Abstract

The flow of erythrocytes in parafoveal capillaries was imaged in the living human eye with an adaptive optics near-confocal ophthalmoscope at a frame rate of 800 Hz with a low coherence near-infrared (NIR) light source. Spatiotemporal traces of the erythrocyte movement were extracted from consecutive images. Erythrocyte velocity was measured using custom software based on the Radon transform. The impact of imaging speed on velocity measurement was estimated using images of frame rates of 200, 400, and 800 Hz. The NIR light allowed for long imaging periods without visually stimulating the retina and disturbing the natural rheological state. High speed near-confocal imaging enabled direct and accurate measurement of erythrocyte velocity, and revealed a distinctively cardiac-dependent pulsatile velocity waveform of the erythrocyte flow in retinal capillaries, disclosed the impact of the leukocytes on erythrocyte motion, and provided new metrics for precise assessment of erythrocyte movement. The approach may facilitate new investigations on the pathophysiology of retinal microcirculation with applications for ocular and systemic diseases.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope

Johnny Tam, Pavan Tiruveedhula, and Austin Roorda
Biomed. Opt. Express 2(4) 781-793 (2011)

Direct visualization and characterization of erythrocyte flow in human retinal capillaries

Phillip Bedggood and Andrew Metha
Biomed. Opt. Express 3(12) 3264-3277 (2012)

In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy

Zhangyi Zhong, Benno L. Petrig, Xiaofeng Qi, and Stephen A. Burns
Opt. Express 16(17) 12746-12756 (2008)

References

  • View by:
  • |
  • |
  • |

  1. M. T. Wong-Riley, “Energy metabolism of the visual system,” Eye Brain 2, 99–116 (2010).
    [Crossref] [PubMed]
  2. C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye Res. 27(3), 284–330 (2008).
    [Crossref] [PubMed]
  3. D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar, and E. A. Newman, “Glial and neuronal control of brain blood flow,” Nature 468(7321), 232–243 (2010).
    [Crossref] [PubMed]
  4. D. A. Antonetti, R. Klein, and T. W. Gardner, “Diabetic retinopathy,” N. Engl. J. Med. 366(13), 1227–1239 (2012).
    [Crossref] [PubMed]
  5. M. Emre, S. Orgül, K. Gugleta, and J. Flammer, “Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation,” Br. J. Ophthalmol. 88(5), 662–666 (2004).
    [Crossref] [PubMed]
  6. Z. Burgansky-Eliash, H. Barash, D. Nelson, A. Grinvald, A. Sorkin, A. Loewenstein, and A. Barak, “Retinal blood flow velocity in patients with age-related macular degeneration,” Curr. Eye Res. 39(3), 304–311 (2014).
    [Crossref] [PubMed]
  7. M. Ritt, J. M. Harazny, C. Ott, U. Raff, P. Bauernschubert, M. Lehmann, G. Michelson, and R. E. Schmieder, “Impaired increase of retinal capillary blood flow to flicker light exposure in arterial hypertension,” Hypertension 60(3), 871–876 (2012).
    [Crossref] [PubMed]
  8. N. Patton, T. Aslam, T. Macgillivray, A. Pattie, I. J. Deary, and B. Dhillon, “Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures,” J. Anat. 206(4), 319–348 (2005).
    [Crossref] [PubMed]
  9. M. L. Baker, P. J. Hand, J. J. Wang, and T. Y. Wong, “Retinal signs and stroke: revisiting the link between the eye and brain,” Stroke 39(4), 1371–1379 (2008).
    [Crossref] [PubMed]
  10. F. Berisha, G. T. Feke, C. L. Trempe, J. W. McMeel, and C. L. Schepens, “Retinal abnormalities in early Alzheimer’s disease,” Invest. Ophthalmol. Vis. Sci. 48(5), 2285–2289 (2007).
    [Crossref] [PubMed]
  11. G. T. Feke, B. T. Hyman, R. A. Stern, and L. R. Pasquale, “Retinal blood flow in mild cognitive impairment and Alzheimer’s disease,” Alzheimers Dement (Amst) 1(2), 144–151 (2015).
    [Crossref] [PubMed]
  12. C. J. Pournaras and C. E. Riva, “Retinal blood flow evaluation,” Ophthalmologica 229(2), 61–74 (2013).
    [Crossref] [PubMed]
  13. G. T. Feke and C. E. Riva, “Laser Doppler measurements of blood velocity in human retinal vessels,” J. Opt. Soc. Am. 68(4), 526–531 (1978).
    [Crossref] [PubMed]
  14. B. L. Petrig and C. E. Riva, “Near-IR retinal laser Doppler velocimetry and flowmetry: new delivery and detection techniques,” Appl. Opt. 30(16), 2073–2078 (1991).
    [Crossref] [PubMed]
  15. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
    [Crossref] [PubMed]
  16. W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express 3(5), 1047–1061 (2012).
    [Crossref] [PubMed]
  17. A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front. Neuroenergetics 2010, 2 (2010).
    [Crossref] [PubMed]
  18. T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta Ophthalmol. 88(7), 723–729 (2010).
    [Crossref] [PubMed]
  19. C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(13), 7998–8003 (2013).
    [Crossref] [PubMed]
  20. R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
    [Crossref] [PubMed]
  21. D. Izhaky, D. A. Nelson, Z. Burgansky-Eliash, and A. Grinvald, “Functional imaging using the retinal function imager: Direct imaging of blood velocity, achieving fluorescein angiography-like images without any contrast agent, qualitative oximetry, and functional metabolic signals,” Jpn. J. Ophthalmol. 53(4), 345–351 (2009).
    [Crossref] [PubMed]
  22. L. Wang, H. Jiang, A. Grinvald, C. Jayadev, and J. Wang, “A mini review of clinical and research applications of the retinal function imager,” Curr. Eye Res. 43(3), 273–288 (2018).
    [Crossref] [PubMed]
  23. Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011).
    [Crossref] [PubMed]
  24. M. Meinke, G. Müller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12(1), 014024 (2007).
    [Crossref] [PubMed]
  25. R. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008).
    [Crossref] [PubMed]
  26. T. E. Kornfield and E. A. Newman, “Regulation of blood flow in the retinal trilaminar vascular network,” J. Neurosci. 34(34), 11504–11513 (2014).
    [Crossref] [PubMed]
  27. T. E. Kornfield and E. A. Newman, “Measurement of retinal blood flow using fluorescently labeled red blood cells,” eNeuro 2(2), 0005–0015 (2015).
    [Crossref] [PubMed]
  28. A. Guevara-Torres, A. Joseph, and J. B. Schallek, “Label free measurement of retinal blood cell flux, velocity, hematocrit and capillary width in the living mouse eye,” Biomed. Opt. Express 7(10), 4228–4249 (2016).
    [Crossref] [PubMed]
  29. G. Richard, G. Soubrane, and L. Yanuzzi, Fluorescein Angiography: Textbook and Atlas, 2nd ed. (Thieme Medical Publishes Inc., New York, 1998).
  30. A. N. S. Institute, “American National Standard for Safe Use of Lasers ANSI Z136.1-2014,” (American National Standards Institute, Inc., 2014).
  31. A. Roorda and J. L. Duncan, “Adaptive optics ophthalmoscopy,” Annu Rev Vis Sci 1(1), 19–50 (2015).
    [Crossref] [PubMed]
  32. S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
    [Crossref] [PubMed]
  33. M. Pircher and R. J. Zawadzki, “Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited],” Biomed. Opt. Express 8(5), 2536–2562 (2017).
    [Crossref] [PubMed]
  34. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [Crossref] [PubMed]
  35. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
    [Crossref] [PubMed]
  36. J. A. Martin and A. Roorda, “Pulsatility of parafoveal capillary leukocytes,” Exp. Eye Res. 88(3), 356–360 (2009).
    [Crossref] [PubMed]
  37. J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112(12), 2219–2224 (2005).
    [Crossref] [PubMed]
  38. J. Tam, P. Tiruveedhula, and A. Roorda, “Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(4), 781–793 (2011).
    [Crossref] [PubMed]
  39. J. Tam and A. Roorda, “Speed quantification and tracking of moving objects in adaptive optics scanning laser ophthalmoscopy,” J. Biomed. Opt. 16(3), 036002 (2011).
    [Crossref] [PubMed]
  40. A. Uji, M. Hangai, S. Ooto, K. Takayama, N. Arakawa, H. Imamura, K. Nozato, and N. Yoshimura, “The source of moving particles in parafoveal capillaries detected by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 53(1), 171–178 (2012).
    [Crossref] [PubMed]
  41. S. Arichika, A. Uji, M. Hangai, S. Ooto, and N. Yoshimura, “Noninvasive and direct monitoring of erythrocyte aggregates in human retinal microvasculature using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 54(6), 4394–4402 (2013).
    [Crossref] [PubMed]
  42. S. Arichika, A. Uji, S. Ooto, K. Miyamoto, and N. Yoshimura, “Adaptive optics-assisted identification of preferential erythrocyte aggregate pathways in the human retinal microvasculature,” PLoS One 9(2), e89679 (2014).
    [Crossref] [PubMed]
  43. S. Arichika, A. Uji, T. Murakami, N. Unoki, S. Yoshitake, Y. Dodo, S. Ooto, K. Miyamoto, and N. Yoshimura, “Retinal hemorheologic characterization of early-stage diabetic retinopathy using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 55(12), 8513–8522 (2014).
    [Crossref] [PubMed]
  44. Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express 16(17), 12746–12756 (2008).
    [Crossref] [PubMed]
  45. Z. Zhong, H. Song, T. Y. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011).
    [Crossref] [PubMed]
  46. A. de Castro, G. Huang, L. Sawides, T. Luo, and S. A. Burns, “Rapid high resolution imaging with a dual-channel scanning technique,” Opt. Lett. 41(8), 1881–1884 (2016).
    [Crossref] [PubMed]
  47. Y. Lu, M. O. Bernabeu, J. Lammer, C. C. Cai, M. L. Jones, C. A. Franco, L. P. Aiello, and J. K. Sun, “Computational fluid dynamics assisted characterization of parafoveal hemodynamics in normal and diabetic eyes using adaptive optics scanning laser ophthalmoscopy,” Biomed. Opt. Express 7(12), 4958–4973 (2016).
    [Crossref] [PubMed]
  48. Y. Iida, T. Akagi, H. Nakanishi, H. Ohashi Ikeda, S. Morooka, K. Suda, T. Hasegawa, S. Yokota, M. Yoshikawa, A. Uji, and N. Yoshimura, “Retinal Blood Flow Velocity Change in Parafoveal Capillary after Topical Tafluprost Treatment in Eyes with Primary Open-angle Glaucoma,” Sci. Rep. 7(1), 5019 (2017).
    [Crossref] [PubMed]
  49. M. L. Ellsworth, C. G. Ellis, D. Goldman, A. H. Stephenson, H. H. Dietrich, and R. S. Sprague, “Erythrocytes: oxygen sensors and modulators of vascular tone,” Physiology (Bethesda) 24(2), 107–116 (2009).
    [Crossref] [PubMed]
  50. R. S. Sprague and M. L. Ellsworth, “Erythrocyte-derived ATP and perfusion distribution: role of intracellular and intercellular communication,” Microcirculation 19(5), 430–439 (2012).
    [Crossref] [PubMed]
  51. H. S. Wei, H. Kang, I. D. Rasheed, S. Zhou, N. Lou, A. Gershteyn, E. D. McConnell, Y. Wang, K. E. Richardson, A. F. Palmer, C. Xu, J. Wan, and M. Nedergaard, “Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation,” Neuron 91(4), 851–862 (2016).
    [Crossref] [PubMed]
  52. T. Y. Chui, D. A. Vannasdale, and S. A. Burns, “The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2537–2549 (2012).
    [Crossref] [PubMed]
  53. P. Bedggood and A. Metha, “Direct visualization and characterization of erythrocyte flow in human retinal capillaries,” Biomed. Opt. Express 3(12), 3264–3277 (2012).
    [Crossref] [PubMed]
  54. P. Bedggood and A. Metha, “Analysis of contrast and motion signals generated by human blood constituents in capillary flow,” Opt. Lett. 39(3), 610–613 (2014).
    [Crossref] [PubMed]
  55. J. Lu, B. Gu, X. Wang, and Y. Zhang, “Adaptive optics parallel near-confocal scanning ophthalmoscopy,” Opt. Lett. 41(16), 3852–3855 (2016).
    [Crossref] [PubMed]
  56. J. Lu, B. Gu, X. Wang, and Y. Zhang, “High speed adaptive optics ophthalmoscopy with an anamorphic point spread function,” Opt. Express 26(11), 14356–14374 (2018).
    [Crossref] [PubMed]
  57. S. Yuan and J. Sasian, “Aberrations of anamorphic optical systems. I: The first-order foundation and method for deriving the anamorphic primary aberration coefficients,” Appl. Opt. 48(13), 2574–2584 (2009).
    [Crossref] [PubMed]
  58. S. Yuan and J. Sasian, “Aberrations of anamorphic optical systems. II. Primary aberration theory for cylindrical anamorphic systems,” Appl. Opt. 48(15), 2836–2841 (2009).
    [Crossref] [PubMed]
  59. J. B. Pawley, “Points, pixels, and gray levels: digitizing image data,” in Handbook of Biological Confocal Microscopy (Springer, 2006), pp. 59–79.
  60. A. Meadway, C. A. Girkin, and Y. Zhang, “A dual-modal retinal imaging system with adaptive optics,” Opt. Express 21(24), 29792–29807 (2013).
    [Crossref] [PubMed]
  61. A. Meadway, X. Wang, C. A. Curcio, and Y. Zhang, “Microstructure of subretinal drusenoid deposits revealed by adaptive optics imaging,” Biomed. Opt. Express 5(3), 713–727 (2014).
    [Crossref] [PubMed]
  62. Y. Yu, T. Zhang, A. Meadway, X. Wang, and Y. Zhang, “High-speed adaptive optics for imaging of the living human eye,” Opt. Express 23(18), 23035–23052 (2015).
    [Crossref] [PubMed]
  63. Y. Yu and Y. Zhang, “Dual-thread parallel control strategy for ophthalmic adaptive optics,” Chin. Opt. Lett. 12(12), 121202 (2014).
    [Crossref] [PubMed]
  64. F. C. Delori, R. H. Webb, D. H. Sliney, and American National Standards Institute, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007).
    [Crossref] [PubMed]
  65. T. Zhang, P. Godara, E. R. Blanco, R. L. Griffin, X. Wang, C. A. Curcio, and Y. Zhang, “Variability in human cone topography assessed by adaptive optics scanning laser ophthalmoscopy,” Am. J. Ophthalmol. 160(2), 290–300 (2015).
    [Crossref] [PubMed]
  66. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14(2), 487–497 (2006).
    [Crossref] [PubMed]
  67. J. Tam and A. Roorda, “Enhanced detection of cell paths in spatiotemporal plots for noninvasive microscopy of the human retina,” in Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on, (IEEE, 2010), 584–587.
    [Crossref]
  68. D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt. 15(5), 056014 (2010).
    [Crossref] [PubMed]
  69. T. Sugiyama, “Basic Technology and Clinical Applications of the Updated Model of Laser Speckle Flowgraphy to Ocular Diseases,” Photonics 1(3), 220–234 (2014).
    [Crossref]
  70. N. Chapman, N. Witt, X. Gao, A. A. Bharath, A. V. Stanton, S. A. Thom, and A. D. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol. 85(1), 74–79 (2001).
    [Crossref] [PubMed]
  71. N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
    [Crossref] [PubMed]
  72. M. R. Martins, W. P. Martins, C. A. M. Soares, A. H. Miyague, M. J. Kudla, and T. Z. Pavan, “Understanding the influence of flow velocity, wall motion filter, pulse repetition frequency, and aliasing on power doppler image quantification,” J. Ultrasound Med. (2017).
    [PubMed]
  73. G. W. Schmid-Schönbein, Y. Y. Shih, and S. Chien, “Morphometry of human leukocytes,” Blood 56(5), 866–875 (1980).
    [PubMed]
  74. J. J. Hunter, J. I. Morgan, W. H. Merigan, D. H. Sliney, J. R. Sparrow, and D. R. Williams, “The susceptibility of the retina to photochemical damage from visible light,” Prog. Retin. Eye Res. 31(1), 28–42 (2012).
    [Crossref] [PubMed]
  75. J. Lu, B. Gu, X. Wang, and Y. Zhang, “High-speed adaptive optics line scan confocal retinal imaging for human eye,” PLoS One 12(3), e0169358 (2017).
    [Crossref] [PubMed]
  76. Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
    [Crossref] [PubMed]
  77. N. Hussain, A. Hussain, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical Coherence Tomography Angiography,” Int J Retina Vitreous 2(OCT), 27–36 (2016).
    [Crossref] [PubMed]
  78. A. Koustenis, A. Harris, J. Gross, I. Januleviciene, A. Shah, and B. Siesky, “Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research,” Br. J. Ophthalmol. 101(1), 16–20 (2017).
    [Crossref] [PubMed]
  79. M. Ang, A. C. S. Tan, C. M. G. Cheung, P. A. Keane, R. Dolz-Marco, C. C. A. Sng, and L. Schmetterer, “Optical coherence tomography angiography: a review of current and future clinical applications,” Graefes Arch. Clin. Exp. Ophthalmol. 256(2), 237–245 (2018).
    [Crossref] [PubMed]
  80. H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, and Y. Honda, “Quantitative evaluation of leukocyte dynamics in retinal microcirculation,” Invest. Ophthalmol. Vis. Sci. 36(1), 123–130 (1995).
    [PubMed]
  81. K. Fillacier, G. A. Peyman, Q. Luo, and B. Khoobehi, “Study of lymphocyte dynamics in the ocular circulation: technique of labeling cells,” Curr. Eye Res. 14(7), 579–584 (1995).
    [Crossref] [PubMed]
  82. P. S. Jensen and M. R. Glucksberg, “Regional variation in capillary hemodynamics in the cat retina,” Invest. Ophthalmol. Vis. Sci. 39(2), 407–415 (1998).
    [PubMed]
  83. J. Ben-nun, “Comparative flow velocity of erythrocytes and leukocytes in feline retinal capillaries,” Invest. Ophthalmol. Vis. Sci. 37(9), 1854–1859 (1996).
    [PubMed]
  84. C. E. Riva and B. Petrig, “Blue field entoptic phenomenon and blood velocity in the retinal capillaries,” J. Opt. Soc. Am. 70(10), 1234–1238 (1980).
    [Crossref] [PubMed]
  85. A. G. Koutsiaris, S. V. Tachmitzi, P. Papavasileiou, N. Batis, M. G. Kotoula, A. D. Giannoukas, and E. Tsironi, “Blood velocity pulse quantification in the human conjunctival pre-capillary arterioles,” Microvasc. Res. 80(2), 202–208 (2010).
    [Crossref] [PubMed]
  86. H. Wilkens, W. Regelson, and F. S. Hoffmeister, “The physiolgic importance of pulsatile blood flow,” N. Engl. J. Med. 267(9), 443–446 (1962).
    [Crossref] [PubMed]
  87. T. P. Santisakultarm, N. R. Cornelius, N. Nishimura, A. I. Schafer, R. T. Silver, P. C. Doerschuk, W. L. Olbricht, and C. B. Schaffer, “In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice,” Am. J. Physiol. Heart Circ. Physiol. 302(7), H1367–H1377 (2012).
    [Crossref] [PubMed]
  88. T. N. Kim, P. W. Goodwill, Y. Chen, S. M. Conolly, C. B. Schaffer, D. Liepmann, and R. A. Wang, “Line-scanning particle image velocimetry: an optical approach for quantifying a wide range of blood flow speeds in live animals,” PLoS One 7(6), e38590 (2012).
    [Crossref] [PubMed]
  89. C. Federau, P. Hagmann, P. Maeder, M. Müller, R. Meuli, M. Stuber, and K. O’Brien, “Dependence of brain intravoxel incoherent motion perfusion parameters on the cardiac cycle,” PLoS One 8(8), e72856 (2013).
    [Crossref] [PubMed]
  90. J. T. O’Brien, “Vascular cognitive impairment,” Am. J. Geriatr. Psychiatry 14(9), 724–733 (2006).
    [Crossref] [PubMed]
  91. D. D. Gutterman, D. S. Chabowski, A. O. Kadlec, M. J. Durand, J. K. Freed, K. Ait-Aissa, and A. M. Beyer, “The human microcirculation: regulation of flow and beyond,” Circ. Res. 118(1), 157–172 (2016).
    [Crossref] [PubMed]

2018 (3)

L. Wang, H. Jiang, A. Grinvald, C. Jayadev, and J. Wang, “A mini review of clinical and research applications of the retinal function imager,” Curr. Eye Res. 43(3), 273–288 (2018).
[Crossref] [PubMed]

J. Lu, B. Gu, X. Wang, and Y. Zhang, “High speed adaptive optics ophthalmoscopy with an anamorphic point spread function,” Opt. Express 26(11), 14356–14374 (2018).
[Crossref] [PubMed]

M. Ang, A. C. S. Tan, C. M. G. Cheung, P. A. Keane, R. Dolz-Marco, C. C. A. Sng, and L. Schmetterer, “Optical coherence tomography angiography: a review of current and future clinical applications,” Graefes Arch. Clin. Exp. Ophthalmol. 256(2), 237–245 (2018).
[Crossref] [PubMed]

2017 (5)

Y. Iida, T. Akagi, H. Nakanishi, H. Ohashi Ikeda, S. Morooka, K. Suda, T. Hasegawa, S. Yokota, M. Yoshikawa, A. Uji, and N. Yoshimura, “Retinal Blood Flow Velocity Change in Parafoveal Capillary after Topical Tafluprost Treatment in Eyes with Primary Open-angle Glaucoma,” Sci. Rep. 7(1), 5019 (2017).
[Crossref] [PubMed]

J. Lu, B. Gu, X. Wang, and Y. Zhang, “High-speed adaptive optics line scan confocal retinal imaging for human eye,” PLoS One 12(3), e0169358 (2017).
[Crossref] [PubMed]

A. Koustenis, A. Harris, J. Gross, I. Januleviciene, A. Shah, and B. Siesky, “Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research,” Br. J. Ophthalmol. 101(1), 16–20 (2017).
[Crossref] [PubMed]

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

M. Pircher and R. J. Zawadzki, “Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited],” Biomed. Opt. Express 8(5), 2536–2562 (2017).
[Crossref] [PubMed]

2016 (7)

A. Guevara-Torres, A. Joseph, and J. B. Schallek, “Label free measurement of retinal blood cell flux, velocity, hematocrit and capillary width in the living mouse eye,” Biomed. Opt. Express 7(10), 4228–4249 (2016).
[Crossref] [PubMed]

N. Hussain, A. Hussain, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical Coherence Tomography Angiography,” Int J Retina Vitreous 2(OCT), 27–36 (2016).
[Crossref] [PubMed]

A. de Castro, G. Huang, L. Sawides, T. Luo, and S. A. Burns, “Rapid high resolution imaging with a dual-channel scanning technique,” Opt. Lett. 41(8), 1881–1884 (2016).
[Crossref] [PubMed]

Y. Lu, M. O. Bernabeu, J. Lammer, C. C. Cai, M. L. Jones, C. A. Franco, L. P. Aiello, and J. K. Sun, “Computational fluid dynamics assisted characterization of parafoveal hemodynamics in normal and diabetic eyes using adaptive optics scanning laser ophthalmoscopy,” Biomed. Opt. Express 7(12), 4958–4973 (2016).
[Crossref] [PubMed]

J. Lu, B. Gu, X. Wang, and Y. Zhang, “Adaptive optics parallel near-confocal scanning ophthalmoscopy,” Opt. Lett. 41(16), 3852–3855 (2016).
[Crossref] [PubMed]

H. S. Wei, H. Kang, I. D. Rasheed, S. Zhou, N. Lou, A. Gershteyn, E. D. McConnell, Y. Wang, K. E. Richardson, A. F. Palmer, C. Xu, J. Wan, and M. Nedergaard, “Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation,” Neuron 91(4), 851–862 (2016).
[Crossref] [PubMed]

D. D. Gutterman, D. S. Chabowski, A. O. Kadlec, M. J. Durand, J. K. Freed, K. Ait-Aissa, and A. M. Beyer, “The human microcirculation: regulation of flow and beyond,” Circ. Res. 118(1), 157–172 (2016).
[Crossref] [PubMed]

2015 (6)

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Yu, T. Zhang, A. Meadway, X. Wang, and Y. Zhang, “High-speed adaptive optics for imaging of the living human eye,” Opt. Express 23(18), 23035–23052 (2015).
[Crossref] [PubMed]

T. Zhang, P. Godara, E. R. Blanco, R. L. Griffin, X. Wang, C. A. Curcio, and Y. Zhang, “Variability in human cone topography assessed by adaptive optics scanning laser ophthalmoscopy,” Am. J. Ophthalmol. 160(2), 290–300 (2015).
[Crossref] [PubMed]

A. Roorda and J. L. Duncan, “Adaptive optics ophthalmoscopy,” Annu Rev Vis Sci 1(1), 19–50 (2015).
[Crossref] [PubMed]

T. E. Kornfield and E. A. Newman, “Measurement of retinal blood flow using fluorescently labeled red blood cells,” eNeuro 2(2), 0005–0015 (2015).
[Crossref] [PubMed]

G. T. Feke, B. T. Hyman, R. A. Stern, and L. R. Pasquale, “Retinal blood flow in mild cognitive impairment and Alzheimer’s disease,” Alzheimers Dement (Amst) 1(2), 144–151 (2015).
[Crossref] [PubMed]

2014 (10)

Z. Burgansky-Eliash, H. Barash, D. Nelson, A. Grinvald, A. Sorkin, A. Loewenstein, and A. Barak, “Retinal blood flow velocity in patients with age-related macular degeneration,” Curr. Eye Res. 39(3), 304–311 (2014).
[Crossref] [PubMed]

T. E. Kornfield and E. A. Newman, “Regulation of blood flow in the retinal trilaminar vascular network,” J. Neurosci. 34(34), 11504–11513 (2014).
[Crossref] [PubMed]

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

T. Sugiyama, “Basic Technology and Clinical Applications of the Updated Model of Laser Speckle Flowgraphy to Ocular Diseases,” Photonics 1(3), 220–234 (2014).
[Crossref]

Y. Yu and Y. Zhang, “Dual-thread parallel control strategy for ophthalmic adaptive optics,” Chin. Opt. Lett. 12(12), 121202 (2014).
[Crossref] [PubMed]

A. Meadway, X. Wang, C. A. Curcio, and Y. Zhang, “Microstructure of subretinal drusenoid deposits revealed by adaptive optics imaging,” Biomed. Opt. Express 5(3), 713–727 (2014).
[Crossref] [PubMed]

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

P. Bedggood and A. Metha, “Analysis of contrast and motion signals generated by human blood constituents in capillary flow,” Opt. Lett. 39(3), 610–613 (2014).
[Crossref] [PubMed]

S. Arichika, A. Uji, S. Ooto, K. Miyamoto, and N. Yoshimura, “Adaptive optics-assisted identification of preferential erythrocyte aggregate pathways in the human retinal microvasculature,” PLoS One 9(2), e89679 (2014).
[Crossref] [PubMed]

S. Arichika, A. Uji, T. Murakami, N. Unoki, S. Yoshitake, Y. Dodo, S. Ooto, K. Miyamoto, and N. Yoshimura, “Retinal hemorheologic characterization of early-stage diabetic retinopathy using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 55(12), 8513–8522 (2014).
[Crossref] [PubMed]

2013 (5)

S. Arichika, A. Uji, M. Hangai, S. Ooto, and N. Yoshimura, “Noninvasive and direct monitoring of erythrocyte aggregates in human retinal microvasculature using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 54(6), 4394–4402 (2013).
[Crossref] [PubMed]

A. Meadway, C. A. Girkin, and Y. Zhang, “A dual-modal retinal imaging system with adaptive optics,” Opt. Express 21(24), 29792–29807 (2013).
[Crossref] [PubMed]

C. J. Pournaras and C. E. Riva, “Retinal blood flow evaluation,” Ophthalmologica 229(2), 61–74 (2013).
[Crossref] [PubMed]

C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(13), 7998–8003 (2013).
[Crossref] [PubMed]

C. Federau, P. Hagmann, P. Maeder, M. Müller, R. Meuli, M. Stuber, and K. O’Brien, “Dependence of brain intravoxel incoherent motion perfusion parameters on the cardiac cycle,” PLoS One 8(8), e72856 (2013).
[Crossref] [PubMed]

2012 (10)

T. P. Santisakultarm, N. R. Cornelius, N. Nishimura, A. I. Schafer, R. T. Silver, P. C. Doerschuk, W. L. Olbricht, and C. B. Schaffer, “In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice,” Am. J. Physiol. Heart Circ. Physiol. 302(7), H1367–H1377 (2012).
[Crossref] [PubMed]

T. N. Kim, P. W. Goodwill, Y. Chen, S. M. Conolly, C. B. Schaffer, D. Liepmann, and R. A. Wang, “Line-scanning particle image velocimetry: an optical approach for quantifying a wide range of blood flow speeds in live animals,” PLoS One 7(6), e38590 (2012).
[Crossref] [PubMed]

W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express 3(5), 1047–1061 (2012).
[Crossref] [PubMed]

M. Ritt, J. M. Harazny, C. Ott, U. Raff, P. Bauernschubert, M. Lehmann, G. Michelson, and R. E. Schmieder, “Impaired increase of retinal capillary blood flow to flicker light exposure in arterial hypertension,” Hypertension 60(3), 871–876 (2012).
[Crossref] [PubMed]

D. A. Antonetti, R. Klein, and T. W. Gardner, “Diabetic retinopathy,” N. Engl. J. Med. 366(13), 1227–1239 (2012).
[Crossref] [PubMed]

J. J. Hunter, J. I. Morgan, W. H. Merigan, D. H. Sliney, J. R. Sparrow, and D. R. Williams, “The susceptibility of the retina to photochemical damage from visible light,” Prog. Retin. Eye Res. 31(1), 28–42 (2012).
[Crossref] [PubMed]

A. Uji, M. Hangai, S. Ooto, K. Takayama, N. Arakawa, H. Imamura, K. Nozato, and N. Yoshimura, “The source of moving particles in parafoveal capillaries detected by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 53(1), 171–178 (2012).
[Crossref] [PubMed]

T. Y. Chui, D. A. Vannasdale, and S. A. Burns, “The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2537–2549 (2012).
[Crossref] [PubMed]

P. Bedggood and A. Metha, “Direct visualization and characterization of erythrocyte flow in human retinal capillaries,” Biomed. Opt. Express 3(12), 3264–3277 (2012).
[Crossref] [PubMed]

R. S. Sprague and M. L. Ellsworth, “Erythrocyte-derived ATP and perfusion distribution: role of intracellular and intercellular communication,” Microcirculation 19(5), 430–439 (2012).
[Crossref] [PubMed]

2011 (4)

Z. Zhong, H. Song, T. Y. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011).
[Crossref] [PubMed]

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011).
[Crossref] [PubMed]

J. Tam, P. Tiruveedhula, and A. Roorda, “Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(4), 781–793 (2011).
[Crossref] [PubMed]

J. Tam and A. Roorda, “Speed quantification and tracking of moving objects in adaptive optics scanning laser ophthalmoscopy,” J. Biomed. Opt. 16(3), 036002 (2011).
[Crossref] [PubMed]

2010 (6)

M. T. Wong-Riley, “Energy metabolism of the visual system,” Eye Brain 2, 99–116 (2010).
[Crossref] [PubMed]

A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front. Neuroenergetics 2010, 2 (2010).
[Crossref] [PubMed]

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta Ophthalmol. 88(7), 723–729 (2010).
[Crossref] [PubMed]

D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar, and E. A. Newman, “Glial and neuronal control of brain blood flow,” Nature 468(7321), 232–243 (2010).
[Crossref] [PubMed]

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt. 15(5), 056014 (2010).
[Crossref] [PubMed]

A. G. Koutsiaris, S. V. Tachmitzi, P. Papavasileiou, N. Batis, M. G. Kotoula, A. D. Giannoukas, and E. Tsironi, “Blood velocity pulse quantification in the human conjunctival pre-capillary arterioles,” Microvasc. Res. 80(2), 202–208 (2010).
[Crossref] [PubMed]

2009 (5)

S. Yuan and J. Sasian, “Aberrations of anamorphic optical systems. I: The first-order foundation and method for deriving the anamorphic primary aberration coefficients,” Appl. Opt. 48(13), 2574–2584 (2009).
[Crossref] [PubMed]

S. Yuan and J. Sasian, “Aberrations of anamorphic optical systems. II. Primary aberration theory for cylindrical anamorphic systems,” Appl. Opt. 48(15), 2836–2841 (2009).
[Crossref] [PubMed]

M. L. Ellsworth, C. G. Ellis, D. Goldman, A. H. Stephenson, H. H. Dietrich, and R. S. Sprague, “Erythrocytes: oxygen sensors and modulators of vascular tone,” Physiology (Bethesda) 24(2), 107–116 (2009).
[Crossref] [PubMed]

J. A. Martin and A. Roorda, “Pulsatility of parafoveal capillary leukocytes,” Exp. Eye Res. 88(3), 356–360 (2009).
[Crossref] [PubMed]

D. Izhaky, D. A. Nelson, Z. Burgansky-Eliash, and A. Grinvald, “Functional imaging using the retinal function imager: Direct imaging of blood velocity, achieving fluorescein angiography-like images without any contrast agent, qualitative oximetry, and functional metabolic signals,” Jpn. J. Ophthalmol. 53(4), 345–351 (2009).
[Crossref] [PubMed]

2008 (4)

R. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008).
[Crossref] [PubMed]

C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye Res. 27(3), 284–330 (2008).
[Crossref] [PubMed]

M. L. Baker, P. J. Hand, J. J. Wang, and T. Y. Wong, “Retinal signs and stroke: revisiting the link between the eye and brain,” Stroke 39(4), 1371–1379 (2008).
[Crossref] [PubMed]

Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express 16(17), 12746–12756 (2008).
[Crossref] [PubMed]

2007 (3)

F. C. Delori, R. H. Webb, D. H. Sliney, and American National Standards Institute, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007).
[Crossref] [PubMed]

F. Berisha, G. T. Feke, C. L. Trempe, J. W. McMeel, and C. L. Schepens, “Retinal abnormalities in early Alzheimer’s disease,” Invest. Ophthalmol. Vis. Sci. 48(5), 2285–2289 (2007).
[Crossref] [PubMed]

M. Meinke, G. Müller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12(1), 014024 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (2)

J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112(12), 2219–2224 (2005).
[Crossref] [PubMed]

N. Patton, T. Aslam, T. Macgillivray, A. Pattie, I. J. Deary, and B. Dhillon, “Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures,” J. Anat. 206(4), 319–348 (2005).
[Crossref] [PubMed]

2004 (1)

M. Emre, S. Orgül, K. Gugleta, and J. Flammer, “Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation,” Br. J. Ophthalmol. 88(5), 662–666 (2004).
[Crossref] [PubMed]

2003 (1)

2002 (1)

2001 (1)

N. Chapman, N. Witt, X. Gao, A. A. Bharath, A. V. Stanton, S. A. Thom, and A. D. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol. 85(1), 74–79 (2001).
[Crossref] [PubMed]

1998 (1)

P. S. Jensen and M. R. Glucksberg, “Regional variation in capillary hemodynamics in the cat retina,” Invest. Ophthalmol. Vis. Sci. 39(2), 407–415 (1998).
[PubMed]

1997 (1)

1996 (1)

J. Ben-nun, “Comparative flow velocity of erythrocytes and leukocytes in feline retinal capillaries,” Invest. Ophthalmol. Vis. Sci. 37(9), 1854–1859 (1996).
[PubMed]

1995 (2)

H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, and Y. Honda, “Quantitative evaluation of leukocyte dynamics in retinal microcirculation,” Invest. Ophthalmol. Vis. Sci. 36(1), 123–130 (1995).
[PubMed]

K. Fillacier, G. A. Peyman, Q. Luo, and B. Khoobehi, “Study of lymphocyte dynamics in the ocular circulation: technique of labeling cells,” Curr. Eye Res. 14(7), 579–584 (1995).
[Crossref] [PubMed]

1991 (1)

1980 (2)

G. W. Schmid-Schönbein, Y. Y. Shih, and S. Chien, “Morphometry of human leukocytes,” Blood 56(5), 866–875 (1980).
[PubMed]

C. E. Riva and B. Petrig, “Blue field entoptic phenomenon and blood velocity in the retinal capillaries,” J. Opt. Soc. Am. 70(10), 1234–1238 (1980).
[Crossref] [PubMed]

1978 (1)

1962 (1)

H. Wilkens, W. Regelson, and F. S. Hoffmeister, “The physiolgic importance of pulsatile blood flow,” N. Engl. J. Med. 267(9), 443–446 (1962).
[Crossref] [PubMed]

Aalders, M. C.

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Aiello, L. P.

Ait-Aissa, K.

D. D. Gutterman, D. S. Chabowski, A. O. Kadlec, M. J. Durand, J. K. Freed, K. Ait-Aissa, and A. M. Beyer, “The human microcirculation: regulation of flow and beyond,” Circ. Res. 118(1), 157–172 (2016).
[Crossref] [PubMed]

Akagi, T.

Y. Iida, T. Akagi, H. Nakanishi, H. Ohashi Ikeda, S. Morooka, K. Suda, T. Hasegawa, S. Yokota, M. Yoshikawa, A. Uji, and N. Yoshimura, “Retinal Blood Flow Velocity Change in Parafoveal Capillary after Topical Tafluprost Treatment in Eyes with Primary Open-angle Glaucoma,” Sci. Rep. 7(1), 5019 (2017).
[Crossref] [PubMed]

Ang, M.

M. Ang, A. C. S. Tan, C. M. G. Cheung, P. A. Keane, R. Dolz-Marco, C. C. A. Sng, and L. Schmetterer, “Optical coherence tomography angiography: a review of current and future clinical applications,” Graefes Arch. Clin. Exp. Ophthalmol. 256(2), 237–245 (2018).
[Crossref] [PubMed]

Antonetti, D. A.

D. A. Antonetti, R. Klein, and T. W. Gardner, “Diabetic retinopathy,” N. Engl. J. Med. 366(13), 1227–1239 (2012).
[Crossref] [PubMed]

Araie, M.

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta Ophthalmol. 88(7), 723–729 (2010).
[Crossref] [PubMed]

Arakawa, N.

A. Uji, M. Hangai, S. Ooto, K. Takayama, N. Arakawa, H. Imamura, K. Nozato, and N. Yoshimura, “The source of moving particles in parafoveal capillaries detected by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 53(1), 171–178 (2012).
[Crossref] [PubMed]

Arathorn, D. W.

Arichika, S.

S. Arichika, A. Uji, S. Ooto, K. Miyamoto, and N. Yoshimura, “Adaptive optics-assisted identification of preferential erythrocyte aggregate pathways in the human retinal microvasculature,” PLoS One 9(2), e89679 (2014).
[Crossref] [PubMed]

S. Arichika, A. Uji, T. Murakami, N. Unoki, S. Yoshitake, Y. Dodo, S. Ooto, K. Miyamoto, and N. Yoshimura, “Retinal hemorheologic characterization of early-stage diabetic retinopathy using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 55(12), 8513–8522 (2014).
[Crossref] [PubMed]

S. Arichika, A. Uji, M. Hangai, S. Ooto, and N. Yoshimura, “Noninvasive and direct monitoring of erythrocyte aggregates in human retinal microvasculature using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 54(6), 4394–4402 (2013).
[Crossref] [PubMed]

Artal, P.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Aslam, T.

N. Patton, T. Aslam, T. Macgillivray, A. Pattie, I. J. Deary, and B. Dhillon, “Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures,” J. Anat. 206(4), 319–348 (2005).
[Crossref] [PubMed]

Atchison, D. A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Attwell, D.

D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar, and E. A. Newman, “Glial and neuronal control of brain blood flow,” Nature 468(7321), 232–243 (2010).
[Crossref] [PubMed]

Bailey, S. T.

N. Hussain, A. Hussain, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical Coherence Tomography Angiography,” Int J Retina Vitreous 2(OCT), 27–36 (2016).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Baker, M. L.

M. L. Baker, P. J. Hand, J. J. Wang, and T. Y. Wong, “Retinal signs and stroke: revisiting the link between the eye and brain,” Stroke 39(4), 1371–1379 (2008).
[Crossref] [PubMed]

Barak, A.

Z. Burgansky-Eliash, H. Barash, D. Nelson, A. Grinvald, A. Sorkin, A. Loewenstein, and A. Barak, “Retinal blood flow velocity in patients with age-related macular degeneration,” Curr. Eye Res. 39(3), 304–311 (2014).
[Crossref] [PubMed]

Barash, H.

Z. Burgansky-Eliash, H. Barash, D. Nelson, A. Grinvald, A. Sorkin, A. Loewenstein, and A. Barak, “Retinal blood flow velocity in patients with age-related macular degeneration,” Curr. Eye Res. 39(3), 304–311 (2014).
[Crossref] [PubMed]

Batis, N.

A. G. Koutsiaris, S. V. Tachmitzi, P. Papavasileiou, N. Batis, M. G. Kotoula, A. D. Giannoukas, and E. Tsironi, “Blood velocity pulse quantification in the human conjunctival pre-capillary arterioles,” Microvasc. Res. 80(2), 202–208 (2010).
[Crossref] [PubMed]

Bauernschubert, P.

M. Ritt, J. M. Harazny, C. Ott, U. Raff, P. Bauernschubert, M. Lehmann, G. Michelson, and R. E. Schmieder, “Impaired increase of retinal capillary blood flow to flicker light exposure in arterial hypertension,” Hypertension 60(3), 871–876 (2012).
[Crossref] [PubMed]

Baumann, B.

Bedggood, P.

Ben-nun, J.

J. Ben-nun, “Comparative flow velocity of erythrocytes and leukocytes in feline retinal capillaries,” Invest. Ophthalmol. Vis. Sci. 37(9), 1854–1859 (1996).
[PubMed]

Berisha, F.

F. Berisha, G. T. Feke, C. L. Trempe, J. W. McMeel, and C. L. Schepens, “Retinal abnormalities in early Alzheimer’s disease,” Invest. Ophthalmol. Vis. Sci. 48(5), 2285–2289 (2007).
[Crossref] [PubMed]

Bernabeu, M. O.

Beyer, A. M.

D. D. Gutterman, D. S. Chabowski, A. O. Kadlec, M. J. Durand, J. K. Freed, K. Ait-Aissa, and A. M. Beyer, “The human microcirculation: regulation of flow and beyond,” Circ. Res. 118(1), 157–172 (2016).
[Crossref] [PubMed]

Bharath, A. A.

N. Chapman, N. Witt, X. Gao, A. A. Bharath, A. V. Stanton, S. A. Thom, and A. D. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol. 85(1), 74–79 (2001).
[Crossref] [PubMed]

Blanco, E. R.

T. Zhang, P. Godara, E. R. Blanco, R. L. Griffin, X. Wang, C. A. Curcio, and Y. Zhang, “Variability in human cone topography assessed by adaptive optics scanning laser ophthalmoscopy,” Am. J. Ophthalmol. 160(2), 290–300 (2015).
[Crossref] [PubMed]

Blatter, C.

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

Bosschaart, N.

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Bouma, B.

Bruestle, J.

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011).
[Crossref] [PubMed]

Buchan, A. M.

D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar, and E. A. Newman, “Glial and neuronal control of brain blood flow,” Nature 468(7321), 232–243 (2010).
[Crossref] [PubMed]

Burgansky-Eliash, Z.

Z. Burgansky-Eliash, H. Barash, D. Nelson, A. Grinvald, A. Sorkin, A. Loewenstein, and A. Barak, “Retinal blood flow velocity in patients with age-related macular degeneration,” Curr. Eye Res. 39(3), 304–311 (2014).
[Crossref] [PubMed]

D. Izhaky, D. A. Nelson, Z. Burgansky-Eliash, and A. Grinvald, “Functional imaging using the retinal function imager: Direct imaging of blood velocity, achieving fluorescein angiography-like images without any contrast agent, qualitative oximetry, and functional metabolic signals,” Jpn. J. Ophthalmol. 53(4), 345–351 (2009).
[Crossref] [PubMed]

Burns, S. A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

A. de Castro, G. Huang, L. Sawides, T. Luo, and S. A. Burns, “Rapid high resolution imaging with a dual-channel scanning technique,” Opt. Lett. 41(8), 1881–1884 (2016).
[Crossref] [PubMed]

T. Y. Chui, D. A. Vannasdale, and S. A. Burns, “The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2537–2549 (2012).
[Crossref] [PubMed]

Z. Zhong, H. Song, T. Y. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011).
[Crossref] [PubMed]

Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express 16(17), 12746–12756 (2008).
[Crossref] [PubMed]

Cai, C. C.

Campbell, M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[Crossref] [PubMed]

Carroll, J.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Cense, B.

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011).
[Crossref] [PubMed]

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
[Crossref] [PubMed]

Chabowski, D. S.

D. D. Gutterman, D. S. Chabowski, A. O. Kadlec, M. J. Durand, J. K. Freed, K. Ait-Aissa, and A. M. Beyer, “The human microcirculation: regulation of flow and beyond,” Circ. Res. 118(1), 157–172 (2016).
[Crossref] [PubMed]

Chapman, N.

N. Chapman, N. Witt, X. Gao, A. A. Bharath, A. V. Stanton, S. A. Thom, and A. D. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol. 85(1), 74–79 (2001).
[Crossref] [PubMed]

Charpak, S.

D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar, and E. A. Newman, “Glial and neuronal control of brain blood flow,” Nature 468(7321), 232–243 (2010).
[Crossref] [PubMed]

Chen, T.

Chen, Y.

T. N. Kim, P. W. Goodwill, Y. Chen, S. M. Conolly, C. B. Schaffer, D. Liepmann, and R. A. Wang, “Line-scanning particle image velocimetry: an optical approach for quantifying a wide range of blood flow speeds in live animals,” PLoS One 7(6), e38590 (2012).
[Crossref] [PubMed]

Cheung, C. M. G.

M. Ang, A. C. S. Tan, C. M. G. Cheung, P. A. Keane, R. Dolz-Marco, C. C. A. Sng, and L. Schmetterer, “Optical coherence tomography angiography: a review of current and future clinical applications,” Graefes Arch. Clin. Exp. Ophthalmol. 256(2), 237–245 (2018).
[Crossref] [PubMed]

Chien, S.

G. W. Schmid-Schönbein, Y. Y. Shih, and S. Chien, “Morphometry of human leukocytes,” Blood 56(5), 866–875 (1980).
[PubMed]

Choi, S. S.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Choi, W.

Chui, T. Y.

T. Y. Chui, D. A. Vannasdale, and S. A. Burns, “The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2537–2549 (2012).
[Crossref] [PubMed]

Z. Zhong, H. Song, T. Y. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011).
[Crossref] [PubMed]

Clermont, A. C.

Conolly, S. M.

T. N. Kim, P. W. Goodwill, Y. Chen, S. M. Conolly, C. B. Schaffer, D. Liepmann, and R. A. Wang, “Line-scanning particle image velocimetry: an optical approach for quantifying a wide range of blood flow speeds in live animals,” PLoS One 7(6), e38590 (2012).
[Crossref] [PubMed]

Cornelius, N. R.

T. P. Santisakultarm, N. R. Cornelius, N. Nishimura, A. I. Schafer, R. T. Silver, P. C. Doerschuk, W. L. Olbricht, and C. B. Schaffer, “In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice,” Am. J. Physiol. Heart Circ. Physiol. 302(7), H1367–H1377 (2012).
[Crossref] [PubMed]

Curcio, C. A.

T. Zhang, P. Godara, E. R. Blanco, R. L. Griffin, X. Wang, C. A. Curcio, and Y. Zhang, “Variability in human cone topography assessed by adaptive optics scanning laser ophthalmoscopy,” Am. J. Ophthalmol. 160(2), 290–300 (2015).
[Crossref] [PubMed]

A. Meadway, X. Wang, C. A. Curcio, and Y. Zhang, “Microstructure of subretinal drusenoid deposits revealed by adaptive optics imaging,” Biomed. Opt. Express 5(3), 713–727 (2014).
[Crossref] [PubMed]

Dai, C.

C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(13), 7998–8003 (2013).
[Crossref] [PubMed]

de Boer, J.

de Castro, A.

Deary, I. J.

N. Patton, T. Aslam, T. Macgillivray, A. Pattie, I. J. Deary, and B. Dhillon, “Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures,” J. Anat. 206(4), 319–348 (2005).
[Crossref] [PubMed]

Delori, F. C.

Dhillon, B.

N. Patton, T. Aslam, T. Macgillivray, A. Pattie, I. J. Deary, and B. Dhillon, “Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures,” J. Anat. 206(4), 319–348 (2005).
[Crossref] [PubMed]

Dietrich, H. H.

M. L. Ellsworth, C. G. Ellis, D. Goldman, A. H. Stephenson, H. H. Dietrich, and R. S. Sprague, “Erythrocytes: oxygen sensors and modulators of vascular tone,” Physiology (Bethesda) 24(2), 107–116 (2009).
[Crossref] [PubMed]

Doble, N.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Dodo, Y.

S. Arichika, A. Uji, T. Murakami, N. Unoki, S. Yoshitake, Y. Dodo, S. Ooto, K. Miyamoto, and N. Yoshimura, “Retinal hemorheologic characterization of early-stage diabetic retinopathy using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 55(12), 8513–8522 (2014).
[Crossref] [PubMed]

Doerschuk, P. C.

T. P. Santisakultarm, N. R. Cornelius, N. Nishimura, A. I. Schafer, R. T. Silver, P. C. Doerschuk, W. L. Olbricht, and C. B. Schaffer, “In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice,” Am. J. Physiol. Heart Circ. Physiol. 302(7), H1367–H1377 (2012).
[Crossref] [PubMed]

Dolz-Marco, R.

M. Ang, A. C. S. Tan, C. M. G. Cheung, P. A. Keane, R. Dolz-Marco, C. C. A. Sng, and L. Schmetterer, “Optical coherence tomography angiography: a review of current and future clinical applications,” Graefes Arch. Clin. Exp. Ophthalmol. 256(2), 237–245 (2018).
[Crossref] [PubMed]

Donnelly Iii, W.

Dubis, A. M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Dubra, A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Duker, J. S.

Duncan, D. D.

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt. 15(5), 056014 (2010).
[Crossref] [PubMed]

Duncan, J. L.

A. Roorda and J. L. Duncan, “Adaptive optics ophthalmoscopy,” Annu Rev Vis Sci 1(1), 19–50 (2015).
[Crossref] [PubMed]

Durand, M. J.

D. D. Gutterman, D. S. Chabowski, A. O. Kadlec, M. J. Durand, J. K. Freed, K. Ait-Aissa, and A. M. Beyer, “The human microcirculation: regulation of flow and beyond,” Circ. Res. 118(1), 157–172 (2016).
[Crossref] [PubMed]

Edelman, G. J.

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Ellis, C. G.

M. L. Ellsworth, C. G. Ellis, D. Goldman, A. H. Stephenson, H. H. Dietrich, and R. S. Sprague, “Erythrocytes: oxygen sensors and modulators of vascular tone,” Physiology (Bethesda) 24(2), 107–116 (2009).
[Crossref] [PubMed]

Ellsworth, M. L.

R. S. Sprague and M. L. Ellsworth, “Erythrocyte-derived ATP and perfusion distribution: role of intracellular and intercellular communication,” Microcirculation 19(5), 430–439 (2012).
[Crossref] [PubMed]

M. L. Ellsworth, C. G. Ellis, D. Goldman, A. H. Stephenson, H. H. Dietrich, and R. S. Sprague, “Erythrocytes: oxygen sensors and modulators of vascular tone,” Physiology (Bethesda) 24(2), 107–116 (2009).
[Crossref] [PubMed]

Elsner, A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Emre, M.

M. Emre, S. Orgül, K. Gugleta, and J. Flammer, “Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation,” Br. J. Ophthalmol. 88(5), 662–666 (2004).
[Crossref] [PubMed]

Faber, D. J.

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Federau, C.

C. Federau, P. Hagmann, P. Maeder, M. Müller, R. Meuli, M. Stuber, and K. O’Brien, “Dependence of brain intravoxel incoherent motion perfusion parameters on the cardiac cycle,” PLoS One 8(8), e72856 (2013).
[Crossref] [PubMed]

Feener, E. P.

Feke, G. T.

G. T. Feke, B. T. Hyman, R. A. Stern, and L. R. Pasquale, “Retinal blood flow in mild cognitive impairment and Alzheimer’s disease,” Alzheimers Dement (Amst) 1(2), 144–151 (2015).
[Crossref] [PubMed]

F. Berisha, G. T. Feke, C. L. Trempe, J. W. McMeel, and C. L. Schepens, “Retinal abnormalities in early Alzheimer’s disease,” Invest. Ophthalmol. Vis. Sci. 48(5), 2285–2289 (2007).
[Crossref] [PubMed]

G. T. Feke and C. E. Riva, “Laser Doppler measurements of blood velocity in human retinal vessels,” J. Opt. Soc. Am. 68(4), 526–531 (1978).
[Crossref] [PubMed]

Fillacier, K.

K. Fillacier, G. A. Peyman, Q. Luo, and B. Khoobehi, “Study of lymphocyte dynamics in the ocular circulation: technique of labeling cells,” Curr. Eye Res. 14(7), 579–584 (1995).
[Crossref] [PubMed]

Flammer, J.

M. Emre, S. Orgül, K. Gugleta, and J. Flammer, “Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation,” Br. J. Ophthalmol. 88(5), 662–666 (2004).
[Crossref] [PubMed]

Flaxel, C. J.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Flower, R.

R. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008).
[Crossref] [PubMed]

Franco, C. A.

Freed, J. K.

D. D. Gutterman, D. S. Chabowski, A. O. Kadlec, M. J. Durand, J. K. Freed, K. Ait-Aissa, and A. M. Beyer, “The human microcirculation: regulation of flow and beyond,” Circ. Res. 118(1), 157–172 (2016).
[Crossref] [PubMed]

Friebel, M.

M. Meinke, G. Müller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12(1), 014024 (2007).
[Crossref] [PubMed]

Fujimoto, J. G.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express 3(5), 1047–1061 (2012).
[Crossref] [PubMed]

Gao, S. S.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Gao, W.

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011).
[Crossref] [PubMed]

Gao, X.

N. Chapman, N. Witt, X. Gao, A. A. Bharath, A. V. Stanton, S. A. Thom, and A. D. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol. 85(1), 74–79 (2001).
[Crossref] [PubMed]

Gardner, T. W.

D. A. Antonetti, R. Klein, and T. W. Gardner, “Diabetic retinopathy,” N. Engl. J. Med. 366(13), 1227–1239 (2012).
[Crossref] [PubMed]

Gershteyn, A.

H. S. Wei, H. Kang, I. D. Rasheed, S. Zhou, N. Lou, A. Gershteyn, E. D. McConnell, Y. Wang, K. E. Richardson, A. F. Palmer, C. Xu, J. Wan, and M. Nedergaard, “Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation,” Neuron 91(4), 851–862 (2016).
[Crossref] [PubMed]

Giannoukas, A. D.

A. G. Koutsiaris, S. V. Tachmitzi, P. Papavasileiou, N. Batis, M. G. Kotoula, A. D. Giannoukas, and E. Tsironi, “Blood velocity pulse quantification in the human conjunctival pre-capillary arterioles,” Microvasc. Res. 80(2), 202–208 (2010).
[Crossref] [PubMed]

Girkin, C. A.

Glucksberg, M. R.

P. S. Jensen and M. R. Glucksberg, “Regional variation in capillary hemodynamics in the cat retina,” Invest. Ophthalmol. Vis. Sci. 39(2), 407–415 (1998).
[PubMed]

Godara, P.

T. Zhang, P. Godara, E. R. Blanco, R. L. Griffin, X. Wang, C. A. Curcio, and Y. Zhang, “Variability in human cone topography assessed by adaptive optics scanning laser ophthalmoscopy,” Am. J. Ophthalmol. 160(2), 290–300 (2015).
[Crossref] [PubMed]

Goldman, D.

M. L. Ellsworth, C. G. Ellis, D. Goldman, A. H. Stephenson, H. H. Dietrich, and R. S. Sprague, “Erythrocytes: oxygen sensors and modulators of vascular tone,” Physiology (Bethesda) 24(2), 107–116 (2009).
[Crossref] [PubMed]

Goodwill, P. W.

T. N. Kim, P. W. Goodwill, Y. Chen, S. M. Conolly, C. B. Schaffer, D. Liepmann, and R. A. Wang, “Line-scanning particle image velocimetry: an optical approach for quantifying a wide range of blood flow speeds in live animals,” PLoS One 7(6), e38590 (2012).
[Crossref] [PubMed]

Griffin, R. L.

T. Zhang, P. Godara, E. R. Blanco, R. L. Griffin, X. Wang, C. A. Curcio, and Y. Zhang, “Variability in human cone topography assessed by adaptive optics scanning laser ophthalmoscopy,” Am. J. Ophthalmol. 160(2), 290–300 (2015).
[Crossref] [PubMed]

Grinvald, A.

L. Wang, H. Jiang, A. Grinvald, C. Jayadev, and J. Wang, “A mini review of clinical and research applications of the retinal function imager,” Curr. Eye Res. 43(3), 273–288 (2018).
[Crossref] [PubMed]

Z. Burgansky-Eliash, H. Barash, D. Nelson, A. Grinvald, A. Sorkin, A. Loewenstein, and A. Barak, “Retinal blood flow velocity in patients with age-related macular degeneration,” Curr. Eye Res. 39(3), 304–311 (2014).
[Crossref] [PubMed]

D. Izhaky, D. A. Nelson, Z. Burgansky-Eliash, and A. Grinvald, “Functional imaging using the retinal function imager: Direct imaging of blood velocity, achieving fluorescein angiography-like images without any contrast agent, qualitative oximetry, and functional metabolic signals,” Jpn. J. Ophthalmol. 53(4), 345–351 (2009).
[Crossref] [PubMed]

Gross, J.

A. Koustenis, A. Harris, J. Gross, I. Januleviciene, A. Shah, and B. Siesky, “Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research,” Br. J. Ophthalmol. 101(1), 16–20 (2017).
[Crossref] [PubMed]

Gryczynski, I.

R. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008).
[Crossref] [PubMed]

Gryczynski, Z.

R. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008).
[Crossref] [PubMed]

Gu, B.

Guevara-Torres, A.

Gugleta, K.

M. Emre, S. Orgül, K. Gugleta, and J. Flammer, “Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation,” Br. J. Ophthalmol. 88(5), 662–666 (2004).
[Crossref] [PubMed]

Gutterman, D. D.

D. D. Gutterman, D. S. Chabowski, A. O. Kadlec, M. J. Durand, J. K. Freed, K. Ait-Aissa, and A. M. Beyer, “The human microcirculation: regulation of flow and beyond,” Circ. Res. 118(1), 157–172 (2016).
[Crossref] [PubMed]

Hagmann, P.

C. Federau, P. Hagmann, P. Maeder, M. Müller, R. Meuli, M. Stuber, and K. O’Brien, “Dependence of brain intravoxel incoherent motion perfusion parameters on the cardiac cycle,” PLoS One 8(8), e72856 (2013).
[Crossref] [PubMed]

Hampson, K. M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Hand, P. J.

M. L. Baker, P. J. Hand, J. J. Wang, and T. Y. Wong, “Retinal signs and stroke: revisiting the link between the eye and brain,” Stroke 39(4), 1371–1379 (2008).
[Crossref] [PubMed]

Hangai, M.

S. Arichika, A. Uji, M. Hangai, S. Ooto, and N. Yoshimura, “Noninvasive and direct monitoring of erythrocyte aggregates in human retinal microvasculature using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 54(6), 4394–4402 (2013).
[Crossref] [PubMed]

A. Uji, M. Hangai, S. Ooto, K. Takayama, N. Arakawa, H. Imamura, K. Nozato, and N. Yoshimura, “The source of moving particles in parafoveal capillaries detected by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 53(1), 171–178 (2012).
[Crossref] [PubMed]

Harazny, J. M.

M. Ritt, J. M. Harazny, C. Ott, U. Raff, P. Bauernschubert, M. Lehmann, G. Michelson, and R. E. Schmieder, “Impaired increase of retinal capillary blood flow to flicker light exposure in arterial hypertension,” Hypertension 60(3), 871–876 (2012).
[Crossref] [PubMed]

Hardarson, S. H.

C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye Res. 27(3), 284–330 (2008).
[Crossref] [PubMed]

Harris, A.

A. Koustenis, A. Harris, J. Gross, I. Januleviciene, A. Shah, and B. Siesky, “Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research,” Br. J. Ophthalmol. 101(1), 16–20 (2017).
[Crossref] [PubMed]

Hasegawa, T.

Y. Iida, T. Akagi, H. Nakanishi, H. Ohashi Ikeda, S. Morooka, K. Suda, T. Hasegawa, S. Yokota, M. Yoshikawa, A. Uji, and N. Yoshimura, “Retinal Blood Flow Velocity Change in Parafoveal Capillary after Topical Tafluprost Treatment in Eyes with Primary Open-angle Glaucoma,” Sci. Rep. 7(1), 5019 (2017).
[Crossref] [PubMed]

Hebert, T.

Helfmann, J.

M. Meinke, G. Müller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12(1), 014024 (2007).
[Crossref] [PubMed]

Hiller, M.

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt. 15(5), 056014 (2010).
[Crossref] [PubMed]

Hoffmeister, F. S.

H. Wilkens, W. Regelson, and F. S. Hoffmeister, “The physiolgic importance of pulsatile blood flow,” N. Engl. J. Med. 267(9), 443–446 (1962).
[Crossref] [PubMed]

Honda, Y.

H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, and Y. Honda, “Quantitative evaluation of leukocyte dynamics in retinal microcirculation,” Invest. Ophthalmol. Vis. Sci. 36(1), 123–130 (1995).
[PubMed]

Hornegger, J.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Huang, D.

N. Hussain, A. Hussain, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical Coherence Tomography Angiography,” Int J Retina Vitreous 2(OCT), 27–36 (2016).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Huang, G.

Hughes, A. D.

N. Chapman, N. Witt, X. Gao, A. A. Bharath, A. V. Stanton, S. A. Thom, and A. D. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol. 85(1), 74–79 (2001).
[Crossref] [PubMed]

Hunter, J.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Hunter, J. J.

J. J. Hunter, J. I. Morgan, W. H. Merigan, D. H. Sliney, J. R. Sparrow, and D. R. Williams, “The susceptibility of the retina to photochemical damage from visible light,” Prog. Retin. Eye Res. 31(1), 28–42 (2012).
[Crossref] [PubMed]

Hussain, A.

N. Hussain, A. Hussain, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical Coherence Tomography Angiography,” Int J Retina Vitreous 2(OCT), 27–36 (2016).
[Crossref] [PubMed]

Hussain, N.

N. Hussain, A. Hussain, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical Coherence Tomography Angiography,” Int J Retina Vitreous 2(OCT), 27–36 (2016).
[Crossref] [PubMed]

Hwang, T. S.

N. Hussain, A. Hussain, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical Coherence Tomography Angiography,” Int J Retina Vitreous 2(OCT), 27–36 (2016).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Hyman, B. T.

G. T. Feke, B. T. Hyman, R. A. Stern, and L. R. Pasquale, “Retinal blood flow in mild cognitive impairment and Alzheimer’s disease,” Alzheimers Dement (Amst) 1(2), 144–151 (2015).
[Crossref] [PubMed]

Ibrahim, M.

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt. 15(5), 056014 (2010).
[Crossref] [PubMed]

Iida, Y.

Y. Iida, T. Akagi, H. Nakanishi, H. Ohashi Ikeda, S. Morooka, K. Suda, T. Hasegawa, S. Yokota, M. Yoshikawa, A. Uji, and N. Yoshimura, “Retinal Blood Flow Velocity Change in Parafoveal Capillary after Topical Tafluprost Treatment in Eyes with Primary Open-angle Glaucoma,” Sci. Rep. 7(1), 5019 (2017).
[Crossref] [PubMed]

Imamura, H.

A. Uji, M. Hangai, S. Ooto, K. Takayama, N. Arakawa, H. Imamura, K. Nozato, and N. Yoshimura, “The source of moving particles in parafoveal capillaries detected by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 53(1), 171–178 (2012).
[Crossref] [PubMed]

Izhaky, D.

D. Izhaky, D. A. Nelson, Z. Burgansky-Eliash, and A. Grinvald, “Functional imaging using the retinal function imager: Direct imaging of blood velocity, achieving fluorescein angiography-like images without any contrast agent, qualitative oximetry, and functional metabolic signals,” Jpn. J. Ophthalmol. 53(4), 345–351 (2009).
[Crossref] [PubMed]

Januleviciene, I.

A. Koustenis, A. Harris, J. Gross, I. Januleviciene, A. Shah, and B. Siesky, “Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research,” Br. J. Ophthalmol. 101(1), 16–20 (2017).
[Crossref] [PubMed]

Jayadev, C.

L. Wang, H. Jiang, A. Grinvald, C. Jayadev, and J. Wang, “A mini review of clinical and research applications of the retinal function imager,” Curr. Eye Res. 43(3), 273–288 (2018).
[Crossref] [PubMed]

Jensen, P. S.

P. S. Jensen and M. R. Glucksberg, “Regional variation in capillary hemodynamics in the cat retina,” Invest. Ophthalmol. Vis. Sci. 39(2), 407–415 (1998).
[PubMed]

Jia, Y.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Jiang, H.

L. Wang, H. Jiang, A. Grinvald, C. Jayadev, and J. Wang, “A mini review of clinical and research applications of the retinal function imager,” Curr. Eye Res. 43(3), 273–288 (2018).
[Crossref] [PubMed]

Jiao, S.

C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(13), 7998–8003 (2013).
[Crossref] [PubMed]

Jones, M. L.

Jonnal, R.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Jonnal, R. S.

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011).
[Crossref] [PubMed]

Joseph, A.

Kadlec, A. O.

D. D. Gutterman, D. S. Chabowski, A. O. Kadlec, M. J. Durand, J. K. Freed, K. Ait-Aissa, and A. M. Beyer, “The human microcirculation: regulation of flow and beyond,” Circ. Res. 118(1), 157–172 (2016).
[Crossref] [PubMed]

Kang, H.

H. S. Wei, H. Kang, I. D. Rasheed, S. Zhou, N. Lou, A. Gershteyn, E. D. McConnell, Y. Wang, K. E. Richardson, A. F. Palmer, C. Xu, J. Wan, and M. Nedergaard, “Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation,” Neuron 91(4), 851–862 (2016).
[Crossref] [PubMed]

Keane, P. A.

M. Ang, A. C. S. Tan, C. M. G. Cheung, P. A. Keane, R. Dolz-Marco, C. C. A. Sng, and L. Schmetterer, “Optical coherence tomography angiography: a review of current and future clinical applications,” Graefes Arch. Clin. Exp. Ophthalmol. 256(2), 237–245 (2018).
[Crossref] [PubMed]

Khoobehi, B.

K. Fillacier, G. A. Peyman, Q. Luo, and B. Khoobehi, “Study of lymphocyte dynamics in the ocular circulation: technique of labeling cells,” Curr. Eye Res. 14(7), 579–584 (1995).
[Crossref] [PubMed]

Kim, T. N.

T. N. Kim, P. W. Goodwill, Y. Chen, S. M. Conolly, C. B. Schaffer, D. Liepmann, and R. A. Wang, “Line-scanning particle image velocimetry: an optical approach for quantifying a wide range of blood flow speeds in live animals,” PLoS One 7(6), e38590 (2012).
[Crossref] [PubMed]

Kimura, H.

H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, and Y. Honda, “Quantitative evaluation of leukocyte dynamics in retinal microcirculation,” Invest. Ophthalmol. Vis. Sci. 36(1), 123–130 (1995).
[PubMed]

Kiryu, J.

H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, and Y. Honda, “Quantitative evaluation of leukocyte dynamics in retinal microcirculation,” Invest. Ophthalmol. Vis. Sci. 36(1), 123–130 (1995).
[PubMed]

Klein, R.

D. A. Antonetti, R. Klein, and T. W. Gardner, “Diabetic retinopathy,” N. Engl. J. Med. 366(13), 1227–1239 (2012).
[Crossref] [PubMed]

Kocaoglu, O. P.

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011).
[Crossref] [PubMed]

Kornfield, T. E.

T. E. Kornfield and E. A. Newman, “Measurement of retinal blood flow using fluorescently labeled red blood cells,” eNeuro 2(2), 0005–0015 (2015).
[Crossref] [PubMed]

T. E. Kornfield and E. A. Newman, “Regulation of blood flow in the retinal trilaminar vascular network,” J. Neurosci. 34(34), 11504–11513 (2014).
[Crossref] [PubMed]

Kotoula, M. G.

A. G. Koutsiaris, S. V. Tachmitzi, P. Papavasileiou, N. Batis, M. G. Kotoula, A. D. Giannoukas, and E. Tsironi, “Blood velocity pulse quantification in the human conjunctival pre-capillary arterioles,” Microvasc. Res. 80(2), 202–208 (2010).
[Crossref] [PubMed]

Koustenis, A.

A. Koustenis, A. Harris, J. Gross, I. Januleviciene, A. Shah, and B. Siesky, “Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research,” Br. J. Ophthalmol. 101(1), 16–20 (2017).
[Crossref] [PubMed]

Koutsiaris, A. G.

A. G. Koutsiaris, S. V. Tachmitzi, P. Papavasileiou, N. Batis, M. G. Kotoula, A. D. Giannoukas, and E. Tsironi, “Blood velocity pulse quantification in the human conjunctival pre-capillary arterioles,” Microvasc. Res. 80(2), 202–208 (2010).
[Crossref] [PubMed]

Kudla, M. J.

M. R. Martins, W. P. Martins, C. A. M. Soares, A. H. Miyague, M. J. Kudla, and T. Z. Pavan, “Understanding the influence of flow velocity, wall motion filter, pulse repetition frequency, and aliasing on power doppler image quantification,” J. Ultrasound Med. (2017).
[PubMed]

Kurth-Nelson, Z. L.

A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front. Neuroenergetics 2010, 2 (2010).
[Crossref] [PubMed]

Lammer, J.

Lauer, A. K.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Lauritzen, M.

D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar, and E. A. Newman, “Glial and neuronal control of brain blood flow,” Nature 468(7321), 232–243 (2010).
[Crossref] [PubMed]

Legras, R.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Lehmann, M.

M. Ritt, J. M. Harazny, C. Ott, U. Raff, P. Bauernschubert, M. Lehmann, G. Michelson, and R. E. Schmieder, “Impaired increase of retinal capillary blood flow to flicker light exposure in arterial hypertension,” Hypertension 60(3), 871–876 (2012).
[Crossref] [PubMed]

Leitgeb, R. A.

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

Lemaillet, P.

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt. 15(5), 056014 (2010).
[Crossref] [PubMed]

Liang, J.

Liepmann, D.

T. N. Kim, P. W. Goodwill, Y. Chen, S. M. Conolly, C. B. Schaffer, D. Liepmann, and R. A. Wang, “Line-scanning particle image velocimetry: an optical approach for quantifying a wide range of blood flow speeds in live animals,” PLoS One 7(6), e38590 (2012).
[Crossref] [PubMed]

Liu, G.

N. Hussain, A. Hussain, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical Coherence Tomography Angiography,” Int J Retina Vitreous 2(OCT), 27–36 (2016).
[Crossref] [PubMed]

Liu, J. J.

Liu, X.

C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(13), 7998–8003 (2013).
[Crossref] [PubMed]

Loewenstein, A.

Z. Burgansky-Eliash, H. Barash, D. Nelson, A. Grinvald, A. Sorkin, A. Loewenstein, and A. Barak, “Retinal blood flow velocity in patients with age-related macular degeneration,” Curr. Eye Res. 39(3), 304–311 (2014).
[Crossref] [PubMed]

Lou, N.

H. S. Wei, H. Kang, I. D. Rasheed, S. Zhou, N. Lou, A. Gershteyn, E. D. McConnell, Y. Wang, K. E. Richardson, A. F. Palmer, C. Xu, J. Wan, and M. Nedergaard, “Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation,” Neuron 91(4), 851–862 (2016).
[Crossref] [PubMed]

Lu, J.

Lu, Y.

Lundstrom, L.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Luo, Q.

K. Fillacier, G. A. Peyman, Q. Luo, and B. Khoobehi, “Study of lymphocyte dynamics in the ocular circulation: technique of labeling cells,” Curr. Eye Res. 14(7), 579–584 (1995).
[Crossref] [PubMed]

Luo, T.

Macgillivray, T.

N. Patton, T. Aslam, T. Macgillivray, A. Pattie, I. J. Deary, and B. Dhillon, “Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures,” J. Anat. 206(4), 319–348 (2005).
[Crossref] [PubMed]

Macvicar, B. A.

D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar, and E. A. Newman, “Glial and neuronal control of brain blood flow,” Nature 468(7321), 232–243 (2010).
[Crossref] [PubMed]

Maeder, P.

C. Federau, P. Hagmann, P. Maeder, M. Müller, R. Meuli, M. Stuber, and K. O’Brien, “Dependence of brain intravoxel incoherent motion perfusion parameters on the cardiac cycle,” PLoS One 8(8), e72856 (2013).
[Crossref] [PubMed]

Magnani, M.

R. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008).
[Crossref] [PubMed]

Marcos, S.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Martin, J. A.

J. A. Martin and A. Roorda, “Pulsatility of parafoveal capillary leukocytes,” Exp. Eye Res. 88(3), 356–360 (2009).
[Crossref] [PubMed]

J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112(12), 2219–2224 (2005).
[Crossref] [PubMed]

Martins, M. R.

M. R. Martins, W. P. Martins, C. A. M. Soares, A. H. Miyague, M. J. Kudla, and T. Z. Pavan, “Understanding the influence of flow velocity, wall motion filter, pulse repetition frequency, and aliasing on power doppler image quantification,” J. Ultrasound Med. (2017).
[PubMed]

Martins, W. P.

M. R. Martins, W. P. Martins, C. A. M. Soares, A. H. Miyague, M. J. Kudla, and T. Z. Pavan, “Understanding the influence of flow velocity, wall motion filter, pulse repetition frequency, and aliasing on power doppler image quantification,” J. Ultrasound Med. (2017).
[PubMed]

McClintic, S. M.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

McConnell, E. D.

H. S. Wei, H. Kang, I. D. Rasheed, S. Zhou, N. Lou, A. Gershteyn, E. D. McConnell, Y. Wang, K. E. Richardson, A. F. Palmer, C. Xu, J. Wan, and M. Nedergaard, “Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation,” Neuron 91(4), 851–862 (2016).
[Crossref] [PubMed]

McMeel, J. W.

F. Berisha, G. T. Feke, C. L. Trempe, J. W. McMeel, and C. L. Schepens, “Retinal abnormalities in early Alzheimer’s disease,” Invest. Ophthalmol. Vis. Sci. 48(5), 2285–2289 (2007).
[Crossref] [PubMed]

Meadway, A.

Meinke, M.

M. Meinke, G. Müller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12(1), 014024 (2007).
[Crossref] [PubMed]

Merigan, W. H.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

J. J. Hunter, J. I. Morgan, W. H. Merigan, D. H. Sliney, J. R. Sparrow, and D. R. Williams, “The susceptibility of the retina to photochemical damage from visible light,” Prog. Retin. Eye Res. 31(1), 28–42 (2012).
[Crossref] [PubMed]

Metha, A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

P. Bedggood and A. Metha, “Analysis of contrast and motion signals generated by human blood constituents in capillary flow,” Opt. Lett. 39(3), 610–613 (2014).
[Crossref] [PubMed]

P. Bedggood and A. Metha, “Direct visualization and characterization of erythrocyte flow in human retinal capillaries,” Biomed. Opt. Express 3(12), 3264–3277 (2012).
[Crossref] [PubMed]

Meuli, R.

C. Federau, P. Hagmann, P. Maeder, M. Müller, R. Meuli, M. Stuber, and K. O’Brien, “Dependence of brain intravoxel incoherent motion perfusion parameters on the cardiac cycle,” PLoS One 8(8), e72856 (2013).
[Crossref] [PubMed]

Michelson, G.

M. Ritt, J. M. Harazny, C. Ott, U. Raff, P. Bauernschubert, M. Lehmann, G. Michelson, and R. E. Schmieder, “Impaired increase of retinal capillary blood flow to flicker light exposure in arterial hypertension,” Hypertension 60(3), 871–876 (2012).
[Crossref] [PubMed]

Miller, D. T.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011).
[Crossref] [PubMed]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[Crossref] [PubMed]

Miyague, A. H.

M. R. Martins, W. P. Martins, C. A. M. Soares, A. H. Miyague, M. J. Kudla, and T. Z. Pavan, “Understanding the influence of flow velocity, wall motion filter, pulse repetition frequency, and aliasing on power doppler image quantification,” J. Ultrasound Med. (2017).
[PubMed]

Miyamoto, K.

S. Arichika, A. Uji, S. Ooto, K. Miyamoto, and N. Yoshimura, “Adaptive optics-assisted identification of preferential erythrocyte aggregate pathways in the human retinal microvasculature,” PLoS One 9(2), e89679 (2014).
[Crossref] [PubMed]

S. Arichika, A. Uji, T. Murakami, N. Unoki, S. Yoshitake, Y. Dodo, S. Ooto, K. Miyamoto, and N. Yoshimura, “Retinal hemorheologic characterization of early-stage diabetic retinopathy using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 55(12), 8513–8522 (2014).
[Crossref] [PubMed]

Morgan, J. I.

J. J. Hunter, J. I. Morgan, W. H. Merigan, D. H. Sliney, J. R. Sparrow, and D. R. Williams, “The susceptibility of the retina to photochemical damage from visible light,” Prog. Retin. Eye Res. 31(1), 28–42 (2012).
[Crossref] [PubMed]

Morooka, S.

Y. Iida, T. Akagi, H. Nakanishi, H. Ohashi Ikeda, S. Morooka, K. Suda, T. Hasegawa, S. Yokota, M. Yoshikawa, A. Uji, and N. Yoshimura, “Retinal Blood Flow Velocity Change in Parafoveal Capillary after Topical Tafluprost Treatment in Eyes with Primary Open-angle Glaucoma,” Sci. Rep. 7(1), 5019 (2017).
[Crossref] [PubMed]

Müller, G.

M. Meinke, G. Müller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12(1), 014024 (2007).
[Crossref] [PubMed]

Müller, M.

C. Federau, P. Hagmann, P. Maeder, M. Müller, R. Meuli, M. Stuber, and K. O’Brien, “Dependence of brain intravoxel incoherent motion perfusion parameters on the cardiac cycle,” PLoS One 8(8), e72856 (2013).
[Crossref] [PubMed]

Murakami, T.

S. Arichika, A. Uji, T. Murakami, N. Unoki, S. Yoshitake, Y. Dodo, S. Ooto, K. Miyamoto, and N. Yoshimura, “Retinal hemorheologic characterization of early-stage diabetic retinopathy using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 55(12), 8513–8522 (2014).
[Crossref] [PubMed]

Nakanishi, H.

Y. Iida, T. Akagi, H. Nakanishi, H. Ohashi Ikeda, S. Morooka, K. Suda, T. Hasegawa, S. Yokota, M. Yoshikawa, A. Uji, and N. Yoshimura, “Retinal Blood Flow Velocity Change in Parafoveal Capillary after Topical Tafluprost Treatment in Eyes with Primary Open-angle Glaucoma,” Sci. Rep. 7(1), 5019 (2017).
[Crossref] [PubMed]

Nassif, N.

Nedergaard, M.

H. S. Wei, H. Kang, I. D. Rasheed, S. Zhou, N. Lou, A. Gershteyn, E. D. McConnell, Y. Wang, K. E. Richardson, A. F. Palmer, C. Xu, J. Wan, and M. Nedergaard, “Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation,” Neuron 91(4), 851–862 (2016).
[Crossref] [PubMed]

Nelson, D.

Z. Burgansky-Eliash, H. Barash, D. Nelson, A. Grinvald, A. Sorkin, A. Loewenstein, and A. Barak, “Retinal blood flow velocity in patients with age-related macular degeneration,” Curr. Eye Res. 39(3), 304–311 (2014).
[Crossref] [PubMed]

Nelson, D. A.

D. Izhaky, D. A. Nelson, Z. Burgansky-Eliash, and A. Grinvald, “Functional imaging using the retinal function imager: Direct imaging of blood velocity, achieving fluorescein angiography-like images without any contrast agent, qualitative oximetry, and functional metabolic signals,” Jpn. J. Ophthalmol. 53(4), 345–351 (2009).
[Crossref] [PubMed]

Newman, E. A.

T. E. Kornfield and E. A. Newman, “Measurement of retinal blood flow using fluorescently labeled red blood cells,” eNeuro 2(2), 0005–0015 (2015).
[Crossref] [PubMed]

T. E. Kornfield and E. A. Newman, “Regulation of blood flow in the retinal trilaminar vascular network,” J. Neurosci. 34(34), 11504–11513 (2014).
[Crossref] [PubMed]

A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front. Neuroenergetics 2010, 2 (2010).
[Crossref] [PubMed]

D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar, and E. A. Newman, “Glial and neuronal control of brain blood flow,” Nature 468(7321), 232–243 (2010).
[Crossref] [PubMed]

Nguyen, Q. D.

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt. 15(5), 056014 (2010).
[Crossref] [PubMed]

Nishimura, N.

T. P. Santisakultarm, N. R. Cornelius, N. Nishimura, A. I. Schafer, R. T. Silver, P. C. Doerschuk, W. L. Olbricht, and C. B. Schaffer, “In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice,” Am. J. Physiol. Heart Circ. Physiol. 302(7), H1367–H1377 (2012).
[Crossref] [PubMed]

Nishiwaki, H.

H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, and Y. Honda, “Quantitative evaluation of leukocyte dynamics in retinal microcirculation,” Invest. Ophthalmol. Vis. Sci. 36(1), 123–130 (1995).
[PubMed]

Nozato, K.

A. Uji, M. Hangai, S. Ooto, K. Takayama, N. Arakawa, H. Imamura, K. Nozato, and N. Yoshimura, “The source of moving particles in parafoveal capillaries detected by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 53(1), 171–178 (2012).
[Crossref] [PubMed]

O’Brien, J. T.

J. T. O’Brien, “Vascular cognitive impairment,” Am. J. Geriatr. Psychiatry 14(9), 724–733 (2006).
[Crossref] [PubMed]

O’Brien, K.

C. Federau, P. Hagmann, P. Maeder, M. Müller, R. Meuli, M. Stuber, and K. O’Brien, “Dependence of brain intravoxel incoherent motion perfusion parameters on the cardiac cycle,” PLoS One 8(8), e72856 (2013).
[Crossref] [PubMed]

Ogura, Y.

H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, and Y. Honda, “Quantitative evaluation of leukocyte dynamics in retinal microcirculation,” Invest. Ophthalmol. Vis. Sci. 36(1), 123–130 (1995).
[PubMed]

Ohashi Ikeda, H.

Y. Iida, T. Akagi, H. Nakanishi, H. Ohashi Ikeda, S. Morooka, K. Suda, T. Hasegawa, S. Yokota, M. Yoshikawa, A. Uji, and N. Yoshimura, “Retinal Blood Flow Velocity Change in Parafoveal Capillary after Topical Tafluprost Treatment in Eyes with Primary Open-angle Glaucoma,” Sci. Rep. 7(1), 5019 (2017).
[Crossref] [PubMed]

Olbricht, W. L.

T. P. Santisakultarm, N. R. Cornelius, N. Nishimura, A. I. Schafer, R. T. Silver, P. C. Doerschuk, W. L. Olbricht, and C. B. Schaffer, “In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice,” Am. J. Physiol. Heart Circ. Physiol. 302(7), H1367–H1377 (2012).
[Crossref] [PubMed]

Ooto, S.

S. Arichika, A. Uji, T. Murakami, N. Unoki, S. Yoshitake, Y. Dodo, S. Ooto, K. Miyamoto, and N. Yoshimura, “Retinal hemorheologic characterization of early-stage diabetic retinopathy using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 55(12), 8513–8522 (2014).
[Crossref] [PubMed]

S. Arichika, A. Uji, S. Ooto, K. Miyamoto, and N. Yoshimura, “Adaptive optics-assisted identification of preferential erythrocyte aggregate pathways in the human retinal microvasculature,” PLoS One 9(2), e89679 (2014).
[Crossref] [PubMed]

S. Arichika, A. Uji, M. Hangai, S. Ooto, and N. Yoshimura, “Noninvasive and direct monitoring of erythrocyte aggregates in human retinal microvasculature using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 54(6), 4394–4402 (2013).
[Crossref] [PubMed]

A. Uji, M. Hangai, S. Ooto, K. Takayama, N. Arakawa, H. Imamura, K. Nozato, and N. Yoshimura, “The source of moving particles in parafoveal capillaries detected by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 53(1), 171–178 (2012).
[Crossref] [PubMed]

Orgul, S.

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta Ophthalmol. 88(7), 723–729 (2010).
[Crossref] [PubMed]

Orgül, S.

M. Emre, S. Orgül, K. Gugleta, and J. Flammer, “Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation,” Br. J. Ophthalmol. 88(5), 662–666 (2004).
[Crossref] [PubMed]

Ott, C.

M. Ritt, J. M. Harazny, C. Ott, U. Raff, P. Bauernschubert, M. Lehmann, G. Michelson, and R. E. Schmieder, “Impaired increase of retinal capillary blood flow to flicker light exposure in arterial hypertension,” Hypertension 60(3), 871–876 (2012).
[Crossref] [PubMed]

Palczewska, G.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Palmer, A. F.

H. S. Wei, H. Kang, I. D. Rasheed, S. Zhou, N. Lou, A. Gershteyn, E. D. McConnell, Y. Wang, K. E. Richardson, A. F. Palmer, C. Xu, J. Wan, and M. Nedergaard, “Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation,” Neuron 91(4), 851–862 (2016).
[Crossref] [PubMed]

Papavasileiou, P.

A. G. Koutsiaris, S. V. Tachmitzi, P. Papavasileiou, N. Batis, M. G. Kotoula, A. D. Giannoukas, and E. Tsironi, “Blood velocity pulse quantification in the human conjunctival pre-capillary arterioles,” Microvasc. Res. 80(2), 202–208 (2010).
[Crossref] [PubMed]

Paques, M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Park, B.

Parker, A.

Pasquale, L. R.

G. T. Feke, B. T. Hyman, R. A. Stern, and L. R. Pasquale, “Retinal blood flow in mild cognitive impairment and Alzheimer’s disease,” Alzheimers Dement (Amst) 1(2), 144–151 (2015).
[Crossref] [PubMed]

Pattie, A.

N. Patton, T. Aslam, T. Macgillivray, A. Pattie, I. J. Deary, and B. Dhillon, “Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures,” J. Anat. 206(4), 319–348 (2005).
[Crossref] [PubMed]

Patton, N.

N. Patton, T. Aslam, T. Macgillivray, A. Pattie, I. J. Deary, and B. Dhillon, “Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures,” J. Anat. 206(4), 319–348 (2005).
[Crossref] [PubMed]

Pavan, T. Z.

M. R. Martins, W. P. Martins, C. A. M. Soares, A. H. Miyague, M. J. Kudla, and T. Z. Pavan, “Understanding the influence of flow velocity, wall motion filter, pulse repetition frequency, and aliasing on power doppler image quantification,” J. Ultrasound Med. (2017).
[PubMed]

Peiretti, E.

R. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008).
[Crossref] [PubMed]

Pennesi, M. E.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Petrig, B.

Petrig, B. L.

Peyman, G. A.

K. Fillacier, G. A. Peyman, Q. Luo, and B. Khoobehi, “Study of lymphocyte dynamics in the ocular circulation: technique of labeling cells,” Curr. Eye Res. 14(7), 579–584 (1995).
[Crossref] [PubMed]

Pierce, M.

Pircher, M.

Pournaras, C. J.

C. J. Pournaras and C. E. Riva, “Retinal blood flow evaluation,” Ophthalmologica 229(2), 61–74 (2013).
[Crossref] [PubMed]

C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye Res. 27(3), 284–330 (2008).
[Crossref] [PubMed]

Puliafito, C. A.

C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(13), 7998–8003 (2013).
[Crossref] [PubMed]

Qi, X.

Queener, H.

Raff, U.

M. Ritt, J. M. Harazny, C. Ott, U. Raff, P. Bauernschubert, M. Lehmann, G. Michelson, and R. E. Schmieder, “Impaired increase of retinal capillary blood flow to flicker light exposure in arterial hypertension,” Hypertension 60(3), 871–876 (2012).
[Crossref] [PubMed]

Ramella-Roman, J.

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt. 15(5), 056014 (2010).
[Crossref] [PubMed]

Rasheed, I. D.

H. S. Wei, H. Kang, I. D. Rasheed, S. Zhou, N. Lou, A. Gershteyn, E. D. McConnell, Y. Wang, K. E. Richardson, A. F. Palmer, C. Xu, J. Wan, and M. Nedergaard, “Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation,” Neuron 91(4), 851–862 (2016).
[Crossref] [PubMed]

Regelson, W.

H. Wilkens, W. Regelson, and F. S. Hoffmeister, “The physiolgic importance of pulsatile blood flow,” N. Engl. J. Med. 267(9), 443–446 (1962).
[Crossref] [PubMed]

Richardson, K. E.

H. S. Wei, H. Kang, I. D. Rasheed, S. Zhou, N. Lou, A. Gershteyn, E. D. McConnell, Y. Wang, K. E. Richardson, A. F. Palmer, C. Xu, J. Wan, and M. Nedergaard, “Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation,” Neuron 91(4), 851–862 (2016).
[Crossref] [PubMed]

Ritt, M.

M. Ritt, J. M. Harazny, C. Ott, U. Raff, P. Bauernschubert, M. Lehmann, G. Michelson, and R. E. Schmieder, “Impaired increase of retinal capillary blood flow to flicker light exposure in arterial hypertension,” Hypertension 60(3), 871–876 (2012).
[Crossref] [PubMed]

Riva, C. E.

C. J. Pournaras and C. E. Riva, “Retinal blood flow evaluation,” Ophthalmologica 229(2), 61–74 (2013).
[Crossref] [PubMed]

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta Ophthalmol. 88(7), 723–729 (2010).
[Crossref] [PubMed]

C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye Res. 27(3), 284–330 (2008).
[Crossref] [PubMed]

B. L. Petrig and C. E. Riva, “Near-IR retinal laser Doppler velocimetry and flowmetry: new delivery and detection techniques,” Appl. Opt. 30(16), 2073–2078 (1991).
[Crossref] [PubMed]

C. E. Riva and B. Petrig, “Blue field entoptic phenomenon and blood velocity in the retinal capillaries,” J. Opt. Soc. Am. 70(10), 1234–1238 (1980).
[Crossref] [PubMed]

G. T. Feke and C. E. Riva, “Laser Doppler measurements of blood velocity in human retinal vessels,” J. Opt. Soc. Am. 68(4), 526–531 (1978).
[Crossref] [PubMed]

Romero-Borja, F.

Roorda, A.

A. Roorda and J. L. Duncan, “Adaptive optics ophthalmoscopy,” Annu Rev Vis Sci 1(1), 19–50 (2015).
[Crossref] [PubMed]

J. Tam, P. Tiruveedhula, and A. Roorda, “Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(4), 781–793 (2011).
[Crossref] [PubMed]

J. Tam and A. Roorda, “Speed quantification and tracking of moving objects in adaptive optics scanning laser ophthalmoscopy,” J. Biomed. Opt. 16(3), 036002 (2011).
[Crossref] [PubMed]

J. A. Martin and A. Roorda, “Pulsatility of parafoveal capillary leukocytes,” Exp. Eye Res. 88(3), 356–360 (2009).
[Crossref] [PubMed]

C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14(2), 487–497 (2006).
[Crossref] [PubMed]

J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112(12), 2219–2224 (2005).
[Crossref] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[Crossref] [PubMed]

Rossi, L.

R. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008).
[Crossref] [PubMed]

Rungger-Brändle, E.

C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye Res. 27(3), 284–330 (2008).
[Crossref] [PubMed]

Santisakultarm, T. P.

T. P. Santisakultarm, N. R. Cornelius, N. Nishimura, A. I. Schafer, R. T. Silver, P. C. Doerschuk, W. L. Olbricht, and C. B. Schaffer, “In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice,” Am. J. Physiol. Heart Circ. Physiol. 302(7), H1367–H1377 (2012).
[Crossref] [PubMed]

Sasian, J.

Sawides, L.

Schafer, A. I.

T. P. Santisakultarm, N. R. Cornelius, N. Nishimura, A. I. Schafer, R. T. Silver, P. C. Doerschuk, W. L. Olbricht, and C. B. Schaffer, “In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice,” Am. J. Physiol. Heart Circ. Physiol. 302(7), H1367–H1377 (2012).
[Crossref] [PubMed]

Schaffer, C. B.

T. P. Santisakultarm, N. R. Cornelius, N. Nishimura, A. I. Schafer, R. T. Silver, P. C. Doerschuk, W. L. Olbricht, and C. B. Schaffer, “In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice,” Am. J. Physiol. Heart Circ. Physiol. 302(7), H1367–H1377 (2012).
[Crossref] [PubMed]

T. N. Kim, P. W. Goodwill, Y. Chen, S. M. Conolly, C. B. Schaffer, D. Liepmann, and R. A. Wang, “Line-scanning particle image velocimetry: an optical approach for quantifying a wide range of blood flow speeds in live animals,” PLoS One 7(6), e38590 (2012).
[Crossref] [PubMed]

Schallek, J.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Schallek, J. B.

Schepens, C. L.

F. Berisha, G. T. Feke, C. L. Trempe, J. W. McMeel, and C. L. Schepens, “Retinal abnormalities in early Alzheimer’s disease,” Invest. Ophthalmol. Vis. Sci. 48(5), 2285–2289 (2007).
[Crossref] [PubMed]

Schmetterer, L.

M. Ang, A. C. S. Tan, C. M. G. Cheung, P. A. Keane, R. Dolz-Marco, C. C. A. Sng, and L. Schmetterer, “Optical coherence tomography angiography: a review of current and future clinical applications,” Graefes Arch. Clin. Exp. Ophthalmol. 256(2), 237–245 (2018).
[Crossref] [PubMed]

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta Ophthalmol. 88(7), 723–729 (2010).
[Crossref] [PubMed]

Schmid-Schönbein, G. W.

G. W. Schmid-Schönbein, Y. Y. Shih, and S. Chien, “Morphometry of human leukocytes,” Blood 56(5), 866–875 (1980).
[PubMed]

Schmieder, R. E.

M. Ritt, J. M. Harazny, C. Ott, U. Raff, P. Bauernschubert, M. Lehmann, G. Michelson, and R. E. Schmieder, “Impaired increase of retinal capillary blood flow to flicker light exposure in arterial hypertension,” Hypertension 60(3), 871–876 (2012).
[Crossref] [PubMed]

Serafini, S.

R. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008).
[Crossref] [PubMed]

Shah, A.

A. Koustenis, A. Harris, J. Gross, I. Januleviciene, A. Shah, and B. Siesky, “Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research,” Br. J. Ophthalmol. 101(1), 16–20 (2017).
[Crossref] [PubMed]

Shih, Y. Y.

G. W. Schmid-Schönbein, Y. Y. Shih, and S. Chien, “Morphometry of human leukocytes,” Blood 56(5), 866–875 (1980).
[PubMed]

Siesky, B.

A. Koustenis, A. Harris, J. Gross, I. Januleviciene, A. Shah, and B. Siesky, “Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research,” Br. J. Ophthalmol. 101(1), 16–20 (2017).
[Crossref] [PubMed]

Silver, R. T.

T. P. Santisakultarm, N. R. Cornelius, N. Nishimura, A. I. Schafer, R. T. Silver, P. C. Doerschuk, W. L. Olbricht, and C. B. Schaffer, “In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice,” Am. J. Physiol. Heart Circ. Physiol. 302(7), H1367–H1377 (2012).
[Crossref] [PubMed]

Sincich, L. C.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Sliney, D. H.

J. J. Hunter, J. I. Morgan, W. H. Merigan, D. H. Sliney, J. R. Sparrow, and D. R. Williams, “The susceptibility of the retina to photochemical damage from visible light,” Prog. Retin. Eye Res. 31(1), 28–42 (2012).
[Crossref] [PubMed]

F. C. Delori, R. H. Webb, D. H. Sliney, and American National Standards Institute, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007).
[Crossref] [PubMed]

Smithson, H. E.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Sng, C. C. A.

M. Ang, A. C. S. Tan, C. M. G. Cheung, P. A. Keane, R. Dolz-Marco, C. C. A. Sng, and L. Schmetterer, “Optical coherence tomography angiography: a review of current and future clinical applications,” Graefes Arch. Clin. Exp. Ophthalmol. 256(2), 237–245 (2018).
[Crossref] [PubMed]

Soares, C. A. M.

M. R. Martins, W. P. Martins, C. A. M. Soares, A. H. Miyague, M. J. Kudla, and T. Z. Pavan, “Understanding the influence of flow velocity, wall motion filter, pulse repetition frequency, and aliasing on power doppler image quantification,” J. Ultrasound Med. (2017).
[PubMed]

Song, H.

Z. Zhong, H. Song, T. Y. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011).
[Crossref] [PubMed]

Sorkin, A.

Z. Burgansky-Eliash, H. Barash, D. Nelson, A. Grinvald, A. Sorkin, A. Loewenstein, and A. Barak, “Retinal blood flow velocity in patients with age-related macular degeneration,” Curr. Eye Res. 39(3), 304–311 (2014).
[Crossref] [PubMed]

Sparrow, J. R.

J. J. Hunter, J. I. Morgan, W. H. Merigan, D. H. Sliney, J. R. Sparrow, and D. R. Williams, “The susceptibility of the retina to photochemical damage from visible light,” Prog. Retin. Eye Res. 31(1), 28–42 (2012).
[Crossref] [PubMed]

Sprague, R. S.

R. S. Sprague and M. L. Ellsworth, “Erythrocyte-derived ATP and perfusion distribution: role of intracellular and intercellular communication,” Microcirculation 19(5), 430–439 (2012).
[Crossref] [PubMed]

M. L. Ellsworth, C. G. Ellis, D. Goldman, A. H. Stephenson, H. H. Dietrich, and R. S. Sprague, “Erythrocytes: oxygen sensors and modulators of vascular tone,” Physiology (Bethesda) 24(2), 107–116 (2009).
[Crossref] [PubMed]

Srienc, A. I.

A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front. Neuroenergetics 2010, 2 (2010).
[Crossref] [PubMed]

Stanton, A. V.

N. Chapman, N. Witt, X. Gao, A. A. Bharath, A. V. Stanton, S. A. Thom, and A. D. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol. 85(1), 74–79 (2001).
[Crossref] [PubMed]

Stefansson, E.

C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye Res. 27(3), 284–330 (2008).
[Crossref] [PubMed]

Stephenson, A. H.

M. L. Ellsworth, C. G. Ellis, D. Goldman, A. H. Stephenson, H. H. Dietrich, and R. S. Sprague, “Erythrocytes: oxygen sensors and modulators of vascular tone,” Physiology (Bethesda) 24(2), 107–116 (2009).
[Crossref] [PubMed]

Stern, R. A.

G. T. Feke, B. T. Hyman, R. A. Stern, and L. R. Pasquale, “Retinal blood flow in mild cognitive impairment and Alzheimer’s disease,” Alzheimers Dement (Amst) 1(2), 144–151 (2015).
[Crossref] [PubMed]

Stuber, M.

C. Federau, P. Hagmann, P. Maeder, M. Müller, R. Meuli, M. Stuber, and K. O’Brien, “Dependence of brain intravoxel incoherent motion perfusion parameters on the cardiac cycle,” PLoS One 8(8), e72856 (2013).
[Crossref] [PubMed]

Su, J. P.

N. Hussain, A. Hussain, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical Coherence Tomography Angiography,” Int J Retina Vitreous 2(OCT), 27–36 (2016).
[Crossref] [PubMed]

Suda, K.

Y. Iida, T. Akagi, H. Nakanishi, H. Ohashi Ikeda, S. Morooka, K. Suda, T. Hasegawa, S. Yokota, M. Yoshikawa, A. Uji, and N. Yoshimura, “Retinal Blood Flow Velocity Change in Parafoveal Capillary after Topical Tafluprost Treatment in Eyes with Primary Open-angle Glaucoma,” Sci. Rep. 7(1), 5019 (2017).
[Crossref] [PubMed]

Sugiyama, T.

T. Sugiyama, “Basic Technology and Clinical Applications of the Updated Model of Laser Speckle Flowgraphy to Ocular Diseases,” Photonics 1(3), 220–234 (2014).
[Crossref]

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta Ophthalmol. 88(7), 723–729 (2010).
[Crossref] [PubMed]

Sun, J. K.

Tachmitzi, S. V.

A. G. Koutsiaris, S. V. Tachmitzi, P. Papavasileiou, N. Batis, M. G. Kotoula, A. D. Giannoukas, and E. Tsironi, “Blood velocity pulse quantification in the human conjunctival pre-capillary arterioles,” Microvasc. Res. 80(2), 202–208 (2010).
[Crossref] [PubMed]

Takayama, K.

A. Uji, M. Hangai, S. Ooto, K. Takayama, N. Arakawa, H. Imamura, K. Nozato, and N. Yoshimura, “The source of moving particles in parafoveal capillaries detected by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 53(1), 171–178 (2012).
[Crossref] [PubMed]

Tam, J.

Tan, A. C. S.

M. Ang, A. C. S. Tan, C. M. G. Cheung, P. A. Keane, R. Dolz-Marco, C. C. A. Sng, and L. Schmetterer, “Optical coherence tomography angiography: a review of current and future clinical applications,” Graefes Arch. Clin. Exp. Ophthalmol. 256(2), 237–245 (2018).
[Crossref] [PubMed]

Tearney, G.

Thom, S. A.

N. Chapman, N. Witt, X. Gao, A. A. Bharath, A. V. Stanton, S. A. Thom, and A. D. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol. 85(1), 74–79 (2001).
[Crossref] [PubMed]

Tiruveedhula, P.

Trempe, C. L.

F. Berisha, G. T. Feke, C. L. Trempe, J. W. McMeel, and C. L. Schepens, “Retinal abnormalities in early Alzheimer’s disease,” Invest. Ophthalmol. Vis. Sci. 48(5), 2285–2289 (2007).
[Crossref] [PubMed]

Tsironi, E.

A. G. Koutsiaris, S. V. Tachmitzi, P. Papavasileiou, N. Batis, M. G. Kotoula, A. D. Giannoukas, and E. Tsironi, “Blood velocity pulse quantification in the human conjunctival pre-capillary arterioles,” Microvasc. Res. 80(2), 202–208 (2010).
[Crossref] [PubMed]

Uji, A.

Y. Iida, T. Akagi, H. Nakanishi, H. Ohashi Ikeda, S. Morooka, K. Suda, T. Hasegawa, S. Yokota, M. Yoshikawa, A. Uji, and N. Yoshimura, “Retinal Blood Flow Velocity Change in Parafoveal Capillary after Topical Tafluprost Treatment in Eyes with Primary Open-angle Glaucoma,” Sci. Rep. 7(1), 5019 (2017).
[Crossref] [PubMed]

S. Arichika, A. Uji, S. Ooto, K. Miyamoto, and N. Yoshimura, “Adaptive optics-assisted identification of preferential erythrocyte aggregate pathways in the human retinal microvasculature,” PLoS One 9(2), e89679 (2014).
[Crossref] [PubMed]

S. Arichika, A. Uji, T. Murakami, N. Unoki, S. Yoshitake, Y. Dodo, S. Ooto, K. Miyamoto, and N. Yoshimura, “Retinal hemorheologic characterization of early-stage diabetic retinopathy using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 55(12), 8513–8522 (2014).
[Crossref] [PubMed]

S. Arichika, A. Uji, M. Hangai, S. Ooto, and N. Yoshimura, “Noninvasive and direct monitoring of erythrocyte aggregates in human retinal microvasculature using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 54(6), 4394–4402 (2013).
[Crossref] [PubMed]

A. Uji, M. Hangai, S. Ooto, K. Takayama, N. Arakawa, H. Imamura, K. Nozato, and N. Yoshimura, “The source of moving particles in parafoveal capillaries detected by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 53(1), 171–178 (2012).
[Crossref] [PubMed]

Unoki, N.

S. Arichika, A. Uji, T. Murakami, N. Unoki, S. Yoshitake, Y. Dodo, S. Ooto, K. Miyamoto, and N. Yoshimura, “Retinal hemorheologic characterization of early-stage diabetic retinopathy using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 55(12), 8513–8522 (2014).
[Crossref] [PubMed]

van Leeuwen, T. G.

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Vannasdale, D. A.

Vogel, C. R.

Wan, J.

H. S. Wei, H. Kang, I. D. Rasheed, S. Zhou, N. Lou, A. Gershteyn, E. D. McConnell, Y. Wang, K. E. Richardson, A. F. Palmer, C. Xu, J. Wan, and M. Nedergaard, “Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation,” Neuron 91(4), 851–862 (2016).
[Crossref] [PubMed]

Wang, J.

L. Wang, H. Jiang, A. Grinvald, C. Jayadev, and J. Wang, “A mini review of clinical and research applications of the retinal function imager,” Curr. Eye Res. 43(3), 273–288 (2018).
[Crossref] [PubMed]

Wang, J. J.

M. L. Baker, P. J. Hand, J. J. Wang, and T. Y. Wong, “Retinal signs and stroke: revisiting the link between the eye and brain,” Stroke 39(4), 1371–1379 (2008).
[Crossref] [PubMed]

Wang, L.

L. Wang, H. Jiang, A. Grinvald, C. Jayadev, and J. Wang, “A mini review of clinical and research applications of the retinal function imager,” Curr. Eye Res. 43(3), 273–288 (2018).
[Crossref] [PubMed]

Wang, Q.

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011).
[Crossref] [PubMed]

Wang, R. A.

T. N. Kim, P. W. Goodwill, Y. Chen, S. M. Conolly, C. B. Schaffer, D. Liepmann, and R. A. Wang, “Line-scanning particle image velocimetry: an optical approach for quantifying a wide range of blood flow speeds in live animals,” PLoS One 7(6), e38590 (2012).
[Crossref] [PubMed]

Wang, X.

Wang, Y.

H. S. Wei, H. Kang, I. D. Rasheed, S. Zhou, N. Lou, A. Gershteyn, E. D. McConnell, Y. Wang, K. E. Richardson, A. F. Palmer, C. Xu, J. Wan, and M. Nedergaard, “Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation,” Neuron 91(4), 851–862 (2016).
[Crossref] [PubMed]

Webb, R. H.

Wei, H. S.

H. S. Wei, H. Kang, I. D. Rasheed, S. Zhou, N. Lou, A. Gershteyn, E. D. McConnell, Y. Wang, K. E. Richardson, A. F. Palmer, C. Xu, J. Wan, and M. Nedergaard, “Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation,” Neuron 91(4), 851–862 (2016).
[Crossref] [PubMed]

Werkmeister, R. M.

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

Werner, J. S.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

White, B.

Wilkens, H.

H. Wilkens, W. Regelson, and F. S. Hoffmeister, “The physiolgic importance of pulsatile blood flow,” N. Engl. J. Med. 267(9), 443–446 (1962).
[Crossref] [PubMed]

Williams, D. R.

J. J. Hunter, J. I. Morgan, W. H. Merigan, D. H. Sliney, J. R. Sparrow, and D. R. Williams, “The susceptibility of the retina to photochemical damage from visible light,” Prog. Retin. Eye Res. 31(1), 28–42 (2012).
[Crossref] [PubMed]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[Crossref] [PubMed]

Wilson, D. J.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Witt, N.

N. Chapman, N. Witt, X. Gao, A. A. Bharath, A. V. Stanton, S. A. Thom, and A. D. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol. 85(1), 74–79 (2001).
[Crossref] [PubMed]

Wong, T. Y.

M. L. Baker, P. J. Hand, J. J. Wang, and T. Y. Wong, “Retinal signs and stroke: revisiting the link between the eye and brain,” Stroke 39(4), 1371–1379 (2008).
[Crossref] [PubMed]

Wong-Riley, M. T.

M. T. Wong-Riley, “Energy metabolism of the visual system,” Eye Brain 2, 99–116 (2010).
[Crossref] [PubMed]

Xu, C.

H. S. Wei, H. Kang, I. D. Rasheed, S. Zhou, N. Lou, A. Gershteyn, E. D. McConnell, Y. Wang, K. E. Richardson, A. F. Palmer, C. Xu, J. Wan, and M. Nedergaard, “Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation,” Neuron 91(4), 851–862 (2016).
[Crossref] [PubMed]

Yokota, S.

Y. Iida, T. Akagi, H. Nakanishi, H. Ohashi Ikeda, S. Morooka, K. Suda, T. Hasegawa, S. Yokota, M. Yoshikawa, A. Uji, and N. Yoshimura, “Retinal Blood Flow Velocity Change in Parafoveal Capillary after Topical Tafluprost Treatment in Eyes with Primary Open-angle Glaucoma,” Sci. Rep. 7(1), 5019 (2017).
[Crossref] [PubMed]

Yoon, G.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Yoshikawa, M.

Y. Iida, T. Akagi, H. Nakanishi, H. Ohashi Ikeda, S. Morooka, K. Suda, T. Hasegawa, S. Yokota, M. Yoshikawa, A. Uji, and N. Yoshimura, “Retinal Blood Flow Velocity Change in Parafoveal Capillary after Topical Tafluprost Treatment in Eyes with Primary Open-angle Glaucoma,” Sci. Rep. 7(1), 5019 (2017).
[Crossref] [PubMed]

Yoshimura, N.

Y. Iida, T. Akagi, H. Nakanishi, H. Ohashi Ikeda, S. Morooka, K. Suda, T. Hasegawa, S. Yokota, M. Yoshikawa, A. Uji, and N. Yoshimura, “Retinal Blood Flow Velocity Change in Parafoveal Capillary after Topical Tafluprost Treatment in Eyes with Primary Open-angle Glaucoma,” Sci. Rep. 7(1), 5019 (2017).
[Crossref] [PubMed]

S. Arichika, A. Uji, S. Ooto, K. Miyamoto, and N. Yoshimura, “Adaptive optics-assisted identification of preferential erythrocyte aggregate pathways in the human retinal microvasculature,” PLoS One 9(2), e89679 (2014).
[Crossref] [PubMed]

S. Arichika, A. Uji, T. Murakami, N. Unoki, S. Yoshitake, Y. Dodo, S. Ooto, K. Miyamoto, and N. Yoshimura, “Retinal hemorheologic characterization of early-stage diabetic retinopathy using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 55(12), 8513–8522 (2014).
[Crossref] [PubMed]

S. Arichika, A. Uji, M. Hangai, S. Ooto, and N. Yoshimura, “Noninvasive and direct monitoring of erythrocyte aggregates in human retinal microvasculature using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 54(6), 4394–4402 (2013).
[Crossref] [PubMed]

A. Uji, M. Hangai, S. Ooto, K. Takayama, N. Arakawa, H. Imamura, K. Nozato, and N. Yoshimura, “The source of moving particles in parafoveal capillaries detected by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 53(1), 171–178 (2012).
[Crossref] [PubMed]

Yoshitake, S.

S. Arichika, A. Uji, T. Murakami, N. Unoki, S. Yoshitake, Y. Dodo, S. Ooto, K. Miyamoto, and N. Yoshimura, “Retinal hemorheologic characterization of early-stage diabetic retinopathy using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 55(12), 8513–8522 (2014).
[Crossref] [PubMed]

Young, L. K.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Yu, Y.

Yuan, S.

Zawadzki, R. J.

Zhang, H. F.

C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(13), 7998–8003 (2013).
[Crossref] [PubMed]

Zhang, M.

N. Hussain, A. Hussain, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical Coherence Tomography Angiography,” Int J Retina Vitreous 2(OCT), 27–36 (2016).
[Crossref] [PubMed]

Zhang, T.

Y. Yu, T. Zhang, A. Meadway, X. Wang, and Y. Zhang, “High-speed adaptive optics for imaging of the living human eye,” Opt. Express 23(18), 23035–23052 (2015).
[Crossref] [PubMed]

T. Zhang, P. Godara, E. R. Blanco, R. L. Griffin, X. Wang, C. A. Curcio, and Y. Zhang, “Variability in human cone topography assessed by adaptive optics scanning laser ophthalmoscopy,” Am. J. Ophthalmol. 160(2), 290–300 (2015).
[Crossref] [PubMed]

Zhang, Y.

J. Lu, B. Gu, X. Wang, and Y. Zhang, “High speed adaptive optics ophthalmoscopy with an anamorphic point spread function,” Opt. Express 26(11), 14356–14374 (2018).
[Crossref] [PubMed]

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

J. Lu, B. Gu, X. Wang, and Y. Zhang, “High-speed adaptive optics line scan confocal retinal imaging for human eye,” PLoS One 12(3), e0169358 (2017).
[Crossref] [PubMed]

J. Lu, B. Gu, X. Wang, and Y. Zhang, “Adaptive optics parallel near-confocal scanning ophthalmoscopy,” Opt. Lett. 41(16), 3852–3855 (2016).
[Crossref] [PubMed]

Y. Yu, T. Zhang, A. Meadway, X. Wang, and Y. Zhang, “High-speed adaptive optics for imaging of the living human eye,” Opt. Express 23(18), 23035–23052 (2015).
[Crossref] [PubMed]

T. Zhang, P. Godara, E. R. Blanco, R. L. Griffin, X. Wang, C. A. Curcio, and Y. Zhang, “Variability in human cone topography assessed by adaptive optics scanning laser ophthalmoscopy,” Am. J. Ophthalmol. 160(2), 290–300 (2015).
[Crossref] [PubMed]

Y. Yu and Y. Zhang, “Dual-thread parallel control strategy for ophthalmic adaptive optics,” Chin. Opt. Lett. 12(12), 121202 (2014).
[Crossref] [PubMed]

A. Meadway, X. Wang, C. A. Curcio, and Y. Zhang, “Microstructure of subretinal drusenoid deposits revealed by adaptive optics imaging,” Biomed. Opt. Express 5(3), 713–727 (2014).
[Crossref] [PubMed]

A. Meadway, C. A. Girkin, and Y. Zhang, “A dual-modal retinal imaging system with adaptive optics,” Opt. Express 21(24), 29792–29807 (2013).
[Crossref] [PubMed]

Zhong, Z.

Z. Zhong, H. Song, T. Y. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011).
[Crossref] [PubMed]

Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express 16(17), 12746–12756 (2008).
[Crossref] [PubMed]

Zhou, S.

H. S. Wei, H. Kang, I. D. Rasheed, S. Zhou, N. Lou, A. Gershteyn, E. D. McConnell, Y. Wang, K. E. Richardson, A. F. Palmer, C. Xu, J. Wan, and M. Nedergaard, “Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation,” Neuron 91(4), 851–862 (2016).
[Crossref] [PubMed]

Acta Ophthalmol. (1)

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta Ophthalmol. 88(7), 723–729 (2010).
[Crossref] [PubMed]

Alzheimers Dement (Amst) (1)

G. T. Feke, B. T. Hyman, R. A. Stern, and L. R. Pasquale, “Retinal blood flow in mild cognitive impairment and Alzheimer’s disease,” Alzheimers Dement (Amst) 1(2), 144–151 (2015).
[Crossref] [PubMed]

Am. J. Geriatr. Psychiatry (1)

J. T. O’Brien, “Vascular cognitive impairment,” Am. J. Geriatr. Psychiatry 14(9), 724–733 (2006).
[Crossref] [PubMed]

Am. J. Ophthalmol. (1)

T. Zhang, P. Godara, E. R. Blanco, R. L. Griffin, X. Wang, C. A. Curcio, and Y. Zhang, “Variability in human cone topography assessed by adaptive optics scanning laser ophthalmoscopy,” Am. J. Ophthalmol. 160(2), 290–300 (2015).
[Crossref] [PubMed]

Am. J. Physiol. Heart Circ. Physiol. (1)

T. P. Santisakultarm, N. R. Cornelius, N. Nishimura, A. I. Schafer, R. T. Silver, P. C. Doerschuk, W. L. Olbricht, and C. B. Schaffer, “In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice,” Am. J. Physiol. Heart Circ. Physiol. 302(7), H1367–H1377 (2012).
[Crossref] [PubMed]

Annu Rev Vis Sci (1)

A. Roorda and J. L. Duncan, “Adaptive optics ophthalmoscopy,” Annu Rev Vis Sci 1(1), 19–50 (2015).
[Crossref] [PubMed]

Appl. Opt. (3)

Biomed. Opt. Express (8)

A. Meadway, X. Wang, C. A. Curcio, and Y. Zhang, “Microstructure of subretinal drusenoid deposits revealed by adaptive optics imaging,” Biomed. Opt. Express 5(3), 713–727 (2014).
[Crossref] [PubMed]

J. Tam, P. Tiruveedhula, and A. Roorda, “Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(4), 781–793 (2011).
[Crossref] [PubMed]

Y. Lu, M. O. Bernabeu, J. Lammer, C. C. Cai, M. L. Jones, C. A. Franco, L. P. Aiello, and J. K. Sun, “Computational fluid dynamics assisted characterization of parafoveal hemodynamics in normal and diabetic eyes using adaptive optics scanning laser ophthalmoscopy,” Biomed. Opt. Express 7(12), 4958–4973 (2016).
[Crossref] [PubMed]

T. Y. Chui, D. A. Vannasdale, and S. A. Burns, “The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2537–2549 (2012).
[Crossref] [PubMed]

P. Bedggood and A. Metha, “Direct visualization and characterization of erythrocyte flow in human retinal capillaries,” Biomed. Opt. Express 3(12), 3264–3277 (2012).
[Crossref] [PubMed]

W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express 3(5), 1047–1061 (2012).
[Crossref] [PubMed]

A. Guevara-Torres, A. Joseph, and J. B. Schallek, “Label free measurement of retinal blood cell flux, velocity, hematocrit and capillary width in the living mouse eye,” Biomed. Opt. Express 7(10), 4228–4249 (2016).
[Crossref] [PubMed]

M. Pircher and R. J. Zawadzki, “Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited],” Biomed. Opt. Express 8(5), 2536–2562 (2017).
[Crossref] [PubMed]

Blood (1)

G. W. Schmid-Schönbein, Y. Y. Shih, and S. Chien, “Morphometry of human leukocytes,” Blood 56(5), 866–875 (1980).
[PubMed]

Br. J. Ophthalmol. (3)

N. Chapman, N. Witt, X. Gao, A. A. Bharath, A. V. Stanton, S. A. Thom, and A. D. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol. 85(1), 74–79 (2001).
[Crossref] [PubMed]

M. Emre, S. Orgül, K. Gugleta, and J. Flammer, “Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation,” Br. J. Ophthalmol. 88(5), 662–666 (2004).
[Crossref] [PubMed]

A. Koustenis, A. Harris, J. Gross, I. Januleviciene, A. Shah, and B. Siesky, “Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research,” Br. J. Ophthalmol. 101(1), 16–20 (2017).
[Crossref] [PubMed]

Chin. Opt. Lett. (1)

Circ. Res. (1)

D. D. Gutterman, D. S. Chabowski, A. O. Kadlec, M. J. Durand, J. K. Freed, K. Ait-Aissa, and A. M. Beyer, “The human microcirculation: regulation of flow and beyond,” Circ. Res. 118(1), 157–172 (2016).
[Crossref] [PubMed]

Curr. Eye Res. (3)

K. Fillacier, G. A. Peyman, Q. Luo, and B. Khoobehi, “Study of lymphocyte dynamics in the ocular circulation: technique of labeling cells,” Curr. Eye Res. 14(7), 579–584 (1995).
[Crossref] [PubMed]

Z. Burgansky-Eliash, H. Barash, D. Nelson, A. Grinvald, A. Sorkin, A. Loewenstein, and A. Barak, “Retinal blood flow velocity in patients with age-related macular degeneration,” Curr. Eye Res. 39(3), 304–311 (2014).
[Crossref] [PubMed]

L. Wang, H. Jiang, A. Grinvald, C. Jayadev, and J. Wang, “A mini review of clinical and research applications of the retinal function imager,” Curr. Eye Res. 43(3), 273–288 (2018).
[Crossref] [PubMed]

eNeuro (1)

T. E. Kornfield and E. A. Newman, “Measurement of retinal blood flow using fluorescently labeled red blood cells,” eNeuro 2(2), 0005–0015 (2015).
[Crossref] [PubMed]

Exp. Eye Res. (1)

J. A. Martin and A. Roorda, “Pulsatility of parafoveal capillary leukocytes,” Exp. Eye Res. 88(3), 356–360 (2009).
[Crossref] [PubMed]

Eye Brain (1)

M. T. Wong-Riley, “Energy metabolism of the visual system,” Eye Brain 2, 99–116 (2010).
[Crossref] [PubMed]

Front. Neuroenergetics (1)

A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front. Neuroenergetics 2010, 2 (2010).
[Crossref] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

M. Ang, A. C. S. Tan, C. M. G. Cheung, P. A. Keane, R. Dolz-Marco, C. C. A. Sng, and L. Schmetterer, “Optical coherence tomography angiography: a review of current and future clinical applications,” Graefes Arch. Clin. Exp. Ophthalmol. 256(2), 237–245 (2018).
[Crossref] [PubMed]

Hypertension (1)

M. Ritt, J. M. Harazny, C. Ott, U. Raff, P. Bauernschubert, M. Lehmann, G. Michelson, and R. E. Schmieder, “Impaired increase of retinal capillary blood flow to flicker light exposure in arterial hypertension,” Hypertension 60(3), 871–876 (2012).
[Crossref] [PubMed]

Int J Retina Vitreous (1)

N. Hussain, A. Hussain, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical Coherence Tomography Angiography,” Int J Retina Vitreous 2(OCT), 27–36 (2016).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (11)

P. S. Jensen and M. R. Glucksberg, “Regional variation in capillary hemodynamics in the cat retina,” Invest. Ophthalmol. Vis. Sci. 39(2), 407–415 (1998).
[PubMed]

J. Ben-nun, “Comparative flow velocity of erythrocytes and leukocytes in feline retinal capillaries,” Invest. Ophthalmol. Vis. Sci. 37(9), 1854–1859 (1996).
[PubMed]

H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, and Y. Honda, “Quantitative evaluation of leukocyte dynamics in retinal microcirculation,” Invest. Ophthalmol. Vis. Sci. 36(1), 123–130 (1995).
[PubMed]

F. Berisha, G. T. Feke, C. L. Trempe, J. W. McMeel, and C. L. Schepens, “Retinal abnormalities in early Alzheimer’s disease,” Invest. Ophthalmol. Vis. Sci. 48(5), 2285–2289 (2007).
[Crossref] [PubMed]

R. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008).
[Crossref] [PubMed]

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011).
[Crossref] [PubMed]

C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(13), 7998–8003 (2013).
[Crossref] [PubMed]

A. Uji, M. Hangai, S. Ooto, K. Takayama, N. Arakawa, H. Imamura, K. Nozato, and N. Yoshimura, “The source of moving particles in parafoveal capillaries detected by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 53(1), 171–178 (2012).
[Crossref] [PubMed]

S. Arichika, A. Uji, M. Hangai, S. Ooto, and N. Yoshimura, “Noninvasive and direct monitoring of erythrocyte aggregates in human retinal microvasculature using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 54(6), 4394–4402 (2013).
[Crossref] [PubMed]

S. Arichika, A. Uji, T. Murakami, N. Unoki, S. Yoshitake, Y. Dodo, S. Ooto, K. Miyamoto, and N. Yoshimura, “Retinal hemorheologic characterization of early-stage diabetic retinopathy using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 55(12), 8513–8522 (2014).
[Crossref] [PubMed]

Z. Zhong, H. Song, T. Y. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011).
[Crossref] [PubMed]

J. Anat. (1)

N. Patton, T. Aslam, T. Macgillivray, A. Pattie, I. J. Deary, and B. Dhillon, “Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures,” J. Anat. 206(4), 319–348 (2005).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

M. Meinke, G. Müller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12(1), 014024 (2007).
[Crossref] [PubMed]

J. Tam and A. Roorda, “Speed quantification and tracking of moving objects in adaptive optics scanning laser ophthalmoscopy,” J. Biomed. Opt. 16(3), 036002 (2011).
[Crossref] [PubMed]

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt. 15(5), 056014 (2010).
[Crossref] [PubMed]

J. Neurosci. (1)

T. E. Kornfield and E. A. Newman, “Regulation of blood flow in the retinal trilaminar vascular network,” J. Neurosci. 34(34), 11504–11513 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

Jpn. J. Ophthalmol. (1)

D. Izhaky, D. A. Nelson, Z. Burgansky-Eliash, and A. Grinvald, “Functional imaging using the retinal function imager: Direct imaging of blood velocity, achieving fluorescein angiography-like images without any contrast agent, qualitative oximetry, and functional metabolic signals,” Jpn. J. Ophthalmol. 53(4), 345–351 (2009).
[Crossref] [PubMed]

Lasers Med. Sci. (1)

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Microcirculation (1)

R. S. Sprague and M. L. Ellsworth, “Erythrocyte-derived ATP and perfusion distribution: role of intracellular and intercellular communication,” Microcirculation 19(5), 430–439 (2012).
[Crossref] [PubMed]

Microvasc. Res. (1)

A. G. Koutsiaris, S. V. Tachmitzi, P. Papavasileiou, N. Batis, M. G. Kotoula, A. D. Giannoukas, and E. Tsironi, “Blood velocity pulse quantification in the human conjunctival pre-capillary arterioles,” Microvasc. Res. 80(2), 202–208 (2010).
[Crossref] [PubMed]

N. Engl. J. Med. (2)

H. Wilkens, W. Regelson, and F. S. Hoffmeister, “The physiolgic importance of pulsatile blood flow,” N. Engl. J. Med. 267(9), 443–446 (1962).
[Crossref] [PubMed]

D. A. Antonetti, R. Klein, and T. W. Gardner, “Diabetic retinopathy,” N. Engl. J. Med. 366(13), 1227–1239 (2012).
[Crossref] [PubMed]

Nature (1)

D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar, and E. A. Newman, “Glial and neuronal control of brain blood flow,” Nature 468(7321), 232–243 (2010).
[Crossref] [PubMed]

Neuron (1)

H. S. Wei, H. Kang, I. D. Rasheed, S. Zhou, N. Lou, A. Gershteyn, E. D. McConnell, Y. Wang, K. E. Richardson, A. F. Palmer, C. Xu, J. Wan, and M. Nedergaard, “Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation,” Neuron 91(4), 851–862 (2016).
[Crossref] [PubMed]

Ophthalmologica (1)

C. J. Pournaras and C. E. Riva, “Retinal blood flow evaluation,” Ophthalmologica 229(2), 61–74 (2013).
[Crossref] [PubMed]

Ophthalmology (1)

J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112(12), 2219–2224 (2005).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (3)

Photonics (1)

T. Sugiyama, “Basic Technology and Clinical Applications of the Updated Model of Laser Speckle Flowgraphy to Ocular Diseases,” Photonics 1(3), 220–234 (2014).
[Crossref]

Physiology (Bethesda) (1)

M. L. Ellsworth, C. G. Ellis, D. Goldman, A. H. Stephenson, H. H. Dietrich, and R. S. Sprague, “Erythrocytes: oxygen sensors and modulators of vascular tone,” Physiology (Bethesda) 24(2), 107–116 (2009).
[Crossref] [PubMed]

PLoS One (4)

S. Arichika, A. Uji, S. Ooto, K. Miyamoto, and N. Yoshimura, “Adaptive optics-assisted identification of preferential erythrocyte aggregate pathways in the human retinal microvasculature,” PLoS One 9(2), e89679 (2014).
[Crossref] [PubMed]

J. Lu, B. Gu, X. Wang, and Y. Zhang, “High-speed adaptive optics line scan confocal retinal imaging for human eye,” PLoS One 12(3), e0169358 (2017).
[Crossref] [PubMed]

T. N. Kim, P. W. Goodwill, Y. Chen, S. M. Conolly, C. B. Schaffer, D. Liepmann, and R. A. Wang, “Line-scanning particle image velocimetry: an optical approach for quantifying a wide range of blood flow speeds in live animals,” PLoS One 7(6), e38590 (2012).
[Crossref] [PubMed]

C. Federau, P. Hagmann, P. Maeder, M. Müller, R. Meuli, M. Stuber, and K. O’Brien, “Dependence of brain intravoxel incoherent motion perfusion parameters on the cardiac cycle,” PLoS One 8(8), e72856 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (3)

J. J. Hunter, J. I. Morgan, W. H. Merigan, D. H. Sliney, J. R. Sparrow, and D. R. Williams, “The susceptibility of the retina to photochemical damage from visible light,” Prog. Retin. Eye Res. 31(1), 28–42 (2012).
[Crossref] [PubMed]

C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye Res. 27(3), 284–330 (2008).
[Crossref] [PubMed]

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

Sci. Rep. (1)

Y. Iida, T. Akagi, H. Nakanishi, H. Ohashi Ikeda, S. Morooka, K. Suda, T. Hasegawa, S. Yokota, M. Yoshikawa, A. Uji, and N. Yoshimura, “Retinal Blood Flow Velocity Change in Parafoveal Capillary after Topical Tafluprost Treatment in Eyes with Primary Open-angle Glaucoma,” Sci. Rep. 7(1), 5019 (2017).
[Crossref] [PubMed]

Stroke (1)

M. L. Baker, P. J. Hand, J. J. Wang, and T. Y. Wong, “Retinal signs and stroke: revisiting the link between the eye and brain,” Stroke 39(4), 1371–1379 (2008).
[Crossref] [PubMed]

Vision Res. (1)

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Other (5)

G. Richard, G. Soubrane, and L. Yanuzzi, Fluorescein Angiography: Textbook and Atlas, 2nd ed. (Thieme Medical Publishes Inc., New York, 1998).

A. N. S. Institute, “American National Standard for Safe Use of Lasers ANSI Z136.1-2014,” (American National Standards Institute, Inc., 2014).

M. R. Martins, W. P. Martins, C. A. M. Soares, A. H. Miyague, M. J. Kudla, and T. Z. Pavan, “Understanding the influence of flow velocity, wall motion filter, pulse repetition frequency, and aliasing on power doppler image quantification,” J. Ultrasound Med. (2017).
[PubMed]

J. Tam and A. Roorda, “Enhanced detection of cell paths in spatiotemporal plots for noninvasive microscopy of the human retina,” in Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on, (IEEE, 2010), 584–587.
[Crossref]

J. B. Pawley, “Points, pixels, and gray levels: digitizing image data,” in Handbook of Biological Confocal Microscopy (Springer, 2006), pp. 59–79.

Supplementary Material (5)

NameDescription
» Visualization 1       Erythrocyte flow imaged at 200 fps shown in box A of Figure 2
» Visualization 2       Erythrocyte flow imaged at 400 fps shown in box B of Figure 2
» Visualization 3       Erythrocyte flow imaged at 800 fps shown in box C of Figure 2
» Visualization 4       Temporary blood cell traffic jam at the vicinity of a confluence point (Fig. 10(c))
» Visualization 5       Temporal arresting of the erythrocytes (Fig. 10(d))

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 The parafoveal capillary network generated by the motion contrast enhancement method. Images were taken from 2 eyes of 2 human subjects with normal macular health. The scale bar applies to both panels. The videos in the boxes A(see Visualization 1), B (see Visualization 2), and C (see Visualization 3) were acquired at 200 fps, 400 fps, and 800 fps, respectively, but all are displayed at 30 fps.
Fig. 2
Fig. 2 Spatiotemporal traces of the blood cells when the imaging light was focused on different planes. The plots in each row were generated from the videos taken in the same capillary. Left column panels were blood cells traces when the light was focused on the photoreceptor inner segment plane. Due to low absorption and scattering, the leukocyte traces appear as hyper-reflective bands indicated by solid color arrowheads. Right column panels were made from videos with light focused on the capillaries directly. Due to higher scattering rate, the erythrocyte formed hyper-reflective lines separated by narrow dark gaps generated by plasma. When leukocytes pass through the capillary, because of their low absorption and low scattering and confocal rejection of scattering out-of-focus, they appear as broad hypo-reflective bands (pointed by the empty arrowheads) followed by densely packed hyper-reflective lines, which are accumulated erythrocytes. Arrowheads with same color indicate leukocytes in the same capillary. Because the videos were not taken simultaneously, the leukocytes in the same capillary are not the same cells. All images were generated from videos acquired at 800 fps. The spatial (vertical) scale bar is 25 µm and the temporal (horizontal) scale bar is 100 ms.
Fig. 3
Fig. 3 Characteristic spatiotemporal traces of the erythrocytes in retinal capillaries obtained from the AONCO imaging. (a) Type 1, the blood flow in the capillary contained densely packed erythrocytes flowing in non-single files and no leukocytes. (b) Type 2, the blood flow contained erythrocytes flowing in single files and no leukocytes. (c) Type 3a, the blood flow contained both leukocytes (hypo-reflective bands) and non-single file erythrocyte aggregation (hyper-reflective bands). (d) Type 3b, the blood flow contained both leukocytes (hypo-reflective bands) and light erythrocyte aggregation (hyper-reflective bands). (e) Type 4, the blood flow contained leukocytes accompanied by non-aggregated upstream erythrocytes. All spatiotemporal plots were extracted from retinal images acquired at 800 fps, with the imaging light focused on the capillary bed. The temporal (horizontal) scale bar indicates 25 ms and the spatial (vertical) scale is 25 µm.
Fig. 4
Fig. 4 Spatiotemporal traces of the erythrocyte flow in capillaries with different cell flux. Each plot represents the erythrocyte flow in one cardiac cycle (horizontal). All panels have been adjusted to be of the same size for display purpose. The numbers on the left are the erythrocytes counted within one cardiac cycle. All spatiotemporal plots were extracted from retinal images acquired at 800 fps, with the imaging light focused on the capillary bed.
Fig. 5
Fig. 5 The merit function under different sampling windows.
Fig. 6
Fig. 6 Erythrocyte velocity measured by retinal imaging at frame rates of 800 fps, 400 fps, and 200 fps. (a) Erythrocyte flow in a capillary with the maximum velocity < 2mm/s. (b) Erythrocyte flow in another capillary with the maximum velocity between 2 and 3mm/s. The retinal images were acquired at the frame rate of 800 fps with the imaging light focused on the capillary bed. Retinal images of 400 fps and 200 fps were generated by dropping off the intermediate frames from the images of 800 fps. The spatiotemporal plots were extracted from corresponding videos. The time span of the spatiotemporal plots is 1 cardiac cycle. The spatial scale bar is 25 µm.
Fig. 7
Fig. 7 A comparison of the erythrocyte velocity measured with imaging at frame rates of 800 fps and 400 fps. In these 6 capillaries, erythrocyte maximum velocity was found to be > 4 mm/s. The retinal images were acquired at the frame rate of 800 fps. Retinal images of 400 fps were generated by dropping off the intermediate frames of the images acquired at 800 fps. The gap in the bottom middle panel was caused by eye blinking.
Fig. 8
Fig. 8 Measuring the blood velocity in an arterial. The velocity was measured in 3 segments (colored boxes) of the vessel using images acquired at 800 fps with the imaging light focused on the vessel. D is the dimeter of the blood vessel. Instantaneous velocity up to 10 mm/s can be measured.
Fig. 9
Fig. 9 High speed imaging revealed fine movement of the erythrocytes. (a) The erythrocytes movement was slowed down by a leukocyte appeared at the beginning of the first cycle (the green box). (b) The erythrocytes movement was distorted by leukocytes (hypo-reflective bands in the red box). (c) Temporary blood cell traffic jam at the vicinity of a confluence point (Visualization 4, acquired at 400 fps with a field of view of 1.2° × 0.6°, displayed at 30 fps), causing almost stoppage of the blood flow and nearly flat spatiotemporal traces (green and red arrowheads). (d) Temporal arresting of the erythrocytes (Visualization 5, acquired at 800 fps, displayed at 30 fps). All spatiotemporal plots were extracted from retinal images acquired with the imaging light focused on the capillary bed. The velocity waveforms in the regions indicated by the color lines were measured from the boxes of corresponding color. Scale bar is 25 µm.
Fig. 10
Fig. 10 Cardiac-dependent velocity fluctuation of the erythrocyte in retinal capillaries. Top left panel shows 3 capillaries within which the erythrocyte velocity was measured. White arrows indicate the flow directions. Middle panel shows the velocity waveforms measured in the 3 capillaries. Gaps in the waveforms were caused by eye blinks during imaging. Bottom panel is the ECG that was recorded simultaneously with the retinal images. Top right panel illustrates the velocity waveform averaged from multiple cardiac cycles. Vmax: the maximum velocity. Vmin: the minimum velocity. Vm: the mean velocity. PI: Pulsatility index of the blood flow. Tp: the time span over which the erythrocyte velocity is accelerated from Vmin to Vmax. T: cardiac period. Tr: acceleration time index of the erythrocytes, which is a measure of the interaction between the erythrocytes with the blood vessels. Sp: the distance that the erythrocytes have flowed in the blood vessel during the period of being accelerated within a cardiac cycle. Rr: the raising rate of the erythrocyte velocity, which is a normalized measure of the distance that the erythrocytes travel within a cardiac cycle. Fa, Fb, Fc: flow rates in vessels a, b, and c, respectively. D: the diameter of the capillary. The blood flow was calculated using the formula F =  v m π D 2 /4, assuming that the capillaries were cylindrically symmetric, with a round cross-section shape. The retinal images were acquired with the imaging light focused on the capillaries.
Fig. 11
Fig. 11 Conservation of blood flow in the bifurcation. White arrows indicate the flow directions in 3 capillaries. F1 – F3: flow rates in capillaries 1, 2, and 3, respectively. D1 – D3: diameters of the capillaries. Vm1 – Vm3: mean velocities of the erythrocytes in the corresponding capillaries. The blood flow was calculated using the formula F =  v m π D 2 /4, assuming that the capillaries were cylindrically symmetrical and with a round cross-section shape. The retinal images were acquired with the imaging light focused on the capillaries.
Fig. 12
Fig. 12 Measuring the slope angle (i.e., the erythrocyte velocity) using the Radon transform. Top panel shows a spatiotemporal plot of the erythrocytes flow in a retinal capillary. Bottom panels present the Radon transform images of the spatiotemporal traces in the 2 yellow boxes. The angle corresponding to the maximum values (indicated by the yellow dashed lines) of the Radon transform represents an average measurement of the trace angle (the velocity) in the sampling window (yellow boxes).

Tables (4)

Tables Icon

Table 1 Subject characteristics

Tables Icon

Table 2 Dynamic characteristics of the erythrocyte flow in one capillary

Tables Icon

Table 3 Dynamic characteristics of the blood flow in 7 subjects

Tables Icon

Table 4 Dynamic characteristics of the blood flow: a comparison with published data [Mean (Range)]

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

M= 1 N n=1 N { max 1iq { 1 p j=1 p R ( ρ j , θ i ) 2 }/ 1 pq i=1 q i=1 q R ( ρ j , θ i ) 2 } n
V( θ i )= 1 p j=1 p R ( ρ j , θ i ) 2
V M ( n )= max 1iq { V( θ i ) }/ 1 pq i=1 q j=1 p R ( ρ j , θ i ) 2
M= 1 N n=1 N { max 1iq { 1 p j=1 p R ( ρ j , θ i ) 2 }/ 1 pq i=1 q j=1 p R ( ρ j , θ i ) 2 } n

Metrics