A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]
I. Al-Naib, “Biomedical sensing with conductively coupled terahertz metamaterial resonators,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–5 (2017).
[Crossref]
V. P. Wallace, P. F. Taday, A. J. Fitzgerald, R. M. Woodward, J. Cluff, R. J. Pye, and D. D. Arnone, “Terahertz pulsed imaging and spectroscopy for biomedical and pharmaceutical applications,” Faraday Discuss. 126, 255–263 (2004).
[Crossref]
H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 261909 (2010).
[Crossref]
H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]
W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]
R. Maity, M. Chatterjee, A. Banerjee, A. Das, R. Mishra, S. Mazumder, and N. Chanda, “Gold nanoparticle-assisted enhancement in the anti-cancer properties of theaflavin against human ovarian cancer cells,” Mater. Sci. Eng., C 104, 109909 (2019).
[Crossref]
R. G. Barrera, J. Giraldo, and W. L. Mochán, “Effective dielectric response of a composite with aligned spheroidal inclusions,” Phys. Rev. B 47(14), 8528–8538 (1993).
[Crossref]
S. Maheswaran, L. V. Sequist, S. Nagrath, L. Ulkus, B. Brannigan, C. V. Collura, E. Inserra, S. Diederichs, A. J. Iafrate, and D. W. Bell, “Detection of mutations in EGFR in circulating lung-cancer cells,” N. Engl. J. Med. 359(4), 366–377 (2008).
[Crossref]
A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]
P. Bossi, C. Resteghini, N. Paielli, L. Licitra, S. Pilotti, and F. Perrone, “Prognostic and predictive value of EGFR in head and neck squamous cell carcinoma,” Oncotarget 7(45), 74362–74379 (2016).
[Crossref]
S. Maheswaran, L. V. Sequist, S. Nagrath, L. Ulkus, B. Brannigan, C. V. Collura, E. Inserra, S. Diederichs, A. J. Iafrate, and D. W. Bell, “Detection of mutations in EGFR in circulating lung-cancer cells,” N. Engl. J. Med. 359(4), 366–377 (2008).
[Crossref]
P. G. Calavia, G. Bruce, L. Pérez-García, and D. A. Russell, “Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer,” Photochem. Photobiol. Sci. 17(11), 1534–1552 (2018).
[Crossref]
T. S. Bui, T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. Lee, T. Nagao, and C. V. Hoang, “Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules,” Sci. Rep. 6(1), 32123 (2016).
[Crossref]
G. R. Oxnard, C. P. Paweletz, Y. Kuang, S. L. Mach, A. O’Connell, M. M. Messineo, J. J. Luke, M. Butaney, P. Kirschmeier, and D. M. Jackman, “Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA,” Clin. Cancer Res. 20(6), 1698–1705 (2014).
[Crossref]
P. G. Calavia, G. Bruce, L. Pérez-García, and D. A. Russell, “Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer,” Photochem. Photobiol. Sci. 17(11), 1534–1552 (2018).
[Crossref]
L. Sun, Z. Zhou, J. Zhong, Z. Shi, Y. Mao, H. Li, J. Cao, and T. H. Tao, “Implantable, Degradable, Therapeutic Terahertz Metamaterial Devices,” Small 16(17), 2000294 (2020).
[Crossref]
R. Maity, M. Chatterjee, A. Banerjee, A. Das, R. Mishra, S. Mazumder, and N. Chanda, “Gold nanoparticle-assisted enhancement in the anti-cancer properties of theaflavin against human ovarian cancer cells,” Mater. Sci. Eng., C 104, 109909 (2019).
[Crossref]
M. Li, T. Chang, D. Wei, M. Tang, S. Yan, C. Du, and H.-L. Cui, “Label-free detection of anti-estrogen receptor alpha and its binding with estrogen receptor peptide alpha by terahertz spectroscopy,” RSC Adv. 7(39), 24338–24344 (2017).
[Crossref]
R. Maity, M. Chatterjee, A. Banerjee, A. Das, R. Mishra, S. Mazumder, and N. Chanda, “Gold nanoparticle-assisted enhancement in the anti-cancer properties of theaflavin against human ovarian cancer cells,” Mater. Sci. Eng., C 104, 109909 (2019).
[Crossref]
Z. Geng, X. Zhang, Z. Fan, X. Lv, and H. Chen, “A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage,” Sci. Rep. 7(1), 1–11 (2017).
[Crossref]
H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]
C. Zhang, L. Liang, L. Ding, B. Jin, Y. Hou, C. Li, L. Jiang, W. Liu, W. Hu, Y. Lu, L. Kang, W. Xu, J. Chen, and P. Wu, “Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor,” Appl. Phys. Lett. 108(24), 241105 (2016).
[Crossref]
R. Zhang, Q. Chen, K. Liu, Z. Chen, K. Li, J. Xu, and E. Pickwell-MacPherson, “Terahertz microfluidic metamaterial biosensor for sensitive detection of small-volume liquid samples,” IEEE Trans. THz Sci. Technol. 9(2), 209–214 (2019).
[Crossref]
Y. Li, X. Chen, F. Hu, D. Li, H. Teng, Q. Rong, W. Zhang, J. Han, and H. Liang, “Four resonators based high sensitive terahertz metamaterial biosensor used for measuring concentration of protein,” J. Phys. D: Appl. Phys. 52(9), 095105 (2019).
[Crossref]
K. Liu, R. Zhang, X. Chen, and E. Pickwell-MacPherson, “Detection of EGFR Protein Using Terahertz Metamaterial Biosensor,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2018), pp. 1–2.
S. Lin, X. Xu, F. Hu, Z. Chen, Y. Wang, L. Zhang, Z. Peng, D. Li, L. Zeng, and Y. Chen, “Using Antibody Modified Terahertz Metamaterial Biosensor to Detect Concentration of Carcinoembryonic Antigen,” IEEE J. Sel. Top. Quantum Electron. 27(4), 1–7 (2021).
[Crossref]
S. Lin, X. Xu, F. Hu, Z. Chen, Y. Wang, L. Zhang, Z. Peng, D. Li, L. Zeng, and Y. Chen, “Using Antibody Modified Terahertz Metamaterial Biosensor to Detect Concentration of Carcinoembryonic Antigen,” IEEE J. Sel. Top. Quantum Electron. 27(4), 1–7 (2021).
[Crossref]
R. Zhang, Q. Chen, K. Liu, Z. Chen, K. Li, J. Xu, and E. Pickwell-MacPherson, “Terahertz microfluidic metamaterial biosensor for sensitive detection of small-volume liquid samples,” IEEE Trans. THz Sci. Technol. 9(2), 209–214 (2019).
[Crossref]
V. P. Wallace, P. F. Taday, A. J. Fitzgerald, R. M. Woodward, J. Cluff, R. J. Pye, and D. D. Arnone, “Terahertz pulsed imaging and spectroscopy for biomedical and pharmaceutical applications,” Faraday Discuss. 126, 255–263 (2004).
[Crossref]
S. Maheswaran, L. V. Sequist, S. Nagrath, L. Ulkus, B. Brannigan, C. V. Collura, E. Inserra, S. Diederichs, A. J. Iafrate, and D. W. Bell, “Detection of mutations in EGFR in circulating lung-cancer cells,” N. Engl. J. Med. 359(4), 366–377 (2008).
[Crossref]
M. Tang, M. Zhang, S. Yan, L. Xia, Z. Yang, C. Du, H.-L. Cui, and D. Wei, “Detection of DNA oligonucleotides with base mutations by terahertz spectroscopy and microstructures,” PLoS One 13(1), e0191515 (2018).
[Crossref]
M. Li, T. Chang, D. Wei, M. Tang, S. Yan, C. Du, and H.-L. Cui, “Label-free detection of anti-estrogen receptor alpha and its binding with estrogen receptor peptide alpha by terahertz spectroscopy,” RSC Adv. 7(39), 24338–24344 (2017).
[Crossref]
T. S. Bui, T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. Lee, T. Nagao, and C. V. Hoang, “Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules,” Sci. Rep. 6(1), 32123 (2016).
[Crossref]
T. S. Bui, T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. Lee, T. Nagao, and C. V. Hoang, “Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules,” Sci. Rep. 6(1), 32123 (2016).
[Crossref]
R. Maity, M. Chatterjee, A. Banerjee, A. Das, R. Mishra, S. Mazumder, and N. Chanda, “Gold nanoparticle-assisted enhancement in the anti-cancer properties of theaflavin against human ovarian cancer cells,” Mater. Sci. Eng., C 104, 109909 (2019).
[Crossref]
K. Yang, J. Li, M. L. de la Chapelle, G. Huang, Y. Wang, J. Zhang, D. Xu, J. Yao, X. Yang, and W. Fu, “A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification,” Biosens. Bioelectron. 175, 112874 (2021).
[Crossref]
S. Maheswaran, L. V. Sequist, S. Nagrath, L. Ulkus, B. Brannigan, C. V. Collura, E. Inserra, S. Diederichs, A. J. Iafrate, and D. W. Bell, “Detection of mutations in EGFR in circulating lung-cancer cells,” N. Engl. J. Med. 359(4), 366–377 (2008).
[Crossref]
C. Zhang, L. Liang, L. Ding, B. Jin, Y. Hou, C. Li, L. Jiang, W. Liu, W. Hu, Y. Lu, L. Kang, W. Xu, J. Chen, and P. Wu, “Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor,” Appl. Phys. Lett. 108(24), 241105 (2016).
[Crossref]
M. Tang, M. Zhang, S. Yan, L. Xia, Z. Yang, C. Du, H.-L. Cui, and D. Wei, “Detection of DNA oligonucleotides with base mutations by terahertz spectroscopy and microstructures,” PLoS One 13(1), e0191515 (2018).
[Crossref]
M. Li, T. Chang, D. Wei, M. Tang, S. Yan, C. Du, and H.-L. Cui, “Label-free detection of anti-estrogen receptor alpha and its binding with estrogen receptor peptide alpha by terahertz spectroscopy,” RSC Adv. 7(39), 24338–24344 (2017).
[Crossref]
I. V. Safenkova, A. V. Zherdev, and B. B. Dzantiev, “Correlation between the composition of multivalent antibody conjugates with colloidal gold nanoparticles and their affinity,” J. Immunol. Methods 357(1-2), 17–25 (2010).
[Crossref]
H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 261909 (2010).
[Crossref]
H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 261909 (2010).
[Crossref]
Z. Geng, X. Zhang, Z. Fan, X. Lv, and H. Chen, “A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage,” Sci. Rep. 7(1), 1–11 (2017).
[Crossref]
R. Zhang, L. Zhang, T. Wu, R. Wang, S. Zuo, D. Wu, C. Zhang, J. Zhang, and J. Fang, “Continuous-terahertz-wave molecular imaging system for biomedical applications,” J. Biomed. Opt. 21(7), 076006 (2016).
[Crossref]
V. P. Wallace, P. F. Taday, A. J. Fitzgerald, R. M. Woodward, J. Cluff, R. J. Pye, and D. D. Arnone, “Terahertz pulsed imaging and spectroscopy for biomedical and pharmaceutical applications,” Faraday Discuss. 126, 255–263 (2004).
[Crossref]
K. Yang, J. Li, M. L. de la Chapelle, G. Huang, Y. Wang, J. Zhang, D. Xu, J. Yao, X. Yang, and W. Fu, “A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification,” Biosens. Bioelectron. 175, 112874 (2021).
[Crossref]
K. Yang, W. Yu, G. Huang, J. Zhou, X. Yang, and W. Fu, “Highly sensitive detection of Staphylococcus aureus by a THz metamaterial biosensor based on gold nanoparticles and rolling circle amplification,” RSC Adv. 10(45), 26824–26833 (2020).
[Crossref]
X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]
N. Fuse, Y. Kuboki, T. Kuwata, T. Nishina, S. Kadowaki, E. Shinozaki, N. Machida, S. Yuki, A. Ooki, and S. Kajiura, “Prognostic impact of HER2, EGFR, and c-MET status on overall survival of advanced gastric cancer patients,” Gastric Cancer 19(1), 183–191 (2016).
[Crossref]
C. K. Lee, J. Man, S. Lord, M. Links, V. Gebski, T. Mok, and J. C.-H. Yang, “Checkpoint inhibitors in metastatic EGFR-mutated non–small cell lung cancer—a meta-analysis,” J. Thorac. Oncol. 12(2), 403–407 (2017).
[Crossref]
Z. Geng, X. Zhang, Z. Fan, X. Lv, and H. Chen, “A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage,” Sci. Rep. 7(1), 1–11 (2017).
[Crossref]
A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]
R. G. Barrera, J. Giraldo, and W. L. Mochán, “Effective dielectric response of a composite with aligned spheroidal inclusions,” Phys. Rev. B 47(14), 8528–8538 (1993).
[Crossref]
H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]
Y. Li, X. Chen, F. Hu, D. Li, H. Teng, Q. Rong, W. Zhang, J. Han, and H. Liang, “Four resonators based high sensitive terahertz metamaterial biosensor used for measuring concentration of protein,” J. Phys. D: Appl. Phys. 52(9), 095105 (2019).
[Crossref]
W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]
T. S. Bui, T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. Lee, T. Nagao, and C. V. Hoang, “Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules,” Sci. Rep. 6(1), 32123 (2016).
[Crossref]
C. Zhang, L. Liang, L. Ding, B. Jin, Y. Hou, C. Li, L. Jiang, W. Liu, W. Hu, Y. Lu, L. Kang, W. Xu, J. Chen, and P. Wu, “Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor,” Appl. Phys. Lett. 108(24), 241105 (2016).
[Crossref]
S. Lin, X. Xu, F. Hu, Z. Chen, Y. Wang, L. Zhang, Z. Peng, D. Li, L. Zeng, and Y. Chen, “Using Antibody Modified Terahertz Metamaterial Biosensor to Detect Concentration of Carcinoembryonic Antigen,” IEEE J. Sel. Top. Quantum Electron. 27(4), 1–7 (2021).
[Crossref]
Y. Li, X. Chen, F. Hu, D. Li, H. Teng, Q. Rong, W. Zhang, J. Han, and H. Liang, “Four resonators based high sensitive terahertz metamaterial biosensor used for measuring concentration of protein,” J. Phys. D: Appl. Phys. 52(9), 095105 (2019).
[Crossref]
C. Zhang, L. Liang, L. Ding, B. Jin, Y. Hou, C. Li, L. Jiang, W. Liu, W. Hu, Y. Lu, L. Kang, W. Xu, J. Chen, and P. Wu, “Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor,” Appl. Phys. Lett. 108(24), 241105 (2016).
[Crossref]
K. Yang, J. Li, M. L. de la Chapelle, G. Huang, Y. Wang, J. Zhang, D. Xu, J. Yao, X. Yang, and W. Fu, “A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification,” Biosens. Bioelectron. 175, 112874 (2021).
[Crossref]
K. Yang, W. Yu, G. Huang, J. Zhou, X. Yang, and W. Fu, “Highly sensitive detection of Staphylococcus aureus by a THz metamaterial biosensor based on gold nanoparticles and rolling circle amplification,” RSC Adv. 10(45), 26824–26833 (2020).
[Crossref]
S. Maheswaran, L. V. Sequist, S. Nagrath, L. Ulkus, B. Brannigan, C. V. Collura, E. Inserra, S. Diederichs, A. J. Iafrate, and D. W. Bell, “Detection of mutations in EGFR in circulating lung-cancer cells,” N. Engl. J. Med. 359(4), 366–377 (2008).
[Crossref]
S. Maheswaran, L. V. Sequist, S. Nagrath, L. Ulkus, B. Brannigan, C. V. Collura, E. Inserra, S. Diederichs, A. J. Iafrate, and D. W. Bell, “Detection of mutations in EGFR in circulating lung-cancer cells,” N. Engl. J. Med. 359(4), 366–377 (2008).
[Crossref]
G. R. Oxnard, C. P. Paweletz, Y. Kuang, S. L. Mach, A. O’Connell, M. M. Messineo, J. J. Luke, M. Butaney, P. Kirschmeier, and D. M. Jackman, “Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA,” Clin. Cancer Res. 20(6), 1698–1705 (2014).
[Crossref]
C. Zhang, L. Liang, L. Ding, B. Jin, Y. Hou, C. Li, L. Jiang, W. Liu, W. Hu, Y. Lu, L. Kang, W. Xu, J. Chen, and P. Wu, “Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor,” Appl. Phys. Lett. 108(24), 241105 (2016).
[Crossref]
C. Zhang, L. Liang, L. Ding, B. Jin, Y. Hou, C. Li, L. Jiang, W. Liu, W. Hu, Y. Lu, L. Kang, W. Xu, J. Chen, and P. Wu, “Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor,” Appl. Phys. Lett. 108(24), 241105 (2016).
[Crossref]
N. Fuse, Y. Kuboki, T. Kuwata, T. Nishina, S. Kadowaki, E. Shinozaki, N. Machida, S. Yuki, A. Ooki, and S. Kajiura, “Prognostic impact of HER2, EGFR, and c-MET status on overall survival of advanced gastric cancer patients,” Gastric Cancer 19(1), 183–191 (2016).
[Crossref]
N. Fuse, Y. Kuboki, T. Kuwata, T. Nishina, S. Kadowaki, E. Shinozaki, N. Machida, S. Yuki, A. Ooki, and S. Kajiura, “Prognostic impact of HER2, EGFR, and c-MET status on overall survival of advanced gastric cancer patients,” Gastric Cancer 19(1), 183–191 (2016).
[Crossref]
C. Zhang, L. Liang, L. Ding, B. Jin, Y. Hou, C. Li, L. Jiang, W. Liu, W. Hu, Y. Lu, L. Kang, W. Xu, J. Chen, and P. Wu, “Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor,” Appl. Phys. Lett. 108(24), 241105 (2016).
[Crossref]
H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 261909 (2010).
[Crossref]
A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]
G. R. Oxnard, C. P. Paweletz, Y. Kuang, S. L. Mach, A. O’Connell, M. M. Messineo, J. J. Luke, M. Butaney, P. Kirschmeier, and D. M. Jackman, “Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA,” Clin. Cancer Res. 20(6), 1698–1705 (2014).
[Crossref]
G. R. Oxnard, C. P. Paweletz, Y. Kuang, S. L. Mach, A. O’Connell, M. M. Messineo, J. J. Luke, M. Butaney, P. Kirschmeier, and D. M. Jackman, “Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA,” Clin. Cancer Res. 20(6), 1698–1705 (2014).
[Crossref]
N. Fuse, Y. Kuboki, T. Kuwata, T. Nishina, S. Kadowaki, E. Shinozaki, N. Machida, S. Yuki, A. Ooki, and S. Kajiura, “Prognostic impact of HER2, EGFR, and c-MET status on overall survival of advanced gastric cancer patients,” Gastric Cancer 19(1), 183–191 (2016).
[Crossref]
N. Fuse, Y. Kuboki, T. Kuwata, T. Nishina, S. Kadowaki, E. Shinozaki, N. Machida, S. Yuki, A. Ooki, and S. Kajiura, “Prognostic impact of HER2, EGFR, and c-MET status on overall survival of advanced gastric cancer patients,” Gastric Cancer 19(1), 183–191 (2016).
[Crossref]
C. K. Lee, J. Man, S. Lord, M. Links, V. Gebski, T. Mok, and J. C.-H. Yang, “Checkpoint inhibitors in metastatic EGFR-mutated non–small cell lung cancer—a meta-analysis,” J. Thorac. Oncol. 12(2), 403–407 (2017).
[Crossref]
W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]
T. S. Bui, T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. Lee, T. Nagao, and C. V. Hoang, “Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules,” Sci. Rep. 6(1), 32123 (2016).
[Crossref]
C. Zhang, L. Liang, L. Ding, B. Jin, Y. Hou, C. Li, L. Jiang, W. Liu, W. Hu, Y. Lu, L. Kang, W. Xu, J. Chen, and P. Wu, “Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor,” Appl. Phys. Lett. 108(24), 241105 (2016).
[Crossref]
S. Lin, X. Xu, F. Hu, Z. Chen, Y. Wang, L. Zhang, Z. Peng, D. Li, L. Zeng, and Y. Chen, “Using Antibody Modified Terahertz Metamaterial Biosensor to Detect Concentration of Carcinoembryonic Antigen,” IEEE J. Sel. Top. Quantum Electron. 27(4), 1–7 (2021).
[Crossref]
Y. Li, X. Chen, F. Hu, D. Li, H. Teng, Q. Rong, W. Zhang, J. Han, and H. Liang, “Four resonators based high sensitive terahertz metamaterial biosensor used for measuring concentration of protein,” J. Phys. D: Appl. Phys. 52(9), 095105 (2019).
[Crossref]
L. Sun, Z. Zhou, J. Zhong, Z. Shi, Y. Mao, H. Li, J. Cao, and T. H. Tao, “Implantable, Degradable, Therapeutic Terahertz Metamaterial Devices,” Small 16(17), 2000294 (2020).
[Crossref]
K. Yang, J. Li, M. L. de la Chapelle, G. Huang, Y. Wang, J. Zhang, D. Xu, J. Yao, X. Yang, and W. Fu, “A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification,” Biosens. Bioelectron. 175, 112874 (2021).
[Crossref]
R. Zhang, Q. Chen, K. Liu, Z. Chen, K. Li, J. Xu, and E. Pickwell-MacPherson, “Terahertz microfluidic metamaterial biosensor for sensitive detection of small-volume liquid samples,” IEEE Trans. THz Sci. Technol. 9(2), 209–214 (2019).
[Crossref]
M. Li, T. Chang, D. Wei, M. Tang, S. Yan, C. Du, and H.-L. Cui, “Label-free detection of anti-estrogen receptor alpha and its binding with estrogen receptor peptide alpha by terahertz spectroscopy,” RSC Adv. 7(39), 24338–24344 (2017).
[Crossref]
Y. Li, X. Chen, F. Hu, D. Li, H. Teng, Q. Rong, W. Zhang, J. Han, and H. Liang, “Four resonators based high sensitive terahertz metamaterial biosensor used for measuring concentration of protein,” J. Phys. D: Appl. Phys. 52(9), 095105 (2019).
[Crossref]
Y. Li, X. Chen, F. Hu, D. Li, H. Teng, Q. Rong, W. Zhang, J. Han, and H. Liang, “Four resonators based high sensitive terahertz metamaterial biosensor used for measuring concentration of protein,” J. Phys. D: Appl. Phys. 52(9), 095105 (2019).
[Crossref]
C. Zhang, L. Liang, L. Ding, B. Jin, Y. Hou, C. Li, L. Jiang, W. Liu, W. Hu, Y. Lu, L. Kang, W. Xu, J. Chen, and P. Wu, “Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor,” Appl. Phys. Lett. 108(24), 241105 (2016).
[Crossref]
P. Bossi, C. Resteghini, N. Paielli, L. Licitra, S. Pilotti, and F. Perrone, “Prognostic and predictive value of EGFR in head and neck squamous cell carcinoma,” Oncotarget 7(45), 74362–74379 (2016).
[Crossref]
S. Lin, X. Xu, F. Hu, Z. Chen, Y. Wang, L. Zhang, Z. Peng, D. Li, L. Zeng, and Y. Chen, “Using Antibody Modified Terahertz Metamaterial Biosensor to Detect Concentration of Carcinoembryonic Antigen,” IEEE J. Sel. Top. Quantum Electron. 27(4), 1–7 (2021).
[Crossref]
C. K. Lee, J. Man, S. Lord, M. Links, V. Gebski, T. Mok, and J. C.-H. Yang, “Checkpoint inhibitors in metastatic EGFR-mutated non–small cell lung cancer—a meta-analysis,” J. Thorac. Oncol. 12(2), 403–407 (2017).
[Crossref]
R. Zhang, Q. Chen, K. Liu, Z. Chen, K. Li, J. Xu, and E. Pickwell-MacPherson, “Terahertz microfluidic metamaterial biosensor for sensitive detection of small-volume liquid samples,” IEEE Trans. THz Sci. Technol. 9(2), 209–214 (2019).
[Crossref]
K. Liu, R. Zhang, X. Chen, and E. Pickwell-MacPherson, “Detection of EGFR Protein Using Terahertz Metamaterial Biosensor,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2018), pp. 1–2.
H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 261909 (2010).
[Crossref]
Y. Zhao, W. Liu, Y. Tian, Z. Yang, X. Wang, Y. Zhang, Y. Tang, S. Zhao, C. Wang, and Y. Liu, “Anti-EGFR peptide-conjugated triangular gold nanoplates for computed tomography/photoacoustic imaging-guided photothermal therapy of non-small cell lung cancer,” ACS Appl. Mater. Interfaces 10(20), 16992–17003 (2018).
[Crossref]
C. Zhang, L. Liang, L. Ding, B. Jin, Y. Hou, C. Li, L. Jiang, W. Liu, W. Hu, Y. Lu, L. Kang, W. Xu, J. Chen, and P. Wu, “Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor,” Appl. Phys. Lett. 108(24), 241105 (2016).
[Crossref]
Y. Zhao, W. Liu, Y. Tian, Z. Yang, X. Wang, Y. Zhang, Y. Tang, S. Zhao, C. Wang, and Y. Liu, “Anti-EGFR peptide-conjugated triangular gold nanoplates for computed tomography/photoacoustic imaging-guided photothermal therapy of non-small cell lung cancer,” ACS Appl. Mater. Interfaces 10(20), 16992–17003 (2018).
[Crossref]
X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]
X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]
C. K. Lee, J. Man, S. Lord, M. Links, V. Gebski, T. Mok, and J. C.-H. Yang, “Checkpoint inhibitors in metastatic EGFR-mutated non–small cell lung cancer—a meta-analysis,” J. Thorac. Oncol. 12(2), 403–407 (2017).
[Crossref]
C. Zhang, L. Liang, L. Ding, B. Jin, Y. Hou, C. Li, L. Jiang, W. Liu, W. Hu, Y. Lu, L. Kang, W. Xu, J. Chen, and P. Wu, “Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor,” Appl. Phys. Lett. 108(24), 241105 (2016).
[Crossref]
G. R. Oxnard, C. P. Paweletz, Y. Kuang, S. L. Mach, A. O’Connell, M. M. Messineo, J. J. Luke, M. Butaney, P. Kirschmeier, and D. M. Jackman, “Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA,” Clin. Cancer Res. 20(6), 1698–1705 (2014).
[Crossref]
X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]
Z. Geng, X. Zhang, Z. Fan, X. Lv, and H. Chen, “A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage,” Sci. Rep. 7(1), 1–11 (2017).
[Crossref]
W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]
G. R. Oxnard, C. P. Paweletz, Y. Kuang, S. L. Mach, A. O’Connell, M. M. Messineo, J. J. Luke, M. Butaney, P. Kirschmeier, and D. M. Jackman, “Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA,” Clin. Cancer Res. 20(6), 1698–1705 (2014).
[Crossref]
N. Fuse, Y. Kuboki, T. Kuwata, T. Nishina, S. Kadowaki, E. Shinozaki, N. Machida, S. Yuki, A. Ooki, and S. Kajiura, “Prognostic impact of HER2, EGFR, and c-MET status on overall survival of advanced gastric cancer patients,” Gastric Cancer 19(1), 183–191 (2016).
[Crossref]
S. Maheswaran, L. V. Sequist, S. Nagrath, L. Ulkus, B. Brannigan, C. V. Collura, E. Inserra, S. Diederichs, A. J. Iafrate, and D. W. Bell, “Detection of mutations in EGFR in circulating lung-cancer cells,” N. Engl. J. Med. 359(4), 366–377 (2008).
[Crossref]
R. Maity, M. Chatterjee, A. Banerjee, A. Das, R. Mishra, S. Mazumder, and N. Chanda, “Gold nanoparticle-assisted enhancement in the anti-cancer properties of theaflavin against human ovarian cancer cells,” Mater. Sci. Eng., C 104, 109909 (2019).
[Crossref]
C. K. Lee, J. Man, S. Lord, M. Links, V. Gebski, T. Mok, and J. C.-H. Yang, “Checkpoint inhibitors in metastatic EGFR-mutated non–small cell lung cancer—a meta-analysis,” J. Thorac. Oncol. 12(2), 403–407 (2017).
[Crossref]
A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]
L. Sun, Z. Zhou, J. Zhong, Z. Shi, Y. Mao, H. Li, J. Cao, and T. H. Tao, “Implantable, Degradable, Therapeutic Terahertz Metamaterial Devices,” Small 16(17), 2000294 (2020).
[Crossref]
R. Maity, M. Chatterjee, A. Banerjee, A. Das, R. Mishra, S. Mazumder, and N. Chanda, “Gold nanoparticle-assisted enhancement in the anti-cancer properties of theaflavin against human ovarian cancer cells,” Mater. Sci. Eng., C 104, 109909 (2019).
[Crossref]
G. R. Oxnard, C. P. Paweletz, Y. Kuang, S. L. Mach, A. O’Connell, M. M. Messineo, J. J. Luke, M. Butaney, P. Kirschmeier, and D. M. Jackman, “Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA,” Clin. Cancer Res. 20(6), 1698–1705 (2014).
[Crossref]
R. Maity, M. Chatterjee, A. Banerjee, A. Das, R. Mishra, S. Mazumder, and N. Chanda, “Gold nanoparticle-assisted enhancement in the anti-cancer properties of theaflavin against human ovarian cancer cells,” Mater. Sci. Eng., C 104, 109909 (2019).
[Crossref]
R. G. Barrera, J. Giraldo, and W. L. Mochán, “Effective dielectric response of a composite with aligned spheroidal inclusions,” Phys. Rev. B 47(14), 8528–8538 (1993).
[Crossref]
C. K. Lee, J. Man, S. Lord, M. Links, V. Gebski, T. Mok, and J. C.-H. Yang, “Checkpoint inhibitors in metastatic EGFR-mutated non–small cell lung cancer—a meta-analysis,” J. Thorac. Oncol. 12(2), 403–407 (2017).
[Crossref]
H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 261909 (2010).
[Crossref]
T. S. Bui, T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. Lee, T. Nagao, and C. V. Hoang, “Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules,” Sci. Rep. 6(1), 32123 (2016).
[Crossref]
T. S. Bui, T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. Lee, T. Nagao, and C. V. Hoang, “Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules,” Sci. Rep. 6(1), 32123 (2016).
[Crossref]
S. Maheswaran, L. V. Sequist, S. Nagrath, L. Ulkus, B. Brannigan, C. V. Collura, E. Inserra, S. Diederichs, A. J. Iafrate, and D. W. Bell, “Detection of mutations in EGFR in circulating lung-cancer cells,” N. Engl. J. Med. 359(4), 366–377 (2008).
[Crossref]
A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]
N. Fuse, Y. Kuboki, T. Kuwata, T. Nishina, S. Kadowaki, E. Shinozaki, N. Machida, S. Yuki, A. Ooki, and S. Kajiura, “Prognostic impact of HER2, EGFR, and c-MET status on overall survival of advanced gastric cancer patients,” Gastric Cancer 19(1), 183–191 (2016).
[Crossref]
G. R. Oxnard, C. P. Paweletz, Y. Kuang, S. L. Mach, A. O’Connell, M. M. Messineo, J. J. Luke, M. Butaney, P. Kirschmeier, and D. M. Jackman, “Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA,” Clin. Cancer Res. 20(6), 1698–1705 (2014).
[Crossref]
T. S. Bui, T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. Lee, T. Nagao, and C. V. Hoang, “Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules,” Sci. Rep. 6(1), 32123 (2016).
[Crossref]
N. Fuse, Y. Kuboki, T. Kuwata, T. Nishina, S. Kadowaki, E. Shinozaki, N. Machida, S. Yuki, A. Ooki, and S. Kajiura, “Prognostic impact of HER2, EGFR, and c-MET status on overall survival of advanced gastric cancer patients,” Gastric Cancer 19(1), 183–191 (2016).
[Crossref]
G. R. Oxnard, C. P. Paweletz, Y. Kuang, S. L. Mach, A. O’Connell, M. M. Messineo, J. J. Luke, M. Butaney, P. Kirschmeier, and D. M. Jackman, “Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA,” Clin. Cancer Res. 20(6), 1698–1705 (2014).
[Crossref]
H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 261909 (2010).
[Crossref]
H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]
W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]
P. Bossi, C. Resteghini, N. Paielli, L. Licitra, S. Pilotti, and F. Perrone, “Prognostic and predictive value of EGFR in head and neck squamous cell carcinoma,” Oncotarget 7(45), 74362–74379 (2016).
[Crossref]
A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]
F. Yan, E. P. J. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Solvent doping of PEDOT/PSS: effect on terahertz optoelectronic properties and utilization in terahertz devices,” J. Phys. Chem. C 119(12), 6813–6818 (2015).
[Crossref]
G. R. Oxnard, C. P. Paweletz, Y. Kuang, S. L. Mach, A. O’Connell, M. M. Messineo, J. J. Luke, M. Butaney, P. Kirschmeier, and D. M. Jackman, “Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA,” Clin. Cancer Res. 20(6), 1698–1705 (2014).
[Crossref]
S. Lin, X. Xu, F. Hu, Z. Chen, Y. Wang, L. Zhang, Z. Peng, D. Li, L. Zeng, and Y. Chen, “Using Antibody Modified Terahertz Metamaterial Biosensor to Detect Concentration of Carcinoembryonic Antigen,” IEEE J. Sel. Top. Quantum Electron. 27(4), 1–7 (2021).
[Crossref]
P. G. Calavia, G. Bruce, L. Pérez-García, and D. A. Russell, “Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer,” Photochem. Photobiol. Sci. 17(11), 1534–1552 (2018).
[Crossref]
P. Bossi, C. Resteghini, N. Paielli, L. Licitra, S. Pilotti, and F. Perrone, “Prognostic and predictive value of EGFR in head and neck squamous cell carcinoma,” Oncotarget 7(45), 74362–74379 (2016).
[Crossref]
E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys. 39(17), R301–R310 (2006).
[Crossref]
R. Zhang, Q. Chen, K. Liu, Z. Chen, K. Li, J. Xu, and E. Pickwell-MacPherson, “Terahertz microfluidic metamaterial biosensor for sensitive detection of small-volume liquid samples,” IEEE Trans. THz Sci. Technol. 9(2), 209–214 (2019).
[Crossref]
F. Yan, E. P. J. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Solvent doping of PEDOT/PSS: effect on terahertz optoelectronic properties and utilization in terahertz devices,” J. Phys. Chem. C 119(12), 6813–6818 (2015).
[Crossref]
K. Liu, R. Zhang, X. Chen, and E. Pickwell-MacPherson, “Detection of EGFR Protein Using Terahertz Metamaterial Biosensor,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2018), pp. 1–2.
P. Bossi, C. Resteghini, N. Paielli, L. Licitra, S. Pilotti, and F. Perrone, “Prognostic and predictive value of EGFR in head and neck squamous cell carcinoma,” Oncotarget 7(45), 74362–74379 (2016).
[Crossref]
V. P. Wallace, P. F. Taday, A. J. Fitzgerald, R. M. Woodward, J. Cluff, R. J. Pye, and D. D. Arnone, “Terahertz pulsed imaging and spectroscopy for biomedical and pharmaceutical applications,” Faraday Discuss. 126, 255–263 (2004).
[Crossref]
P. Bossi, C. Resteghini, N. Paielli, L. Licitra, S. Pilotti, and F. Perrone, “Prognostic and predictive value of EGFR in head and neck squamous cell carcinoma,” Oncotarget 7(45), 74362–74379 (2016).
[Crossref]
Y. Li, X. Chen, F. Hu, D. Li, H. Teng, Q. Rong, W. Zhang, J. Han, and H. Liang, “Four resonators based high sensitive terahertz metamaterial biosensor used for measuring concentration of protein,” J. Phys. D: Appl. Phys. 52(9), 095105 (2019).
[Crossref]
P. G. Calavia, G. Bruce, L. Pérez-García, and D. A. Russell, “Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer,” Photochem. Photobiol. Sci. 17(11), 1534–1552 (2018).
[Crossref]
I. V. Safenkova, A. V. Zherdev, and B. B. Dzantiev, “Correlation between the composition of multivalent antibody conjugates with colloidal gold nanoparticles and their affinity,” J. Immunol. Methods 357(1-2), 17–25 (2010).
[Crossref]
S. Maheswaran, L. V. Sequist, S. Nagrath, L. Ulkus, B. Brannigan, C. V. Collura, E. Inserra, S. Diederichs, A. J. Iafrate, and D. W. Bell, “Detection of mutations in EGFR in circulating lung-cancer cells,” N. Engl. J. Med. 359(4), 366–377 (2008).
[Crossref]
L. Sun, Z. Zhou, J. Zhong, Z. Shi, Y. Mao, H. Li, J. Cao, and T. H. Tao, “Implantable, Degradable, Therapeutic Terahertz Metamaterial Devices,” Small 16(17), 2000294 (2020).
[Crossref]
N. Fuse, Y. Kuboki, T. Kuwata, T. Nishina, S. Kadowaki, E. Shinozaki, N. Machida, S. Yuki, A. Ooki, and S. Kajiura, “Prognostic impact of HER2, EGFR, and c-MET status on overall survival of advanced gastric cancer patients,” Gastric Cancer 19(1), 183–191 (2016).
[Crossref]
H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 261909 (2010).
[Crossref]
L. Sun, Z. Zhou, J. Zhong, Z. Shi, Y. Mao, H. Li, J. Cao, and T. H. Tao, “Implantable, Degradable, Therapeutic Terahertz Metamaterial Devices,” Small 16(17), 2000294 (2020).
[Crossref]
V. P. Wallace, P. F. Taday, A. J. Fitzgerald, R. M. Woodward, J. Cluff, R. J. Pye, and D. D. Arnone, “Terahertz pulsed imaging and spectroscopy for biomedical and pharmaceutical applications,” Faraday Discuss. 126, 255–263 (2004).
[Crossref]
M. Tang, M. Zhang, S. Yan, L. Xia, Z. Yang, C. Du, H.-L. Cui, and D. Wei, “Detection of DNA oligonucleotides with base mutations by terahertz spectroscopy and microstructures,” PLoS One 13(1), e0191515 (2018).
[Crossref]
M. Li, T. Chang, D. Wei, M. Tang, S. Yan, C. Du, and H.-L. Cui, “Label-free detection of anti-estrogen receptor alpha and its binding with estrogen receptor peptide alpha by terahertz spectroscopy,” RSC Adv. 7(39), 24338–24344 (2017).
[Crossref]
Y. Zhao, W. Liu, Y. Tian, Z. Yang, X. Wang, Y. Zhang, Y. Tang, S. Zhao, C. Wang, and Y. Liu, “Anti-EGFR peptide-conjugated triangular gold nanoplates for computed tomography/photoacoustic imaging-guided photothermal therapy of non-small cell lung cancer,” ACS Appl. Mater. Interfaces 10(20), 16992–17003 (2018).
[Crossref]
H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 261909 (2010).
[Crossref]
L. Sun, Z. Zhou, J. Zhong, Z. Shi, Y. Mao, H. Li, J. Cao, and T. H. Tao, “Implantable, Degradable, Therapeutic Terahertz Metamaterial Devices,” Small 16(17), 2000294 (2020).
[Crossref]
W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]
H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]
Y. Li, X. Chen, F. Hu, D. Li, H. Teng, Q. Rong, W. Zhang, J. Han, and H. Liang, “Four resonators based high sensitive terahertz metamaterial biosensor used for measuring concentration of protein,” J. Phys. D: Appl. Phys. 52(9), 095105 (2019).
[Crossref]
Y. Zhao, W. Liu, Y. Tian, Z. Yang, X. Wang, Y. Zhang, Y. Tang, S. Zhao, C. Wang, and Y. Liu, “Anti-EGFR peptide-conjugated triangular gold nanoplates for computed tomography/photoacoustic imaging-guided photothermal therapy of non-small cell lung cancer,” ACS Appl. Mater. Interfaces 10(20), 16992–17003 (2018).
[Crossref]
A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]
S. Maheswaran, L. V. Sequist, S. Nagrath, L. Ulkus, B. Brannigan, C. V. Collura, E. Inserra, S. Diederichs, A. J. Iafrate, and D. W. Bell, “Detection of mutations in EGFR in circulating lung-cancer cells,” N. Engl. J. Med. 359(4), 366–377 (2008).
[Crossref]
F. Yan, E. P. J. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Solvent doping of PEDOT/PSS: effect on terahertz optoelectronic properties and utilization in terahertz devices,” J. Phys. Chem. C 119(12), 6813–6818 (2015).
[Crossref]
T. S. Bui, T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. Lee, T. Nagao, and C. V. Hoang, “Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules,” Sci. Rep. 6(1), 32123 (2016).
[Crossref]
E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys. 39(17), R301–R310 (2006).
[Crossref]
V. P. Wallace, P. F. Taday, A. J. Fitzgerald, R. M. Woodward, J. Cluff, R. J. Pye, and D. D. Arnone, “Terahertz pulsed imaging and spectroscopy for biomedical and pharmaceutical applications,” Faraday Discuss. 126, 255–263 (2004).
[Crossref]
Y. Zhao, W. Liu, Y. Tian, Z. Yang, X. Wang, Y. Zhang, Y. Tang, S. Zhao, C. Wang, and Y. Liu, “Anti-EGFR peptide-conjugated triangular gold nanoplates for computed tomography/photoacoustic imaging-guided photothermal therapy of non-small cell lung cancer,” ACS Appl. Mater. Interfaces 10(20), 16992–17003 (2018).
[Crossref]
W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]
R. Zhang, L. Zhang, T. Wu, R. Wang, S. Zuo, D. Wu, C. Zhang, J. Zhang, and J. Fang, “Continuous-terahertz-wave molecular imaging system for biomedical applications,” J. Biomed. Opt. 21(7), 076006 (2016).
[Crossref]
Y. Zhao, W. Liu, Y. Tian, Z. Yang, X. Wang, Y. Zhang, Y. Tang, S. Zhao, C. Wang, and Y. Liu, “Anti-EGFR peptide-conjugated triangular gold nanoplates for computed tomography/photoacoustic imaging-guided photothermal therapy of non-small cell lung cancer,” ACS Appl. Mater. Interfaces 10(20), 16992–17003 (2018).
[Crossref]
S. Lin, X. Xu, F. Hu, Z. Chen, Y. Wang, L. Zhang, Z. Peng, D. Li, L. Zeng, and Y. Chen, “Using Antibody Modified Terahertz Metamaterial Biosensor to Detect Concentration of Carcinoembryonic Antigen,” IEEE J. Sel. Top. Quantum Electron. 27(4), 1–7 (2021).
[Crossref]
K. Yang, J. Li, M. L. de la Chapelle, G. Huang, Y. Wang, J. Zhang, D. Xu, J. Yao, X. Yang, and W. Fu, “A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification,” Biosens. Bioelectron. 175, 112874 (2021).
[Crossref]
M. Tang, M. Zhang, S. Yan, L. Xia, Z. Yang, C. Du, H.-L. Cui, and D. Wei, “Detection of DNA oligonucleotides with base mutations by terahertz spectroscopy and microstructures,” PLoS One 13(1), e0191515 (2018).
[Crossref]
M. Li, T. Chang, D. Wei, M. Tang, S. Yan, C. Du, and H.-L. Cui, “Label-free detection of anti-estrogen receptor alpha and its binding with estrogen receptor peptide alpha by terahertz spectroscopy,” RSC Adv. 7(39), 24338–24344 (2017).
[Crossref]
V. P. Wallace, P. F. Taday, A. J. Fitzgerald, R. M. Woodward, J. Cluff, R. J. Pye, and D. D. Arnone, “Terahertz pulsed imaging and spectroscopy for biomedical and pharmaceutical applications,” Faraday Discuss. 126, 255–263 (2004).
[Crossref]
R. Zhang, L. Zhang, T. Wu, R. Wang, S. Zuo, D. Wu, C. Zhang, J. Zhang, and J. Fang, “Continuous-terahertz-wave molecular imaging system for biomedical applications,” J. Biomed. Opt. 21(7), 076006 (2016).
[Crossref]
C. Zhang, L. Liang, L. Ding, B. Jin, Y. Hou, C. Li, L. Jiang, W. Liu, W. Hu, Y. Lu, L. Kang, W. Xu, J. Chen, and P. Wu, “Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor,” Appl. Phys. Lett. 108(24), 241105 (2016).
[Crossref]
R. Zhang, L. Zhang, T. Wu, R. Wang, S. Zuo, D. Wu, C. Zhang, J. Zhang, and J. Fang, “Continuous-terahertz-wave molecular imaging system for biomedical applications,” J. Biomed. Opt. 21(7), 076006 (2016).
[Crossref]
M. Tang, M. Zhang, S. Yan, L. Xia, Z. Yang, C. Du, H.-L. Cui, and D. Wei, “Detection of DNA oligonucleotides with base mutations by terahertz spectroscopy and microstructures,” PLoS One 13(1), e0191515 (2018).
[Crossref]
W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]
W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]
K. Yang, J. Li, M. L. de la Chapelle, G. Huang, Y. Wang, J. Zhang, D. Xu, J. Yao, X. Yang, and W. Fu, “A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification,” Biosens. Bioelectron. 175, 112874 (2021).
[Crossref]
R. Zhang, Q. Chen, K. Liu, Z. Chen, K. Li, J. Xu, and E. Pickwell-MacPherson, “Terahertz microfluidic metamaterial biosensor for sensitive detection of small-volume liquid samples,” IEEE Trans. THz Sci. Technol. 9(2), 209–214 (2019).
[Crossref]
W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]
C. Zhang, L. Liang, L. Ding, B. Jin, Y. Hou, C. Li, L. Jiang, W. Liu, W. Hu, Y. Lu, L. Kang, W. Xu, J. Chen, and P. Wu, “Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor,” Appl. Phys. Lett. 108(24), 241105 (2016).
[Crossref]
W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]
S. Lin, X. Xu, F. Hu, Z. Chen, Y. Wang, L. Zhang, Z. Peng, D. Li, L. Zeng, and Y. Chen, “Using Antibody Modified Terahertz Metamaterial Biosensor to Detect Concentration of Carcinoembryonic Antigen,” IEEE J. Sel. Top. Quantum Electron. 27(4), 1–7 (2021).
[Crossref]
W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]
F. Yan, E. P. J. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Solvent doping of PEDOT/PSS: effect on terahertz optoelectronic properties and utilization in terahertz devices,” J. Phys. Chem. C 119(12), 6813–6818 (2015).
[Crossref]
M. Tang, M. Zhang, S. Yan, L. Xia, Z. Yang, C. Du, H.-L. Cui, and D. Wei, “Detection of DNA oligonucleotides with base mutations by terahertz spectroscopy and microstructures,” PLoS One 13(1), e0191515 (2018).
[Crossref]
M. Li, T. Chang, D. Wei, M. Tang, S. Yan, C. Du, and H.-L. Cui, “Label-free detection of anti-estrogen receptor alpha and its binding with estrogen receptor peptide alpha by terahertz spectroscopy,” RSC Adv. 7(39), 24338–24344 (2017).
[Crossref]
C. K. Lee, J. Man, S. Lord, M. Links, V. Gebski, T. Mok, and J. C.-H. Yang, “Checkpoint inhibitors in metastatic EGFR-mutated non–small cell lung cancer—a meta-analysis,” J. Thorac. Oncol. 12(2), 403–407 (2017).
[Crossref]
K. Yang, J. Li, M. L. de la Chapelle, G. Huang, Y. Wang, J. Zhang, D. Xu, J. Yao, X. Yang, and W. Fu, “A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification,” Biosens. Bioelectron. 175, 112874 (2021).
[Crossref]
K. Yang, W. Yu, G. Huang, J. Zhou, X. Yang, and W. Fu, “Highly sensitive detection of Staphylococcus aureus by a THz metamaterial biosensor based on gold nanoparticles and rolling circle amplification,” RSC Adv. 10(45), 26824–26833 (2020).
[Crossref]
X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]
K. Yang, J. Li, M. L. de la Chapelle, G. Huang, Y. Wang, J. Zhang, D. Xu, J. Yao, X. Yang, and W. Fu, “A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification,” Biosens. Bioelectron. 175, 112874 (2021).
[Crossref]
K. Yang, W. Yu, G. Huang, J. Zhou, X. Yang, and W. Fu, “Highly sensitive detection of Staphylococcus aureus by a THz metamaterial biosensor based on gold nanoparticles and rolling circle amplification,” RSC Adv. 10(45), 26824–26833 (2020).
[Crossref]
X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]
Y. Zhao, W. Liu, Y. Tian, Z. Yang, X. Wang, Y. Zhang, Y. Tang, S. Zhao, C. Wang, and Y. Liu, “Anti-EGFR peptide-conjugated triangular gold nanoplates for computed tomography/photoacoustic imaging-guided photothermal therapy of non-small cell lung cancer,” ACS Appl. Mater. Interfaces 10(20), 16992–17003 (2018).
[Crossref]
M. Tang, M. Zhang, S. Yan, L. Xia, Z. Yang, C. Du, H.-L. Cui, and D. Wei, “Detection of DNA oligonucleotides with base mutations by terahertz spectroscopy and microstructures,” PLoS One 13(1), e0191515 (2018).
[Crossref]
K. Yang, J. Li, M. L. de la Chapelle, G. Huang, Y. Wang, J. Zhang, D. Xu, J. Yao, X. Yang, and W. Fu, “A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification,” Biosens. Bioelectron. 175, 112874 (2021).
[Crossref]
W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]
W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]
W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]
K. Yang, W. Yu, G. Huang, J. Zhou, X. Yang, and W. Fu, “Highly sensitive detection of Staphylococcus aureus by a THz metamaterial biosensor based on gold nanoparticles and rolling circle amplification,” RSC Adv. 10(45), 26824–26833 (2020).
[Crossref]
N. Fuse, Y. Kuboki, T. Kuwata, T. Nishina, S. Kadowaki, E. Shinozaki, N. Machida, S. Yuki, A. Ooki, and S. Kajiura, “Prognostic impact of HER2, EGFR, and c-MET status on overall survival of advanced gastric cancer patients,” Gastric Cancer 19(1), 183–191 (2016).
[Crossref]
S. Lin, X. Xu, F. Hu, Z. Chen, Y. Wang, L. Zhang, Z. Peng, D. Li, L. Zeng, and Y. Chen, “Using Antibody Modified Terahertz Metamaterial Biosensor to Detect Concentration of Carcinoembryonic Antigen,” IEEE J. Sel. Top. Quantum Electron. 27(4), 1–7 (2021).
[Crossref]
R. Zhang, L. Zhang, T. Wu, R. Wang, S. Zuo, D. Wu, C. Zhang, J. Zhang, and J. Fang, “Continuous-terahertz-wave molecular imaging system for biomedical applications,” J. Biomed. Opt. 21(7), 076006 (2016).
[Crossref]
C. Zhang, L. Liang, L. Ding, B. Jin, Y. Hou, C. Li, L. Jiang, W. Liu, W. Hu, Y. Lu, L. Kang, W. Xu, J. Chen, and P. Wu, “Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor,” Appl. Phys. Lett. 108(24), 241105 (2016).
[Crossref]
K. Yang, J. Li, M. L. de la Chapelle, G. Huang, Y. Wang, J. Zhang, D. Xu, J. Yao, X. Yang, and W. Fu, “A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification,” Biosens. Bioelectron. 175, 112874 (2021).
[Crossref]
R. Zhang, L. Zhang, T. Wu, R. Wang, S. Zuo, D. Wu, C. Zhang, J. Zhang, and J. Fang, “Continuous-terahertz-wave molecular imaging system for biomedical applications,” J. Biomed. Opt. 21(7), 076006 (2016).
[Crossref]
S. Lin, X. Xu, F. Hu, Z. Chen, Y. Wang, L. Zhang, Z. Peng, D. Li, L. Zeng, and Y. Chen, “Using Antibody Modified Terahertz Metamaterial Biosensor to Detect Concentration of Carcinoembryonic Antigen,” IEEE J. Sel. Top. Quantum Electron. 27(4), 1–7 (2021).
[Crossref]
R. Zhang, L. Zhang, T. Wu, R. Wang, S. Zuo, D. Wu, C. Zhang, J. Zhang, and J. Fang, “Continuous-terahertz-wave molecular imaging system for biomedical applications,” J. Biomed. Opt. 21(7), 076006 (2016).
[Crossref]
M. Tang, M. Zhang, S. Yan, L. Xia, Z. Yang, C. Du, H.-L. Cui, and D. Wei, “Detection of DNA oligonucleotides with base mutations by terahertz spectroscopy and microstructures,” PLoS One 13(1), e0191515 (2018).
[Crossref]
R. Zhang, Q. Chen, K. Liu, Z. Chen, K. Li, J. Xu, and E. Pickwell-MacPherson, “Terahertz microfluidic metamaterial biosensor for sensitive detection of small-volume liquid samples,” IEEE Trans. THz Sci. Technol. 9(2), 209–214 (2019).
[Crossref]
R. Zhang, L. Zhang, T. Wu, R. Wang, S. Zuo, D. Wu, C. Zhang, J. Zhang, and J. Fang, “Continuous-terahertz-wave molecular imaging system for biomedical applications,” J. Biomed. Opt. 21(7), 076006 (2016).
[Crossref]
K. Liu, R. Zhang, X. Chen, and E. Pickwell-MacPherson, “Detection of EGFR Protein Using Terahertz Metamaterial Biosensor,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2018), pp. 1–2.
Y. Li, X. Chen, F. Hu, D. Li, H. Teng, Q. Rong, W. Zhang, J. Han, and H. Liang, “Four resonators based high sensitive terahertz metamaterial biosensor used for measuring concentration of protein,” J. Phys. D: Appl. Phys. 52(9), 095105 (2019).
[Crossref]
Y. Yang, R. Singh, and W. Zhang, “Anomalous terahertz transmission in bow-tie plasmonic antenna apertures,” Opt. Lett. 36(15), 2901–2903 (2011).
[Crossref]
Z. Geng, X. Zhang, Z. Fan, X. Lv, and H. Chen, “A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage,” Sci. Rep. 7(1), 1–11 (2017).
[Crossref]
H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 261909 (2010).
[Crossref]
Y. Zhao, W. Liu, Y. Tian, Z. Yang, X. Wang, Y. Zhang, Y. Tang, S. Zhao, C. Wang, and Y. Liu, “Anti-EGFR peptide-conjugated triangular gold nanoplates for computed tomography/photoacoustic imaging-guided photothermal therapy of non-small cell lung cancer,” ACS Appl. Mater. Interfaces 10(20), 16992–17003 (2018).
[Crossref]
Y. Zhao, W. Liu, Y. Tian, Z. Yang, X. Wang, Y. Zhang, Y. Tang, S. Zhao, C. Wang, and Y. Liu, “Anti-EGFR peptide-conjugated triangular gold nanoplates for computed tomography/photoacoustic imaging-guided photothermal therapy of non-small cell lung cancer,” ACS Appl. Mater. Interfaces 10(20), 16992–17003 (2018).
[Crossref]
X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]
Y. Zhao, W. Liu, Y. Tian, Z. Yang, X. Wang, Y. Zhang, Y. Tang, S. Zhao, C. Wang, and Y. Liu, “Anti-EGFR peptide-conjugated triangular gold nanoplates for computed tomography/photoacoustic imaging-guided photothermal therapy of non-small cell lung cancer,” ACS Appl. Mater. Interfaces 10(20), 16992–17003 (2018).
[Crossref]
I. V. Safenkova, A. V. Zherdev, and B. B. Dzantiev, “Correlation between the composition of multivalent antibody conjugates with colloidal gold nanoparticles and their affinity,” J. Immunol. Methods 357(1-2), 17–25 (2010).
[Crossref]
L. Sun, Z. Zhou, J. Zhong, Z. Shi, Y. Mao, H. Li, J. Cao, and T. H. Tao, “Implantable, Degradable, Therapeutic Terahertz Metamaterial Devices,” Small 16(17), 2000294 (2020).
[Crossref]
K. Yang, W. Yu, G. Huang, J. Zhou, X. Yang, and W. Fu, “Highly sensitive detection of Staphylococcus aureus by a THz metamaterial biosensor based on gold nanoparticles and rolling circle amplification,” RSC Adv. 10(45), 26824–26833 (2020).
[Crossref]
L. Sun, Z. Zhou, J. Zhong, Z. Shi, Y. Mao, H. Li, J. Cao, and T. H. Tao, “Implantable, Degradable, Therapeutic Terahertz Metamaterial Devices,” Small 16(17), 2000294 (2020).
[Crossref]
W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]
H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]
R. Zhang, L. Zhang, T. Wu, R. Wang, S. Zuo, D. Wu, C. Zhang, J. Zhang, and J. Fang, “Continuous-terahertz-wave molecular imaging system for biomedical applications,” J. Biomed. Opt. 21(7), 076006 (2016).
[Crossref]