann, T. Pannicke, J. Grosche, M. Francke, P. Wiedemann, S. N. Skatchkov, N. N. Osborne, and A. Reichenbach, “Müller cells in the healthy and diseased retina,” Prog. Retin. Eye Res. 25(4), 397–424 (2006).
[Crossref] [PubMed]

Guyer, D. R.

E. T. Cunningham, A. P. Adamis, M. Altaweel, L. P. Aiello, N. M. Bressler, D. J. D’Amico, M. Goldbaum, D. R. Guyer, B. Katz, M. Patel, S. D. Schwartz, and Macugen Diabetic Retinopathy Study Group, “A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema,” Ophthalmology 112(10), 1747–1757 (2005).
[Crossref] [PubMed]

Guyon, I.

I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” J. Mach. Learn. Res. 3, 1157–1182 (2003).

Haffner, S.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Hamman, R. F.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Hansen, L. L.

P. Massin, F. Bandello, J. G. Garweg, L. L. Hansen, S. P. Harding, M. Larsen, P. Mitchell, D. Sharp, U. E. Wolf-Schnurrbusch, M. Gekkieva, A. Weichselberger, and S. Wolf, “Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study,” Diabetes Care 33(11), 2399–2405 (2010).
[Crossref] [PubMed]

Hansen, P. C.

P. C. Hansen, “The truncated svd as a method for regularization,” BIT Numerical Mathematics 27(4), 534–553 (1987).
[Crossref]

Harding, S. P.

P. Massin, F. Bandello, J. G. Garweg, L. L. Hansen, S. P. Harding, M. Larsen, P. Mitchell, D. Sharp, U. E. Wolf-Schnurrbusch, M. Gekkieva, A. Weichselberger, and S. Wolf, “Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study,” Diabetes Care 33(11), 2399–2405 (2010).
[Crossref] [PubMed]

Harper, M. M.

Hatef, E.

Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
[Crossref] [PubMed]

Hauser, M.

Hegde, R.

S. Ghosh, P. Bansal, H. Shejao, R. Hegde, D. Roy, and S. Biswas, “Correlation of morphological pattern of optical coherence tomography in diabetic macular edema with systemic risk factors in middle aged males,” Int. Ophthalmol. 35, 3–10 (2014).
[PubMed]

Heier, J. S.

D. V. Do, U. Schmidt-Erfurth, V. H. Gonzalez, C. M. Gordon, M. Tolentino, A. J. Berliner, R. Vitti, R. Rückert, R. Sandbrink, D. Stein, K. Yang, K. Beckmann, and J. S. Heier, “The DA VINCI Study: phase 2 primary results of VEGF Trap-Eye in patients with diabetic macular edema,” Ophthalmology 118(9), 1819–1826 (2011).
[Crossref] [PubMed]

Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
[Crossref] [PubMed]

Helmy, Y. M.

Y. M. Helmy and H. R. Atta Allah, “Optical coherence tomography classification of diabetic cystoid macular edema,” Clin. Ophthalmol. 7, 1731–1737 (2013).
[PubMed]

Hemo, I.

J. Pe’er, R. Folberg, A. Itin, H. Gnessin, I. Hemo, and E. Keshet, “Upregulated expression of vascular endothelial growth factor in proliferative diabetic retinopathy,” Br. J. Ophthalmol. 80(3), 241–245 (1996).
[Crossref] [PubMed]

Hood, D. C.

Hornegger, J.

Huang, Y.

Y. Huang, R. P. Danis, J. W. Pak, S. Luo, J. White, X. Zhang, A. Narkar, and A. Domalpally, “Development of a semi-automatic segmentation method for retinal OCT images tested in patients with diabetic macular edema,” PLoS ONE 8(12), e82922 (2013).
[Crossref] [PubMed]

Hunt, G.

M. C. Gillies, J. M. Simpson, C. Gaston, G. Hunt, H. Ali, M. Zhu, and F. Sutter, “Five-year results of a randomized trial with open-label extension of triamcinolone acetonide for refractory diabetic macular edema,” Ophthalmology 116(11), 2182–2187 (2009).
[Crossref] [PubMed]

Hunter, A.

A. Hunter, E. K. Chin, and D. G. Telander, “Macular edema in the era of spectral-domain optical coherence tomography,” Clin. Ophthalmol. 7, 2085–2089 (2013).
[Crossref] [PubMed]

Ikram, M. K.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Ishikawa, H.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular Segmentation with Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

L. A. Paunescu, J. S. Schuman, L. L. Price, P. C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, and J. G. Fujimoto, “Reproducibility of Nerve Fiber Thickness, Macular Thickness, and Optic Nerve Head Measurements Using StratusOCT,” Invest. Ophthalmol. Vis. Sci. 45(6), 1716–1724 (2004).
[Crossref] [PubMed]

Itin, A.

J. Pe’er, R. Folberg, A. Itin, H. Gnessin, I. Hemo, and E. Keshet, “Upregulated expression of vascular endothelial growth factor in proliferative diabetic retinopathy,” Br. J. Ophthalmol. 80(3), 241–245 (1996).
[Crossref] [PubMed]

Izatt, J. A.

J. Y. Lee, S. J. Chiu, P. P. Srinivasan, J. A. Izatt, C. A. Toth, S. Farsiu, and G. J. Jaffe, “Fully automatic software for retinal thickness in eyes with diabetic macular edema from images acquired by cirrus and spectralis systems,” Invest. Ophthalmol. Vis. Sci. 54(12), 7595–7602 (2013).
[Crossref] [PubMed]

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation,” IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref] [PubMed]

S. J. Chiu, Y. Lokhnygina, A. M. Dubis, A. Dubra, J. Carroll, J. A. Izatt, and S. Farsiu, “Automatic cone photoreceptor segmentation using graph theory and dynamic programming,” Biomed. Opt. Express 4(6), 924–937 (2013).
[Crossref] [PubMed]

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

S. J. Chiu, C. A. Toth, C. Bowes Rickman, J. A. Izatt, and S. Farsiu, “Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming,” Biomed. Opt. Express 3(5), 1127–1140 (2012).
[Crossref] [PubMed]

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated Automatic Segmentation of AMD Pathology Including Drusen and Geographic Atrophy in SD-OCT Images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

Jaffe, G. J.

J. Y. Lee, S. J. Chiu, P. P. Srinivasan, J. A. Izatt, C. A. Toth, S. Farsiu, and G. J. Jaffe, “Fully automatic software for retinal thickness in eyes with diabetic macular edema from images acquired by cirrus and spectralis systems,” Invest. Ophthalmol. Vis. Sci. 54(12), 7595–7602 (2013).
[Crossref] [PubMed]

Jain, A.

A. Jain and D. Zongker, “Feature selection: evaluation, application, and small sample performance,” IEEE Trans. Pattern Anal. Machine Intell. 19(2), 153–158 (1997).
[Crossref]

Jeong, W.

John, G. H.

R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artif. Intell. 97(1-2), 273–324 (1997).
[Crossref]

Joo, C.

Karampelas, M.

D. A. Sim, P. A. Keane, S. Fung, M. Karampelas, S. R. Sadda, M. Fruttiger, P. J. Patel, A. Tufail, and C. A. Egan, “Quantitative analysis of diabetic macular ischemia using optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 55(1), 417–423 (2014).
[Crossref] [PubMed]

Kardon, R.

Katz, B.

E. T. Cunningham, A. P. Adamis, M. Altaweel, L. P. Aiello, N. M. Bressler, D. J. D’Amico, M. Goldbaum, D. R. Guyer, B. Katz, M. Patel, S. D. Schwartz, and Macugen Diabetic Retinopathy Study Group, “A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema,” Ophthalmology 112(10), 1747–1757 (2005).
[Crossref] [PubMed]

Kawasaki, R.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Kayama, T.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Keane, P. A.

D. A. Sim, P. A. Keane, S. Fung, M. Karampelas, S. R. Sadda, M. Fruttiger, P. J. Patel, A. Tufail, and C. A. Egan, “Quantitative analysis of diabetic macular ischemia using optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 55(1), 417–423 (2014).
[Crossref] [PubMed]

Keshet, E.

J. Pe’er, R. Folberg, A. Itin, H. Gnessin, I. Hemo, and E. Keshet, “Upregulated expression of vascular endothelial growth factor in proliferative diabetic retinopathy,” Br. J. Ophthalmol. 80(3), 241–245 (1996).
[Crossref] [PubMed]

Khwaja, A. A.

Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
[Crossref] [PubMed]

Klein, B. E.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Klein, R.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Kles, K. A.

J. A. Davidson, T. A. Ciulla, J. B. McGill, K. A. Kles, and P. W. Anderson, “How the diabetic eye loses vision,” Endocrine 32(1), 107–116 (2007).
[Crossref] [PubMed]

Kohavi, R.

R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artif. Intell. 97(1-2), 273–324 (1997).
[Crossref]

Kotsolis, A. I.

A. I. Kotsolis, E. Tsianta, M. Niskopoulou, P. Masaoutis, S. Baltatzis, and I. D. Ladas, “Ranibizumab for diabetic macular edema difficult to treat with focal/grid laser,” Graefe's archive for clinical and experimental ophthalmology = Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 248(11), 1553–1557 (2010).
[Crossref]

Kowalski, J. W.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Krishnaiah, S.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Kruger, E.

Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
[Crossref] [PubMed]

Kuo, A. N.

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation,” IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref] [PubMed]

Kwon, Y. H.

Ladas, I. D.

A. I. Kotsolis, E. Tsianta, M. Niskopoulou, P. Masaoutis, S. Baltatzis, and I. D. Ladas, “Ranibizumab for diabetic macular edema difficult to treat with focal/grid laser,” Graefe's archive for clinical and experimental ophthalmology = Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 248(11), 1553–1557 (2010).
[Crossref]

Lamoureux, E. L.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Lang, A.

Lang, G. E.

P. Mitchell, F. Bandello, U. Schmidt-Erfurth, G. E. Lang, P. Massin, R. O. Schlingemann, F. Sutter, C. Simader, G. Burian, O. Gerstner, A. Weichselberger, and RESTORE study group, “The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema,” Ophthalmology 118(4), 615–625 (2011).
[Crossref] [PubMed]

Larsen, M.

P. Massin, F. Bandello, J. G. Garweg, L. L. Hansen, S. P. Harding, M. Larsen, P. Mitchell, D. Sharp, U. E. Wolf-Schnurrbusch, M. Gekkieva, A. Weichselberger, and S. Wolf, “Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study,” Diabetes Care 33(11), 2399–2405 (2010).
[Crossref] [PubMed]

Laurik, L.

G. M. Somfai, E. Tátrai, L. Laurik, B. E. Varga, V. Ölvedy, W. E. Smiddy, R. Tchitnga, A. Somogyi, and D. C. DeBuc, “Fractal-based analysis of optical coherence tomography data to quantify retinal tissue damage,” BMC Bioinformatics 15(1), 295 (2014).
[Crossref] [PubMed]

Lee, J. Y.

J. Y. Lee, S. J. Chiu, P. P. Srinivasan, J. A. Izatt, C. A. Toth, S. Farsiu, and G. J. Jaffe, “Fully automatic software for retinal thickness in eyes with diabetic macular edema from images acquired by cirrus and spectralis systems,” Invest. Ophthalmol. Vis. Sci. 54(12), 7595–7602 (2013).
[Crossref] [PubMed]

Lee, K.

E. H. Sohn, J. J. Chen, K. Lee, M. Niemeijer, M. Sonka, and M. D. Abràmoff, “Reproducibility of diabetic macular edema estimates from SD-OCT is affected by the choice of image analysis algorithm,” Invest. Ophthalmol. Vis. Sci. 54(6), 4184–4188 (2013).
[Crossref] [PubMed]

X. Chen, M. Niemeijer, L. Zhang, K. Lee, M. D. Abramoff, and M. Sonka, “Three-dimensional segmentation of fluid-associated abnormalities in retinal OCT: probability constrained graph-search-graph-cut,” IEEE Trans. Med. Imaging 31(8), 1521–1531 (2012).
[Crossref] [PubMed]

G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abràmoff, and M. Sonka, “Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula,” IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010).
[Crossref] [PubMed]

Lemij, H. G.

Lesiewska-Junk, H.

B. L. Sikorski, G. Malukiewicz, J. Stafiej, H. Lesiewska-Junk, and D. Raczynska, “The diagnostic function of OCT in diabetic maculopathy,” Mediators Inflamm. 2013, 434560 (2013).
[Crossref] [PubMed]

Li, S.

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation,” IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref] [PubMed]

Li, X. T.

Lim, J. I.

Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
[Crossref] [PubMed]

Lit, E. S.

Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
[Crossref] [PubMed]

Lloyd, S.

S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory 28(2), 129–137 (1982).
[Crossref]

Lokhnygina, Y.

Lorenz, B.

M. Pilch, K. Stieger, Y. Wenner, M. N. Preising, C. Friedburg, E. Meyer zu Bexten, and B. Lorenz, “Automated segmentation of pathological cavities in optical coherence tomography scans,” Invest. Ophthalmol. Vis. Sci. 54(6), 4385–4393 (2013).
[Crossref] [PubMed]

Luo, S.

Y. Huang, R. P. Danis, J. W. Pak, S. Luo, J. White, X. Zhang, A. Narkar, and A. Domalpally, “Development of a semi-automatic segmentation method for retinal OCT images tested in patients with diabetic macular edema,” PLoS ONE 8(12), e82922 (2013).
[Crossref] [PubMed]

Lutty, G. A.

M. J. Tolentino, D. S. McLeod, M. Taomoto, T. Otsuji, A. P. Adamis, and G. A. Lutty, “Pathologic features of vascular endothelial growth factor-induced retinopathy in the nonhuman primate,” Am. J. Ophthalmol. 133(3), 373–385 (2002).
[Crossref] [PubMed]

Malukiewicz, G.

B. L. Sikorski, G. Malukiewicz, J. Stafiej, H. Lesiewska-Junk, and D. Raczynska, “The diagnostic function of OCT in diabetic maculopathy,” Mediators Inflamm. 2013, 434560 (2013).
[Crossref] [PubMed]

Mardin, C. Y.

Marmor, M. F.

M. F. Marmor, “Mechanisms of fluid accumulation in retinal edema,” Doc. Ophthalmol. 97(3/4), 239–249 (1999).
[Crossref] [PubMed]

A. Negi and M. F. Marmor, “The resorption of subretinal fluid after diffuse damage to the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 24(11), 1475–1479 (1983).
[PubMed]

Marziliano, P.

Masaoutis, P.

A. I. Kotsolis, E. Tsianta, M. Niskopoulou, P. Masaoutis, S. Baltatzis, and I. D. Ladas, “Ranibizumab for diabetic macular edema difficult to treat with focal/grid laser,” Graefe's archive for clinical and experimental ophthalmology = Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 248(11), 1553–1557 (2010).
[Crossref]

Massin, P.

P. Mitchell, F. Bandello, U. Schmidt-Erfurth, G. E. Lang, P. Massin, R. O. Schlingemann, F. Sutter, C. Simader, G. Burian, O. Gerstner, A. Weichselberger, and RESTORE study group, “The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema,” Ophthalmology 118(4), 615–625 (2011).
[Crossref] [PubMed]

P. Massin, F. Bandello, J. G. Garweg, L. L. Hansen, S. P. Harding, M. Larsen, P. Mitchell, D. Sharp, U. E. Wolf-Schnurrbusch, M. Gekkieva, A. Weichselberger, and S. Wolf, “Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study,” Diabetes Care 33(11), 2399–2405 (2010).
[Crossref] [PubMed]

Mayer, M. A.

Mayurasakorn, K.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

McGill, J. B.

J. A. Davidson, T. A. Ciulla, J. B. McGill, K. A. Kles, and P. W. Anderson, “How the diabetic eye loses vision,” Endocrine 32(1), 107–116 (2007).
[Crossref] [PubMed]

McLeod, D. S.

M. J. Tolentino, D. S. McLeod, M. Taomoto, T. Otsuji, A. P. Adamis, and G. A. Lutty, “Pathologic features of vascular endothelial growth factor-induced retinopathy in the nonhuman primate,” Am. J. Ophthalmol. 133(3), 373–385 (2002).
[Crossref] [PubMed]

McNabb, R. P.

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation,” IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref] [PubMed]

Meyer zu Bexten, E.

M. Pilch, K. Stieger, Y. Wenner, M. N. Preising, C. Friedburg, E. Meyer zu Bexten, and B. Lorenz, “Automated segmentation of pathological cavities in optical coherence tomography scans,” Invest. Ophthalmol. Vis. Sci. 54(6), 4385–4393 (2013).
[Crossref] [PubMed]

Milanfar, P.

H. J. Seo and P. Milanfar, “Training-Free, Generic Object Detection Using Locally Adaptive Regression Kernels,” IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1688–1704 (2010).
[Crossref] [PubMed]

H. Takeda, S. Farsiu, and P. Milanfar, “Deblurring Using Regularized Locally Adaptive Kernel Regression,” IEEE Trans. Image Process. 17(4), 550–563 (2008).
[Crossref] [PubMed]

H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image processing and reconstruction,” IEEE Trans. Image Process. 16, 349–366 (2007).

Miller, K. M.

M. J. Elman, L. P. Aiello, R. W. Beck, N. M. Bressler, S. B. Bressler, A. R. Edwards, F. L. Ferris, S. M. Friedman, A. R. Glassman, K. M. Miller, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 117(6), 1064–1077 (2010).
[Crossref] [PubMed]

Mishra, A.

Mitchell, P.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

P. Mitchell, F. Bandello, U. Schmidt-Erfurth, G. E. Lang, P. Massin, R. O. Schlingemann, F. Sutter, C. Simader, G. Burian, O. Gerstner, A. Weichselberger, and RESTORE study group, “The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema,” Ophthalmology 118(4), 615–625 (2011).
[Crossref] [PubMed]

P. Massin, F. Bandello, J. G. Garweg, L. L. Hansen, S. P. Harding, M. Larsen, P. Mitchell, D. Sharp, U. E. Wolf-Schnurrbusch, M. Gekkieva, A. Weichselberger, and S. Wolf, “Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study,” Diabetes Care 33(11), 2399–2405 (2010).
[Crossref] [PubMed]

Mosteller, F.

F. Mosteller and J. W. Tukey, Data analysis, including statistics (1968).

Mujat, M.

Narkar, A.

Y. Huang, R. P. Danis, J. W. Pak, S. Luo, J. White, X. Zhang, A. Narkar, and A. Domalpally, “Development of a semi-automatic segmentation method for retinal OCT images tested in patients with diabetic macular edema,” PLoS ONE 8(12), e82922 (2013).
[Crossref] [PubMed]

Negi, A.

A. Negi and M. F. Marmor, “The resorption of subretinal fluid after diffuse damage to the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 24(11), 1475–1479 (1983).
[PubMed]

Nguyen, Q. D.

Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
[Crossref] [PubMed]

Nicholas, P.

Nie, Q.

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation,” IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref] [PubMed]

Niemeijer, M.

E. H. Sohn, J. J. Chen, K. Lee, M. Niemeijer, M. Sonka, and M. D. Abràmoff, “Reproducibility of diabetic macular edema estimates from SD-OCT is affected by the choice of image analysis algorithm,” Invest. Ophthalmol. Vis. Sci. 54(6), 4184–4188 (2013).
[Crossref] [PubMed]

X. Chen, M. Niemeijer, L. Zhang, K. Lee, M. D. Abramoff, and M. Sonka, “Three-dimensional segmentation of fluid-associated abnormalities in retinal OCT: probability constrained graph-search-graph-cut,” IEEE Trans. Med. Imaging 31(8), 1521–1531 (2012).
[Crossref] [PubMed]

Niskopoulou, M.

A. I. Kotsolis, E. Tsianta, M. Niskopoulou, P. Masaoutis, S. Baltatzis, and I. D. Ladas, “Ranibizumab for diabetic macular edema difficult to treat with focal/grid laser,” Graefe's archive for clinical and experimental ophthalmology = Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 248(11), 1553–1557 (2010).
[Crossref]

O’Connell, R. V.

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated Automatic Segmentation of AMD Pathology Including Drusen and Geographic Atrophy in SD-OCT Images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

O’Hare, J. P.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Ölvedy, V.

G. M. Somfai, E. Tátrai, L. Laurik, B. E. Varga, V. Ölvedy, W. E. Smiddy, R. Tchitnga, A. Somogyi, and D. C. DeBuc, “Fractal-based analysis of optical coherence tomography data to quantify retinal tissue damage,” BMC Bioinformatics 15(1), 295 (2014).
[Crossref] [PubMed]

Orchard, T. J.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Osborne, N. N.

A. Bringmann, T. Pannicke, J. Grosche, M. Francke, P. Wiedemann, S. N. Skatchkov, N. N. Osborne, and A. Reichenbach, “Müller cells in the healthy and diseased retina,” Prog. Retin. Eye Res. 25(4), 397–424 (2006).
[Crossref] [PubMed]

Otsuji, T.

M. J. Tolentino, D. S. McLeod, M. Taomoto, T. Otsuji, A. P. Adamis, and G. A. Lutty, “Pathologic features of vascular endothelial growth factor-induced retinopathy in the nonhuman primate,” Am. J. Ophthalmol. 133(3), 373–385 (2002).
[Crossref] [PubMed]

Otsuka, H.

S. Sonoda, T. Sakamoto, M. Shirasawa, T. Yamashita, H. Otsuka, and H. Terasaki, “Correlation between reflectivity of subretinal fluid in OCT images and concentration of intravitreal VEGF in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 54(8), 5367–5374 (2013).
[Crossref] [PubMed]

Pak, J. W.

Y. Huang, R. P. Danis, J. W. Pak, S. Luo, J. White, X. Zhang, A. Narkar, and A. Domalpally, “Development of a semi-automatic segmentation method for retinal OCT images tested in patients with diabetic macular edema,” PLoS ONE 8(12), e82922 (2013).
[Crossref] [PubMed]

Pannicke, T.

A. Bringmann, T. Pannicke, J. Grosche, M. Francke, P. Wiedemann, S. N. Skatchkov, N. N. Osborne, and A. Reichenbach, “Müller cells in the healthy and diseased retina,” Prog. Retin. Eye Res. 25(4), 397–424 (2006).
[Crossref] [PubMed]

Park, B.

Patel, M.

E. T. Cunningham, A. P. Adamis, M. Altaweel, L. P. Aiello, N. M. Bressler, D. J. D’Amico, M. Goldbaum, D. R. Guyer, B. Katz, M. Patel, S. D. Schwartz, and Macugen Diabetic Retinopathy Study Group, “A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema,” Ophthalmology 112(10), 1747–1757 (2005).
[Crossref] [PubMed]

Patel, P. J.

D. A. Sim, P. A. Keane, S. Fung, M. Karampelas, S. R. Sadda, M. Fruttiger, P. J. Patel, A. Tufail, and C. A. Egan, “Quantitative analysis of diabetic macular ischemia using optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 55(1), 417–423 (2014).
[Crossref] [PubMed]

Paunescu, L. A.

L. A. Paunescu, J. S. Schuman, L. L. Price, P. C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, and J. G. Fujimoto, “Reproducibility of Nerve Fiber Thickness, Macular Thickness, and Optic Nerve Head Measurements Using StratusOCT,” Invest. Ophthalmol. Vis. Sci. 45(6), 1716–1724 (2004).
[Crossref] [PubMed]

Pe’er, J.

J. Pe’er, R. Folberg, A. Itin, H. Gnessin, I. Hemo, and E. Keshet, “Upregulated expression of vascular endothelial growth factor in proliferative diabetic retinopathy,” Br. J. Ophthalmol. 80(3), 241–245 (1996).
[Crossref] [PubMed]

Pilch, M.

M. Pilch, K. Stieger, Y. Wenner, M. N. Preising, C. Friedburg, E. Meyer zu Bexten, and B. Lorenz, “Automated segmentation of pathological cavities in optical coherence tomography scans,” Invest. Ophthalmol. Vis. Sci. 54(6), 4385–4393 (2013).
[Crossref] [PubMed]

Pollack, J. S.

Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
[Crossref] [PubMed]

Porta, M.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Preising, M. N.

M. Pilch, K. Stieger, Y. Wenner, M. N. Preising, C. Friedburg, E. Meyer zu Bexten, and B. Lorenz, “Automated segmentation of pathological cavities in optical coherence tomography scans,” Invest. Ophthalmol. Vis. Sci. 54(6), 4385–4393 (2013).
[Crossref] [PubMed]

Price, L. L.

L. A. Paunescu, J. S. Schuman, L. L. Price, P. C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, and J. G. Fujimoto, “Reproducibility of Nerve Fiber Thickness, Macular Thickness, and Optic Nerve Head Measurements Using StratusOCT,” Invest. Ophthalmol. Vis. Sci. 45(6), 1716–1724 (2004).
[Crossref] [PubMed]

Prince, J. L.

Puliafito, C. A.

D. C. DeBuc, G. M. Somfai, S. Ranganathan, E. Tátrai, M. Ferencz, and C. A. Puliafito, “Reliability and reproducibility of macular segmentation using a custom-built optical coherence tomography retinal image analysis software,” J. Biomed. Opt. 14(6), 064023 (2009).
[Crossref] [PubMed]

D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express 13(25), 10200–10216 (2005).
[Crossref] [PubMed]

Qin, H.

M. J. Elman, N. M. Bressler, H. Qin, R. W. Beck, F. L. Ferris, S. M. Friedman, A. R. Glassman, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 118(4), 609–614 (2011).
[Crossref] [PubMed]

Quellec, G.

G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abràmoff, and M. Sonka, “Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula,” IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010).
[Crossref] [PubMed]

Raczynska, D.

B. L. Sikorski, G. Malukiewicz, J. Stafiej, H. Lesiewska-Junk, and D. Raczynska, “The diagnostic function of OCT in diabetic maculopathy,” Mediators Inflamm. 2013, 434560 (2013).
[Crossref] [PubMed]

Ramachandran, R.

Ranganathan, S.

D. C. DeBuc, G. M. Somfai, S. Ranganathan, E. Tátrai, M. Ferencz, and C. A. Puliafito, “Reliability and reproducibility of macular segmentation using a custom-built optical coherence tomography retinal image analysis software,” J. Biomed. Opt. 14(6), 064023 (2009).
[Crossref] [PubMed]

Raza, A.

Reichenbach, A.

A. Bringmann, T. Pannicke, J. Grosche, M. Francke, P. Wiedemann, S. N. Skatchkov, N. N. Osborne, and A. Reichenbach, “Müller cells in the healthy and diseased retina,” Prog. Retin. Eye Res. 25(4), 397–424 (2006).
[Crossref] [PubMed]

A. Bringmann, A. Reichenbach, and P. Wiedemann, “Pathomechanisms of cystoid macular edema,” Ophthalmic Res. 36(5), 241–249 (2004).
[Crossref] [PubMed]

Reisman, C. A.

Rema, M.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Rogers, S. L.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Roy, D.

S. Ghosh, P. Bansal, H. Shejao, R. Hegde, D. Roy, and S. Biswas, “Correlation of morphological pattern of optical coherence tomography in diabetic macular edema with systemic risk factors in middle aged males,” Int. Ophthalmol. 35, 3–10 (2014).
[PubMed]

Roy, M. S.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Rückert, R.

D. V. Do, U. Schmidt-Erfurth, V. H. Gonzalez, C. M. Gordon, M. Tolentino, A. J. Berliner, R. Vitti, R. Rückert, R. Sandbrink, D. Stein, K. Yang, K. Beckmann, and J. S. Heier, “The DA VINCI Study: phase 2 primary results of VEGF Trap-Eye in patients with diabetic macular edema,” Ophthalmology 118(9), 1819–1826 (2011).
[Crossref] [PubMed]

Ruppert, D.

D. Ruppert and M. P. Wand, “Multivariate locally weighted least squares regression,” Ann. Stat. 22(3), 1346–1370 (1994).
[Crossref]

Sadda, S. R.

D. A. Sim, P. A. Keane, S. Fung, M. Karampelas, S. R. Sadda, M. Fruttiger, P. J. Patel, A. Tufail, and C. A. Egan, “Quantitative analysis of diabetic macular ischemia using optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 55(1), 417–423 (2014).
[Crossref] [PubMed]

Saidha, S.

Sakamoto, T.

S. Sonoda, T. Sakamoto, M. Shirasawa, T. Yamashita, H. Otsuka, and H. Terasaki, “Correlation between reflectivity of subretinal fluid in OCT images and concentration of intravitreal VEGF in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 54(8), 5367–5374 (2013).
[Crossref] [PubMed]

Salinas, H. M.

Sandbrink, R.

D. V. Do, U. Schmidt-Erfurth, V. H. Gonzalez, C. M. Gordon, M. Tolentino, A. J. Berliner, R. Vitti, R. Rückert, R. Sandbrink, D. Stein, K. Yang, K. Beckmann, and J. S. Heier, “The DA VINCI Study: phase 2 primary results of VEGF Trap-Eye in patients with diabetic macular edema,” Ophthalmology 118(9), 1819–1826 (2011).
[Crossref] [PubMed]

Schlingemann, R. O.

P. Mitchell, F. Bandello, U. Schmidt-Erfurth, G. E. Lang, P. Massin, R. O. Schlingemann, F. Sutter, C. Simader, G. Burian, O. Gerstner, A. Weichselberger, and RESTORE study group, “The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema,” Ophthalmology 118(4), 615–625 (2011).
[Crossref] [PubMed]

Schmidt-Erfurth, U.

P. Mitchell, F. Bandello, U. Schmidt-Erfurth, G. E. Lang, P. Massin, R. O. Schlingemann, F. Sutter, C. Simader, G. Burian, O. Gerstner, A. Weichselberger, and RESTORE study group, “The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema,” Ophthalmology 118(4), 615–625 (2011).
[Crossref] [PubMed]

D. V. Do, U. Schmidt-Erfurth, V. H. Gonzalez, C. M. Gordon, M. Tolentino, A. J. Berliner, R. Vitti, R. Rückert, R. Sandbrink, D. Stein, K. Yang, K. Beckmann, and J. S. Heier, “The DA VINCI Study: phase 2 primary results of VEGF Trap-Eye in patients with diabetic macular edema,” Ophthalmology 118(9), 1819–1826 (2011).
[Crossref] [PubMed]

Schuman, J. S.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular Segmentation with Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

L. A. Paunescu, J. S. Schuman, L. L. Price, P. C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, and J. G. Fujimoto, “Reproducibility of Nerve Fiber Thickness, Macular Thickness, and Optic Nerve Head Measurements Using StratusOCT,” Invest. Ophthalmol. Vis. Sci. 45(6), 1716–1724 (2004).
[Crossref] [PubMed]

Schwartz, S. D.

E. T. Cunningham, A. P. Adamis, M. Altaweel, L. P. Aiello, N. M. Bressler, D. J. D’Amico, M. Goldbaum, D. R. Guyer, B. Katz, M. Patel, S. D. Schwartz, and Macugen Diabetic Retinopathy Study Group, “A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema,” Ophthalmology 112(10), 1747–1757 (2005).
[Crossref] [PubMed]

Scott, I. U.

M. J. Elman, N. M. Bressler, H. Qin, R. W. Beck, F. L. Ferris, S. M. Friedman, A. R. Glassman, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 118(4), 609–614 (2011).
[Crossref] [PubMed]

M. J. Elman, L. P. Aiello, R. W. Beck, N. M. Bressler, S. B. Bressler, A. R. Edwards, F. L. Ferris, S. M. Friedman, A. R. Glassman, K. M. Miller, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 117(6), 1064–1077 (2010).
[Crossref] [PubMed]

D. J. Browning, M. M. Altaweel, N. M. Bressler, S. B. Bressler, I. U. Scott, and Diabetic Retinopathy Clinical Research Network, “Diabetic macular edema: what is focal and what is diffuse?” Am. J. Ophthalmol. 146(5), 649–655 (2008).
[Crossref] [PubMed]

Seo, H. J.

H. J. Seo and P. Milanfar, “Training-Free, Generic Object Detection Using Locally Adaptive Regression Kernels,” IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1688–1704 (2010).
[Crossref] [PubMed]

Shah, S. M.

Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
[Crossref] [PubMed]

Shahidi, M.

M. Shahidi, Z. Wang, and R. Zelkha, “Quantitative thickness measurement of retinal layers imaged by optical coherence tomography,” Am. J. Ophthalmol. 139(6), 1056–1061 (2005).
[Crossref] [PubMed]

Sharma, T.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Sharp, D.

P. Massin, F. Bandello, J. G. Garweg, L. L. Hansen, S. P. Harding, M. Larsen, P. Mitchell, D. Sharp, U. E. Wolf-Schnurrbusch, M. Gekkieva, A. Weichselberger, and S. Wolf, “Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study,” Diabetes Care 33(11), 2399–2405 (2010).
[Crossref] [PubMed]

Shaw, J.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Shejao, H.

S. Ghosh, P. Bansal, H. Shejao, R. Hegde, D. Roy, and S. Biswas, “Correlation of morphological pattern of optical coherence tomography in diabetic macular edema with systemic risk factors in middle aged males,” Int. Ophthalmol. 35, 3–10 (2014).
[PubMed]

Shirasawa, M.

S. Sonoda, T. Sakamoto, M. Shirasawa, T. Yamashita, H. Otsuka, and H. Terasaki, “Correlation between reflectivity of subretinal fluid in OCT images and concentration of intravitreal VEGF in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 54(8), 5367–5374 (2013).
[Crossref] [PubMed]

Sikorski, B. L.

B. L. Sikorski, G. Malukiewicz, J. Stafiej, H. Lesiewska-Junk, and D. Raczynska, “The diagnostic function of OCT in diabetic maculopathy,” Mediators Inflamm. 2013, 434560 (2013).
[Crossref] [PubMed]

Sim, D. A.

D. A. Sim, P. A. Keane, S. Fung, M. Karampelas, S. R. Sadda, M. Fruttiger, P. J. Patel, A. Tufail, and C. A. Egan, “Quantitative analysis of diabetic macular ischemia using optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 55(1), 417–423 (2014).
[Crossref] [PubMed]

Simader, C.

P. Mitchell, F. Bandello, U. Schmidt-Erfurth, G. E. Lang, P. Massin, R. O. Schlingemann, F. Sutter, C. Simader, G. Burian, O. Gerstner, A. Weichselberger, and RESTORE study group, “The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema,” Ophthalmology 118(4), 615–625 (2011).
[Crossref] [PubMed]

Simpson, J. M.

M. C. Gillies, J. M. Simpson, C. Gaston, G. Hunt, H. Ali, M. Zhu, and F. Sutter, “Five-year results of a randomized trial with open-label extension of triamcinolone acetonide for refractory diabetic macular edema,” Ophthalmology 116(11), 2182–2187 (2009).
[Crossref] [PubMed]

Skatchkov, S. N.

A. Bringmann, T. Pannicke, J. Grosche, M. Francke, P. Wiedemann, S. N. Skatchkov, N. N. Osborne, and A. Reichenbach, “Müller cells in the healthy and diseased retina,” Prog. Retin. Eye Res. 25(4), 397–424 (2006).
[Crossref] [PubMed]

Smiddy, W. E.

G. M. Somfai, E. Tátrai, L. Laurik, B. E. Varga, V. Ölvedy, W. E. Smiddy, R. Tchitnga, A. Somogyi, and D. C. DeBuc, “Fractal-based analysis of optical coherence tomography data to quantify retinal tissue damage,” BMC Bioinformatics 15(1), 295 (2014).
[Crossref] [PubMed]

Sohn, E. H.

E. H. Sohn, J. J. Chen, K. Lee, M. Niemeijer, M. Sonka, and M. D. Abràmoff, “Reproducibility of diabetic macular edema estimates from SD-OCT is affected by the choice of image analysis algorithm,” Invest. Ophthalmol. Vis. Sci. 54(6), 4184–4188 (2013).
[Crossref] [PubMed]

B. J. Antony, M. D. Abràmoff, M. M. Harper, W. Jeong, E. H. Sohn, Y. H. Kwon, R. Kardon, and M. K. Garvin, “A combined machine-learning and graph-based framework for the segmentation of retinal surfaces in SD-OCT volumes,” Biomed. Opt. Express 4(12), 2712–2728 (2013).
[Crossref] [PubMed]

Somfai, G. M.

G. M. Somfai, E. Tátrai, L. Laurik, B. E. Varga, V. Ölvedy, W. E. Smiddy, R. Tchitnga, A. Somogyi, and D. C. DeBuc, “Fractal-based analysis of optical coherence tomography data to quantify retinal tissue damage,” BMC Bioinformatics 15(1), 295 (2014).
[Crossref] [PubMed]

D. C. DeBuc, G. M. Somfai, S. Ranganathan, E. Tátrai, M. Ferencz, and C. A. Puliafito, “Reliability and reproducibility of macular segmentation using a custom-built optical coherence tomography retinal image analysis software,” J. Biomed. Opt. 14(6), 064023 (2009).
[Crossref] [PubMed]

Somogyi, A.

G. M. Somfai, E. Tátrai, L. Laurik, B. E. Varga, V. Ölvedy, W. E. Smiddy, R. Tchitnga, A. Somogyi, and D. C. DeBuc, “Fractal-based analysis of optical coherence tomography data to quantify retinal tissue damage,” BMC Bioinformatics 15(1), 295 (2014).
[Crossref] [PubMed]

Sonka, M.

E. H. Sohn, J. J. Chen, K. Lee, M. Niemeijer, M. Sonka, and M. D. Abràmoff, “Reproducibility of diabetic macular edema estimates from SD-OCT is affected by the choice of image analysis algorithm,” Invest. Ophthalmol. Vis. Sci. 54(6), 4184–4188 (2013).
[Crossref] [PubMed]

X. Chen, M. Niemeijer, L. Zhang, K. Lee, M. D. Abramoff, and M. Sonka, “Three-dimensional segmentation of fluid-associated abnormalities in retinal OCT: probability constrained graph-search-graph-cut,” IEEE Trans. Med. Imaging 31(8), 1521–1531 (2012).
[Crossref] [PubMed]

G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abràmoff, and M. Sonka, “Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula,” IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010).
[Crossref] [PubMed]

Sonoda, S.

S. Sonoda, T. Sakamoto, M. Shirasawa, T. Yamashita, H. Otsuka, and H. Terasaki, “Correlation between reflectivity of subretinal fluid in OCT images and concentration of intravitreal VEGF in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 54(8), 5367–5374 (2013).
[Crossref] [PubMed]

Sørensen, T.

T. Sørensen, “A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons,” Biol. Skr. 5, 1–34 (1948).

Sotirchos, E. S.

Srinivasan, P. P.

J. Y. Lee, S. J. Chiu, P. P. Srinivasan, J. A. Izatt, C. A. Toth, S. Farsiu, and G. J. Jaffe, “Fully automatic software for retinal thickness in eyes with diabetic macular edema from images acquired by cirrus and spectralis systems,” Invest. Ophthalmol. Vis. Sci. 54(12), 7595–7602 (2013).
[Crossref] [PubMed]

Stafiej, J.

B. L. Sikorski, G. Malukiewicz, J. Stafiej, H. Lesiewska-Junk, and D. Raczynska, “The diagnostic function of OCT in diabetic maculopathy,” Mediators Inflamm. 2013, 434560 (2013).
[Crossref] [PubMed]

Stark, P. C.

L. A. Paunescu, J. S. Schuman, L. L. Price, P. C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, and J. G. Fujimoto, “Reproducibility of Nerve Fiber Thickness, Macular Thickness, and Optic Nerve Head Measurements Using StratusOCT,” Invest. Ophthalmol. Vis. Sci. 45(6), 1716–1724 (2004).
[Crossref] [PubMed]

Stein, D.

D. V. Do, U. Schmidt-Erfurth, V. H. Gonzalez, C. M. Gordon, M. Tolentino, A. J. Berliner, R. Vitti, R. Rückert, R. Sandbrink, D. Stein, K. Yang, K. Beckmann, and J. S. Heier, “The DA VINCI Study: phase 2 primary results of VEGF Trap-Eye in patients with diabetic macular edema,” Ophthalmology 118(9), 1819–1826 (2011).
[Crossref] [PubMed]

Stein, D. M.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular Segmentation with Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

Stieger, K.

M. Pilch, K. Stieger, Y. Wenner, M. N. Preising, C. Friedburg, E. Meyer zu Bexten, and B. Lorenz, “Automated segmentation of pathological cavities in optical coherence tomography scans,” Invest. Ophthalmol. Vis. Sci. 54(6), 4385–4393 (2013).
[Crossref] [PubMed]

Stockdale, C. R.

M. J. Elman, N. M. Bressler, H. Qin, R. W. Beck, F. L. Ferris, S. M. Friedman, A. R. Glassman, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 118(4), 609–614 (2011).
[Crossref] [PubMed]

M. J. Elman, L. P. Aiello, R. W. Beck, N. M. Bressler, S. B. Bressler, A. R. Edwards, F. L. Ferris, S. M. Friedman, A. R. Glassman, K. M. Miller, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 117(6), 1064–1077 (2010).
[Crossref] [PubMed]

Sun, J. K.

M. J. Elman, N. M. Bressler, H. Qin, R. W. Beck, F. L. Ferris, S. M. Friedman, A. R. Glassman, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 118(4), 609–614 (2011).
[Crossref] [PubMed]

M. J. Elman, L. P. Aiello, R. W. Beck, N. M. Bressler, S. B. Bressler, A. R. Edwards, F. L. Ferris, S. M. Friedman, A. R. Glassman, K. M. Miller, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 117(6), 1064–1077 (2010).
[Crossref] [PubMed]

Sutter, F.

P. Mitchell, F. Bandello, U. Schmidt-Erfurth, G. E. Lang, P. Massin, R. O. Schlingemann, F. Sutter, C. Simader, G. Burian, O. Gerstner, A. Weichselberger, and RESTORE study group, “The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema,” Ophthalmology 118(4), 615–625 (2011).
[Crossref] [PubMed]

M. C. Gillies, J. M. Simpson, C. Gaston, G. Hunt, H. Ali, M. Zhu, and F. Sutter, “Five-year results of a randomized trial with open-label extension of triamcinolone acetonide for refractory diabetic macular edema,” Ophthalmology 116(11), 2182–2187 (2009).
[Crossref] [PubMed]

Swingle, E. K.

Takeda, H.

H. Takeda, S. Farsiu, and P. Milanfar, “Deblurring Using Regularized Locally Adaptive Kernel Regression,” IEEE Trans. Image Process. 17(4), 550–563 (2008).
[Crossref] [PubMed]

H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image processing and reconstruction,” IEEE Trans. Image Process. 16, 349–366 (2007).

Taomoto, M.

M. J. Tolentino, D. S. McLeod, M. Taomoto, T. Otsuji, A. P. Adamis, and G. A. Lutty, “Pathologic features of vascular endothelial growth factor-induced retinopathy in the nonhuman primate,” Am. J. Ophthalmol. 133(3), 373–385 (2002).
[Crossref] [PubMed]

Tátrai, E.

G. M. Somfai, E. Tátrai, L. Laurik, B. E. Varga, V. Ölvedy, W. E. Smiddy, R. Tchitnga, A. Somogyi, and D. C. DeBuc, “Fractal-based analysis of optical coherence tomography data to quantify retinal tissue damage,” BMC Bioinformatics 15(1), 295 (2014).
[Crossref] [PubMed]

D. C. DeBuc, G. M. Somfai, S. Ranganathan, E. Tátrai, M. Ferencz, and C. A. Puliafito, “Reliability and reproducibility of macular segmentation using a custom-built optical coherence tomography retinal image analysis software,” J. Biomed. Opt. 14(6), 064023 (2009).
[Crossref] [PubMed]

Taylor, H.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Tchitnga, R.

G. M. Somfai, E. Tátrai, L. Laurik, B. E. Varga, V. Ölvedy, W. E. Smiddy, R. Tchitnga, A. Somogyi, and D. C. DeBuc, “Fractal-based analysis of optical coherence tomography data to quantify retinal tissue damage,” BMC Bioinformatics 15(1), 295 (2014).
[Crossref] [PubMed]

Telander, D. G.

A. Hunter, E. K. Chin, and D. G. Telander, “Macular edema in the era of spectral-domain optical coherence tomography,” Clin. Ophthalmol. 7, 2085–2089 (2013).
[Crossref] [PubMed]

Terasaki, H.

S. Sonoda, T. Sakamoto, M. Shirasawa, T. Yamashita, H. Otsuka, and H. Terasaki, “Correlation between reflectivity of subretinal fluid in OCT images and concentration of intravitreal VEGF in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 54(8), 5367–5374 (2013).
[Crossref] [PubMed]

Thach, A. B.

Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
[Crossref] [PubMed]

Tian, J.

Tielsch, J. M.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Tolentino, M.

D. V. Do, U. Schmidt-Erfurth, V. H. Gonzalez, C. M. Gordon, M. Tolentino, A. J. Berliner, R. Vitti, R. Rückert, R. Sandbrink, D. Stein, K. Yang, K. Beckmann, and J. S. Heier, “The DA VINCI Study: phase 2 primary results of VEGF Trap-Eye in patients with diabetic macular edema,” Ophthalmology 118(9), 1819–1826 (2011).
[Crossref] [PubMed]

Tolentino, M. J.

M. J. Tolentino, D. S. McLeod, M. Taomoto, T. Otsuji, A. P. Adamis, and G. A. Lutty, “Pathologic features of vascular endothelial growth factor-induced retinopathy in the nonhuman primate,” Am. J. Ophthalmol. 133(3), 373–385 (2002).
[Crossref] [PubMed]

Tornow, R. P.

Toth, C. A.

J. Y. Lee, S. J. Chiu, P. P. Srinivasan, J. A. Izatt, C. A. Toth, S. Farsiu, and G. J. Jaffe, “Fully automatic software for retinal thickness in eyes with diabetic macular edema from images acquired by cirrus and spectralis systems,” Invest. Ophthalmol. Vis. Sci. 54(12), 7595–7602 (2013).
[Crossref] [PubMed]

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation,” IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref] [PubMed]

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

S. J. Chiu, C. A. Toth, C. Bowes Rickman, J. A. Izatt, and S. Farsiu, “Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming,” Biomed. Opt. Express 3(5), 1127–1140 (2012).
[Crossref] [PubMed]

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated Automatic Segmentation of AMD Pathology Including Drusen and Geographic Atrophy in SD-OCT Images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

Tsianta, E.

A. I. Kotsolis, E. Tsianta, M. Niskopoulou, P. Masaoutis, S. Baltatzis, and I. D. Ladas, “Ranibizumab for diabetic macular edema difficult to treat with focal/grid laser,” Graefe's archive for clinical and experimental ophthalmology = Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 248(11), 1553–1557 (2010).
[Crossref]

Tufail, A.

D. A. Sim, P. A. Keane, S. Fung, M. Karampelas, S. R. Sadda, M. Fruttiger, P. J. Patel, A. Tufail, and C. A. Egan, “Quantitative analysis of diabetic macular ischemia using optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 55(1), 417–423 (2014).
[Crossref] [PubMed]

Tukey, J. W.

F. Mosteller and J. W. Tukey, Data analysis, including statistics (1968).

Tun, T. A.

van der Schoot, J.

Varga, B. E.

G. M. Somfai, E. Tátrai, L. Laurik, B. E. Varga, V. Ölvedy, W. E. Smiddy, R. Tchitnga, A. Somogyi, and D. C. DeBuc, “Fractal-based analysis of optical coherence tomography data to quantify retinal tissue damage,” BMC Bioinformatics 15(1), 295 (2014).
[Crossref] [PubMed]

Varma, R.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Vermeer, K. A.

Vitti, R.

D. V. Do, U. Schmidt-Erfurth, V. H. Gonzalez, C. M. Gordon, M. Tolentino, A. J. Berliner, R. Vitti, R. Rückert, R. Sandbrink, D. Stein, K. Yang, K. Beckmann, and J. S. Heier, “The DA VINCI Study: phase 2 primary results of VEGF Trap-Eye in patients with diabetic macular edema,” Ophthalmology 118(9), 1819–1826 (2011).
[Crossref] [PubMed]

Wand, M. P.

D. Ruppert and M. P. Wand, “Multivariate locally weighted least squares regression,” Ann. Stat. 22(3), 1346–1370 (1994).
[Crossref]

Wang, J. J.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Wang, N.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Wang, Z.

M. Shahidi, Z. Wang, and R. Zelkha, “Quantitative thickness measurement of retinal layers imaged by optical coherence tomography,” Am. J. Ophthalmol. 139(6), 1056–1061 (2005).
[Crossref] [PubMed]

Weichselberger, A.

P. Mitchell, F. Bandello, U. Schmidt-Erfurth, G. E. Lang, P. Massin, R. O. Schlingemann, F. Sutter, C. Simader, G. Burian, O. Gerstner, A. Weichselberger, and RESTORE study group, “The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema,” Ophthalmology 118(4), 615–625 (2011).
[Crossref] [PubMed]

P. Massin, F. Bandello, J. G. Garweg, L. L. Hansen, S. P. Harding, M. Larsen, P. Mitchell, D. Sharp, U. E. Wolf-Schnurrbusch, M. Gekkieva, A. Weichselberger, and S. Wolf, “Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study,” Diabetes Care 33(11), 2399–2405 (2010).
[Crossref] [PubMed]

Wenner, Y.

M. Pilch, K. Stieger, Y. Wenner, M. N. Preising, C. Friedburg, E. Meyer zu Bexten, and B. Lorenz, “Automated segmentation of pathological cavities in optical coherence tomography scans,” Invest. Ophthalmol. Vis. Sci. 54(6), 4385–4393 (2013).
[Crossref] [PubMed]

West, S.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

White, J.

Y. Huang, R. P. Danis, J. W. Pak, S. Luo, J. White, X. Zhang, A. Narkar, and A. Domalpally, “Development of a semi-automatic segmentation method for retinal OCT images tested in patients with diabetic macular edema,” PLoS ONE 8(12), e82922 (2013).
[Crossref] [PubMed]

Wiedemann, P.

A. Bringmann, T. Pannicke, J. Grosche, M. Francke, P. Wiedemann, S. N. Skatchkov, N. N. Osborne, and A. Reichenbach, “Müller cells in the healthy and diseased retina,” Prog. Retin. Eye Res. 25(4), 397–424 (2006).
[Crossref] [PubMed]

A. Bringmann, A. Reichenbach, and P. Wiedemann, “Pathomechanisms of cystoid macular edema,” Ophthalmic Res. 36(5), 241–249 (2004).
[Crossref] [PubMed]

Winter, K. P.

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated Automatic Segmentation of AMD Pathology Including Drusen and Geographic Atrophy in SD-OCT Images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

Wolf, S.

P. Massin, F. Bandello, J. G. Garweg, L. L. Hansen, S. P. Harding, M. Larsen, P. Mitchell, D. Sharp, U. E. Wolf-Schnurrbusch, M. Gekkieva, A. Weichselberger, and S. Wolf, “Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study,” Diabetes Care 33(11), 2399–2405 (2010).
[Crossref] [PubMed]

Wolf-Schnurrbusch, U. E.

P. Massin, F. Bandello, J. G. Garweg, L. L. Hansen, S. P. Harding, M. Larsen, P. Mitchell, D. Sharp, U. E. Wolf-Schnurrbusch, M. Gekkieva, A. Weichselberger, and S. Wolf, “Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study,” Diabetes Care 33(11), 2399–2405 (2010).
[Crossref] [PubMed]

Wollstein, G.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular Segmentation with Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

L. A. Paunescu, J. S. Schuman, L. L. Price, P. C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, and J. G. Fujimoto, “Reproducibility of Nerve Fiber Thickness, Macular Thickness, and Optic Nerve Head Measurements Using StratusOCT,” Invest. Ophthalmol. Vis. Sci. 45(6), 1716–1724 (2004).
[Crossref] [PubMed]

Wong, A.

Wong, T. Y.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Xu, L.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Yamashita, T.

S. Sonoda, T. Sakamoto, M. Shirasawa, T. Yamashita, H. Otsuka, and H. Terasaki, “Correlation between reflectivity of subretinal fluid in OCT images and concentration of intravitreal VEGF in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 54(8), 5367–5374 (2013).
[Crossref] [PubMed]

Yang, K.

D. V. Do, U. Schmidt-Erfurth, V. H. Gonzalez, C. M. Gordon, M. Tolentino, A. J. Berliner, R. Vitti, R. Rückert, R. Sandbrink, D. Stein, K. Yang, K. Beckmann, and J. S. Heier, “The DA VINCI Study: phase 2 primary results of VEGF Trap-Eye in patients with diabetic macular edema,” Ophthalmology 118(9), 1819–1826 (2011).
[Crossref] [PubMed]

Yang, Q.

Yasuda, M.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Yau, J. W.

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Ying, H. S.

Zelkha, R.

M. Shahidi, Z. Wang, and R. Zelkha, “Quantitative thickness measurement of retinal layers imaged by optical coherence tomography,” Am. J. Ophthalmol. 139(6), 1056–1061 (2005).
[Crossref] [PubMed]

Zhang, L.

X. Chen, M. Niemeijer, L. Zhang, K. Lee, M. D. Abramoff, and M. Sonka, “Three-dimensional segmentation of fluid-associated abnormalities in retinal OCT: probability constrained graph-search-graph-cut,” IEEE Trans. Med. Imaging 31(8), 1521–1531 (2012).
[Crossref] [PubMed]

Zhang, X.

Y. Huang, R. P. Danis, J. W. Pak, S. Luo, J. White, X. Zhang, A. Narkar, and A. Domalpally, “Development of a semi-automatic segmentation method for retinal OCT images tested in patients with diabetic macular edema,” PLoS ONE 8(12), e82922 (2013).
[Crossref] [PubMed]

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Zhu, M.

M. C. Gillies, J. M. Simpson, C. Gaston, G. Hunt, H. Ali, M. Zhu, and F. Sutter, “Five-year results of a randomized trial with open-label extension of triamcinolone acetonide for refractory diabetic macular edema,” Ophthalmology 116(11), 2182–2187 (2009).
[Crossref] [PubMed]

Zongker, D.

A. Jain and D. Zongker, “Feature selection: evaluation, application, and small sample performance,” IEEE Trans. Pattern Anal. Machine Intell. 19(2), 153–158 (1997).
[Crossref]

Am. J. Ophthalmol. (3)

M. J. Tolentino, D. S. McLeod, M. Taomoto, T. Otsuji, A. P. Adamis, and G. A. Lutty, “Pathologic features of vascular endothelial growth factor-induced retinopathy in the nonhuman primate,” Am. J. Ophthalmol. 133(3), 373–385 (2002).
[Crossref] [PubMed]

D. J. Browning, M. M. Altaweel, N. M. Bressler, S. B. Bressler, I. U. Scott, and Diabetic Retinopathy Clinical Research Network, “Diabetic macular edema: what is focal and what is diffuse?” Am. J. Ophthalmol. 146(5), 649–655 (2008).
[Crossref] [PubMed]

M. Shahidi, Z. Wang, and R. Zelkha, “Quantitative thickness measurement of retinal layers imaged by optical coherence tomography,” Am. J. Ophthalmol. 139(6), 1056–1061 (2005).
[Crossref] [PubMed]

Ann. Stat. (1)

D. Ruppert and M. P. Wand, “Multivariate locally weighted least squares regression,” Ann. Stat. 22(3), 1346–1370 (1994).
[Crossref]

Artif. Intell. (1)

R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artif. Intell. 97(1-2), 273–324 (1997).
[Crossref]

Biol. Skr. (1)

T. Sørensen, “A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons,” Biol. Skr. 5, 1–34 (1948).

Biomed. Opt. Express (10)

S. J. Chiu, Y. Lokhnygina, A. M. Dubis, A. Dubra, J. Carroll, J. A. Izatt, and S. Farsiu, “Automatic cone photoreceptor segmentation using graph theory and dynamic programming,” Biomed. Opt. Express 4(6), 924–937 (2013).
[Crossref] [PubMed]

A. Lang, A. Carass, E. K. Swingle, O. Al-Louzi, P. Bhargava, S. Saidha, H. S. Ying, P. A. Calabresi, and J. L. Prince, “Automatic segmentation of microcystic macular edema in OCT,” Biomed. Opt. Express 6(1), 155–169 (2015).
[Crossref] [PubMed]

J. Tian, P. Marziliano, M. Baskaran, T. A. Tun, and T. Aung, “Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images,” Biomed. Opt. Express 4(3), 397–411 (2013).
[Crossref] [PubMed]

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images,” Biomed. Opt. Express 2(6), 1743–1756 (2011).
[Crossref] [PubMed]

A. Lang, A. Carass, M. Hauser, E. S. Sotirchos, P. A. Calabresi, H. S. Ying, and J. L. Prince, “Retinal layer segmentation of macular OCT images using boundary classification,” Biomed. Opt. Express 4(7), 1133–1152 (2013).
[Crossref] [PubMed]

A. Carass, A. Lang, M. Hauser, P. A. Calabresi, H. S. Ying, and J. L. Prince, “Multiple-object geometric deformable model for segmentation of macular OCT,” Biomed. Opt. Express 5(4), 1062–1074 (2014).
[Crossref] [PubMed]

M. A. Mayer, J. Hornegger, C. Y. Mardin, and R. P. Tornow, “Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients,” Biomed. Opt. Express 1(5), 1358–1383 (2010).
[Crossref] [PubMed]

S. J. Chiu, C. A. Toth, C. Bowes Rickman, J. A. Izatt, and S. Farsiu, “Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming,” Biomed. Opt. Express 3(5), 1127–1140 (2012).
[Crossref] [PubMed]

Q. Yang, C. A. Reisman, K. Chan, R. Ramachandran, A. Raza, and D. C. Hood, “Automated segmentation of outer retinal layers in macular OCT images of patients with retinitis pigmentosa,” Biomed. Opt. Express 2(9), 2493–2503 (2011).
[Crossref] [PubMed]

B. J. Antony, M. D. Abràmoff, M. M. Harper, W. Jeong, E. H. Sohn, Y. H. Kwon, R. Kardon, and M. K. Garvin, “A combined machine-learning and graph-based framework for the segmentation of retinal surfaces in SD-OCT volumes,” Biomed. Opt. Express 4(12), 2712–2728 (2013).
[Crossref] [PubMed]

BIT Numerical Mathematics (1)

P. C. Hansen, “The truncated svd as a method for regularization,” BIT Numerical Mathematics 27(4), 534–553 (1987).
[Crossref]

BMC Bioinformatics (1)

G. M. Somfai, E. Tátrai, L. Laurik, B. E. Varga, V. Ölvedy, W. E. Smiddy, R. Tchitnga, A. Somogyi, and D. C. DeBuc, “Fractal-based analysis of optical coherence tomography data to quantify retinal tissue damage,” BMC Bioinformatics 15(1), 295 (2014).
[Crossref] [PubMed]

Br. J. Ophthalmol. (1)

J. Pe’er, R. Folberg, A. Itin, H. Gnessin, I. Hemo, and E. Keshet, “Upregulated expression of vascular endothelial growth factor in proliferative diabetic retinopathy,” Br. J. Ophthalmol. 80(3), 241–245 (1996).
[Crossref] [PubMed]

Clin. Ophthalmol. (2)

A. Hunter, E. K. Chin, and D. G. Telander, “Macular edema in the era of spectral-domain optical coherence tomography,” Clin. Ophthalmol. 7, 2085–2089 (2013).
[Crossref] [PubMed]

Y. M. Helmy and H. R. Atta Allah, “Optical coherence tomography classification of diabetic cystoid macular edema,” Clin. Ophthalmol. 7, 1731–1737 (2013).
[PubMed]

Diabetes Care (2)

P. Massin, F. Bandello, J. G. Garweg, L. L. Hansen, S. P. Harding, M. Larsen, P. Mitchell, D. Sharp, U. E. Wolf-Schnurrbusch, M. Gekkieva, A. Weichselberger, and S. Wolf, “Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study,” Diabetes Care 33(11), 2399–2405 (2010).
[Crossref] [PubMed]

J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T. Bek, S. J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F. Hamman, M. K. Ikram, T. Kayama, B. E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J. P. O’Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T. Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T. Y. Wong, and Meta-Analysis for Eye Disease (META-EYE) Study Group, “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care 35(3), 556–564 (2012).
[Crossref] [PubMed]

Doc. Ophthalmol. (1)

M. F. Marmor, “Mechanisms of fluid accumulation in retinal edema,” Doc. Ophthalmol. 97(3/4), 239–249 (1999).
[Crossref] [PubMed]

Ecology (1)

L. R. Dice, “Measures of the amount of ecologic association between species,” Ecology 26(3), 297–302 (1945).
[Crossref]

Endocrine (1)

J. A. Davidson, T. A. Ciulla, J. B. McGill, K. A. Kles, and P. W. Anderson, “How the diabetic eye loses vision,” Endocrine 32(1), 107–116 (2007).
[Crossref] [PubMed]

Graefe's archive for clinical and experimental ophthalmology = Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. (1)

A. I. Kotsolis, E. Tsianta, M. Niskopoulou, P. Masaoutis, S. Baltatzis, and I. D. Ladas, “Ranibizumab for diabetic macular edema difficult to treat with focal/grid laser,” Graefe's archive for clinical and experimental ophthalmology = Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 248(11), 1553–1557 (2010).
[Crossref]

IEEE Trans. Image Process. (2)

H. Takeda, S. Farsiu, and P. Milanfar, “Deblurring Using Regularized Locally Adaptive Kernel Regression,” IEEE Trans. Image Process. 17(4), 550–563 (2008).
[Crossref] [PubMed]

H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image processing and reconstruction,” IEEE Trans. Image Process. 16, 349–366 (2007).

IEEE Trans. Inf. Theory (1)

S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory 28(2), 129–137 (1982).
[Crossref]

IEEE Trans. Med. Imaging (3)

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation,” IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref] [PubMed]

G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abràmoff, and M. Sonka, “Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula,” IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010).
[Crossref] [PubMed]

X. Chen, M. Niemeijer, L. Zhang, K. Lee, M. D. Abramoff, and M. Sonka, “Three-dimensional segmentation of fluid-associated abnormalities in retinal OCT: probability constrained graph-search-graph-cut,” IEEE Trans. Med. Imaging 31(8), 1521–1531 (2012).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

H. J. Seo and P. Milanfar, “Training-Free, Generic Object Detection Using Locally Adaptive Regression Kernels,” IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1688–1704 (2010).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Machine Intell. (1)

A. Jain and D. Zongker, “Feature selection: evaluation, application, and small sample performance,” IEEE Trans. Pattern Anal. Machine Intell. 19(2), 153–158 (1997).
[Crossref]

Int. Ophthalmol. (1)

S. Ghosh, P. Bansal, H. Shejao, R. Hegde, D. Roy, and S. Biswas, “Correlation of morphological pattern of optical coherence tomography in diabetic macular edema with systemic risk factors in middle aged males,” Int. Ophthalmol. 35, 3–10 (2014).
[PubMed]

Invest. Ophthalmol. Vis. Sci. (10)

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular Segmentation with Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

S. Sonoda, T. Sakamoto, M. Shirasawa, T. Yamashita, H. Otsuka, and H. Terasaki, “Correlation between reflectivity of subretinal fluid in OCT images and concentration of intravitreal VEGF in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 54(8), 5367–5374 (2013).
[Crossref] [PubMed]

D. A. Sim, P. A. Keane, S. Fung, M. Karampelas, S. R. Sadda, M. Fruttiger, P. J. Patel, A. Tufail, and C. A. Egan, “Quantitative analysis of diabetic macular ischemia using optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 55(1), 417–423 (2014).
[Crossref] [PubMed]

A. Negi and M. F. Marmor, “The resorption of subretinal fluid after diffuse damage to the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 24(11), 1475–1479 (1983).
[PubMed]

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

M. Pilch, K. Stieger, Y. Wenner, M. N. Preising, C. Friedburg, E. Meyer zu Bexten, and B. Lorenz, “Automated segmentation of pathological cavities in optical coherence tomography scans,” Invest. Ophthalmol. Vis. Sci. 54(6), 4385–4393 (2013).
[Crossref] [PubMed]

L. A. Paunescu, J. S. Schuman, L. L. Price, P. C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, and J. G. Fujimoto, “Reproducibility of Nerve Fiber Thickness, Macular Thickness, and Optic Nerve Head Measurements Using StratusOCT,” Invest. Ophthalmol. Vis. Sci. 45(6), 1716–1724 (2004).
[Crossref] [PubMed]

J. Y. Lee, S. J. Chiu, P. P. Srinivasan, J. A. Izatt, C. A. Toth, S. Farsiu, and G. J. Jaffe, “Fully automatic software for retinal thickness in eyes with diabetic macular edema from images acquired by cirrus and spectralis systems,” Invest. Ophthalmol. Vis. Sci. 54(12), 7595–7602 (2013).
[Crossref] [PubMed]

E. H. Sohn, J. J. Chen, K. Lee, M. Niemeijer, M. Sonka, and M. D. Abràmoff, “Reproducibility of diabetic macular edema estimates from SD-OCT is affected by the choice of image analysis algorithm,” Invest. Ophthalmol. Vis. Sci. 54(6), 4184–4188 (2013).
[Crossref] [PubMed]

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated Automatic Segmentation of AMD Pathology Including Drusen and Geographic Atrophy in SD-OCT Images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

D. C. DeBuc, G. M. Somfai, S. Ranganathan, E. Tátrai, M. Ferencz, and C. A. Puliafito, “Reliability and reproducibility of macular segmentation using a custom-built optical coherence tomography retinal image analysis software,” J. Biomed. Opt. 14(6), 064023 (2009).
[Crossref] [PubMed]

J. Mach. Learn. Res. (1)

I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” J. Mach. Learn. Res. 3, 1157–1182 (2003).

J. R. Stat. Soc. [Ser A] (1)

R. M. Cormack, “A review of classification,” J. R. Stat. Soc. [Ser A] 134(3), 321–367 (1971).
[Crossref]

Mediators Inflamm. (1)

B. L. Sikorski, G. Malukiewicz, J. Stafiej, H. Lesiewska-Junk, and D. Raczynska, “The diagnostic function of OCT in diabetic maculopathy,” Mediators Inflamm. 2013, 434560 (2013).
[Crossref] [PubMed]

Numerische Mathematik. (1)

E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik. 1(1), 269–271 (1959).
[Crossref]

Ophthalmic Res. (1)

A. Bringmann, A. Reichenbach, and P. Wiedemann, “Pathomechanisms of cystoid macular edema,” Ophthalmic Res. 36(5), 241–249 (2004).
[Crossref] [PubMed]

Ophthalmology (8)

Early Treatment Diabetic Retinopathy Study Research Group, “Treatment techniques and clinical guidelines for photocoagulation of diabetic macular edema. Early Treatment Diabetic Retinopathy Study Report Number 2,” Ophthalmology 94(7), 761–774 (1987).
[Crossref] [PubMed]

E. T. Cunningham, A. P. Adamis, M. Altaweel, L. P. Aiello, N. M. Bressler, D. J. D’Amico, M. Goldbaum, D. R. Guyer, B. Katz, M. Patel, S. D. Schwartz, and Macugen Diabetic Retinopathy Study Group, “A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema,” Ophthalmology 112(10), 1747–1757 (2005).
[Crossref] [PubMed]

M. J. Elman, L. P. Aiello, R. W. Beck, N. M. Bressler, S. B. Bressler, A. R. Edwards, F. L. Ferris, S. M. Friedman, A. R. Glassman, K. M. Miller, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 117(6), 1064–1077 (2010).
[Crossref] [PubMed]

P. Mitchell, F. Bandello, U. Schmidt-Erfurth, G. E. Lang, P. Massin, R. O. Schlingemann, F. Sutter, C. Simader, G. Burian, O. Gerstner, A. Weichselberger, and RESTORE study group, “The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema,” Ophthalmology 118(4), 615–625 (2011).
[Crossref] [PubMed]

M. J. Elman, N. M. Bressler, H. Qin, R. W. Beck, F. L. Ferris, S. M. Friedman, A. R. Glassman, I. U. Scott, C. R. Stockdale, J. K. Sun, and Diabetic Retinopathy Clinical Research Network, “Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology 118(4), 609–614 (2011).
[Crossref] [PubMed]

D. V. Do, U. Schmidt-Erfurth, V. H. Gonzalez, C. M. Gordon, M. Tolentino, A. J. Berliner, R. Vitti, R. Rückert, R. Sandbrink, D. Stein, K. Yang, K. Beckmann, and J. S. Heier, “The DA VINCI Study: phase 2 primary results of VEGF Trap-Eye in patients with diabetic macular edema,” Ophthalmology 118(9), 1819–1826 (2011).
[Crossref] [PubMed]

M. C. Gillies, J. M. Simpson, C. Gaston, G. Hunt, H. Ali, M. Zhu, and F. Sutter, “Five-year results of a randomized trial with open-label extension of triamcinolone acetonide for refractory diabetic macular edema,” Ophthalmology 116(11), 2182–2187 (2009).
[Crossref] [PubMed]

Q. D. Nguyen, S. M. Shah, A. A. Khwaja, R. Channa, E. Hatef, D. V. Do, D. Boyer, J. S. Heier, P. Abraham, A. B. Thach, E. S. Lit, B. S. Foster, E. Kruger, P. Dugel, T. Chang, A. Das, T. A. Ciulla, J. S. Pollack, J. I. Lim, D. Eliott, P. A. Campochiaro, and READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study,” Ophthalmology 117(11), 2146–2151 (2010).
[Crossref] [PubMed]

Opt. Express (5)

PLoS ONE (1)

Y. Huang, R. P. Danis, J. W. Pak, S. Luo, J. White, X. Zhang, A. Narkar, and A. Domalpally, “Development of a semi-automatic segmentation method for retinal OCT images tested in patients with diabetic macular edema,” PLoS ONE 8(12), e82922 (2013).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (1)

A. Bringmann, T. Pannicke, J. Grosche, M. Francke, P. Wiedemann, S. N. Skatchkov, N. N. Osborne, and A. Reichenbach, “Müller cells in the healthy and diseased retina,” Prog. Retin. Eye Res. 25(4), 397–424 (2006).
[Crossref] [PubMed]

Other (9)

V. Kumar, A. K. Abbas, N. Fausto, S. L. Robbins, and R. S. Cotran, Robbins and Cotran pathologic basis of disease, 7th ed. (Elsevier Saunders, Philadelphia, 2005), pp. xv, 1525 p.

S. Roychowdhury, D. D. Koozekanani, S. Radwan, and K. K. Parhi, “Automated localization of cysts in diabetic macular edema using optical coherence tomography images,” Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference. 2013, 1426–1429 (2013).

X. G. Feng and P. Milanfar, “Multiscale principal components analysis for image local orientation estimation,” in Signals, Systems and Computers,2002. Conference Record of the Thirty-Sixth Asilomar Conference on, 2002), 478–482 vol.471.

S. B. Kotsiantis, “Supervised Machine Learning: A Review of Classification Techniques,” in Proceedings of the 2007 conference on Emerging Artificial Intelligence Applications in Computer Engineering: Real Word AI Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies, (IOS Press, 2007), pp. 3–24.

K. I. Laws, “Textured Image Segmentation,” (DTIC Document, 1980).

L. Shapiro and G. C. Stockman, “Computer Vision. 2001,” ed: Prentice Hall (2001).

F. Mosteller and J. W. Tukey, Data analysis, including statistics (1968).

K. Zuiderveld, “Contrast limited adaptive histogram equalization,” in Graphics Gems IV, S. H. Paul, ed. (Academic Press Professional, Inc., 1994), pp. 474–485.

R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and model selection,” in IJCAI, 1995), 1137–1145.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Second order iterative Gaussian steering KR of an SD-OCT image with DME. a) Automatically flattened image, b,d) zoomed-in images of the pink and green boxes in (a), c,e) Gaussian steering kernels used to denoised the central pixel of (b) and (d), and f) KR-denoised image of (a). In (f), regions external to the retina (black) were not denoised with the exception of a padded boundary surrounding the retina required for feature vector computation.
Fig. 2
Fig. 2 Flowchart of the KR-based classification and GTDP-based segmentation algorithm for identifying fluid-filled regions and eight retinal layer boundaries on images with DME pathology.
Fig. 3
Fig. 3 Target retinal layer boundaries and fluid to segment on an SD-OCT B-scan of an eye with DME. A flattened version of the image without markings is shown in Fig. 1(a).
Fig. 4
Fig. 4 KR-based classification of retinal layers and fluid-filled regions. a) Manual classification of the image in Fig. 1(a) with the classes defined in Table 1. b) Automatic classification using the merged DME classifier.
Fig. 5
Fig. 5 Laws’ E 5 T E5 texture feature computed for the image in Fig. 1(a) with (a) and without (b) KR-based denoising. Both feature images have been enhanced using adaptive histogram equalization.
Fig. 6
Fig. 6 Visual example of features selected for the DME classifiers. a-l) Features computed for the image in Fig. 1(a).
Fig. 7
Fig. 7 Qualitative results for the identification of fluid and eight retinal layer boundaries on SD-OCT images of eyes with DME. a-c) Images with significant, moderate, and no visible fluid, respectively, d-f) their corresponding automatic segmentation result using the GTDP algorithm developed for normal eyes, and g-i) the automatic KR + GTDP segmentation result.
Fig. 8
Fig. 8 Automatic and manual segmentation comparison. a) An SD-OCT B-scan with DME pathology, b) the fully automatic segmentation result, and c-d) the segmentation results completed by two different graders.
Fig. 9
Fig. 9 Automatic fluid detection errors. Top) Cropped portions of SD-OCT B-scans with DME, middle) manual segmentation of fluid-filled regions by a grader, and bottom) automatic fluid-filled classification. a) An image with hyper-reflective deposits, b) a dim image with a hyper-reflective outlier, and c) a high quality image.

Tables (8)

Tables Icon

Table 2 Kernel regression-based DME training features

Tables Icon

Table 3 Position-based DME training features

Tables Icon

Table 4 Laws’ texture training features

Tables Icon

Table 5 Selected DME classifier features and weights

Tables Icon

Table 6 Dice coefficients for DME segmentation

Tables Icon

Table 7 Layer thickness differences for DME segmentation in µm

Tables Icon

Table 8 Wilcoxon matched-pairs test p-values

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

y p =f( z p )+ n p ,p=1,,P,
f( z p ) β 0 + β 1 T ( z p z)+ β 2 T vech[ ( z p z) ( z p z) T ],
where β 0 =f(z), β 1 = [ f(z) i f(z) j ] T ,
β 2 = 1 2 [ 2 f(z) i 2 2 f(z) ij 2 f(z) j 2 ] T ,
vech( [ a b b d ] )= [ a b d ] T .
b ^ = argmin b [ ( yZb ) T D( yZb ) ],
where y= [ y 1 , y 2 ,, y P ] T ,
b= [ β 0 , β 1 T , β 2 T ] T ,
D=diag[ K ^ ( z 1 z), K ^ ( z 2 z),, K ^ ( z P z) ],
Z=[ 1 ( z 1 z) T vech( z 1 z) ( z 1 z) T 1 ( z 2 z) T vech( z 2 z) ( z 2 z) T 1 ( z P z) T vech( z P z) ( z P z) T ],
b ^ = ( Z T DZ) 1 Z T DZy
US T T =[ G i ( z 1 ) G j ( z 1 ) G i ( z 2 ) G j ( z 2 ) G i ( z P ) G j ( z P ) ],whereS=[ S 11 0 0 S 22 ],T=[ T 11 T 12 T 21 T 22 ] .
θ=arctan( T 12 T 22 ),σ= S 11 +λ' S 22 +λ' ,γ= ( S 11 S 12 +λ'' P ) 1 2 .
K GS ( z p z)=exp[ ( z p z) T Σ( z p z) 2 h 2 ],
where Σ=γ Θ T ΛΘ,Θ=[ cos(θ) sin(θ) sin(θ) cos(θ) ],Λ=[ σ 0 0 σ 1 ] .
v ^ l (z)= p=1 P v l ( z p ) K ^ ( z p -z),
c ^ =φ(v).
φ wNG (v)={ c k | argmin k [ 1exp( 1 2 [ ε k ω( v μ k ) ] [ ε k ω( v μ k ) ] T ) ] 1 2 }
w ab = I a + I b + w min ,
w ab = I a + I b +#{ n| C n c k }+ w min ,
w ab =LinNorm( G a DL G b DL ,0,1 )+ w min ,
w ab =LinNorm( G a DL G b DL ,0,1 )+LinNorm( D ab ,0,0.1 )+ w min
w ab =LinNorm( G a LD G b LD ,0,1 )+LinNorm( D ab ,0,0.4 )+ LinNorm( I a I b ,0,0.4 )+ w min
E(V')= { 2 1 K k{ 1K } T N k T N k +F P k , 2 1 K k{ 1K } ( T N k T N k +F P k +1 ) 2 1 K k{ 1K } ( T N k T N k +F P k + T P k T P k +F N k ) if T P k =0,F P k >0,F N k =0 if T P k =0,F P k =0,F N k =0 otherwise
T P k =#{ r| φ(v ' r )= c k and c k = c r },r=1,,R T N k =#{ r| φ(v ' r ) c k and c k c r },r=1,,R F P k =#{ r| φ(v ' r )= c k and c k c r },r=1,,R F N k =#{ r| φ(v ' r ) c k and c k = c r },r=1,,R
w ab =LinNorm( G a DL G b DL ,0,1 )+LinNorm( D ab ,0, d max )+ LinNorm( B a B b ,0, b max )+ w min
w ab =LinNorm( G a sqLD G b sqLD ,0,1 )+LinNorm( D ab ,0,0.1 )+ LinNorm( B a B b ,0,0.1 )+ w min ,
w ab =LinNorm( G a LD G b LD ,0,1 )+LinNorm( D ab ,0,0.1 )+ LinNorm( B a B b ,0, b max )+LinNorm( I a + I b ,0, i max )+ w min

Metrics