Abstract

Spatially confined measurements of bilirubin in tissue can be of great value for noninvasive bilirubin estimations during neonatal jaundice, as well as our understanding of the physiology behind bilirubin extravasation. This work shows the potential of spectroscopic visible-light optical coherence tomography (sOCT) for this purpose. At the bilirubin absorption peak around 460 nm, sOCT suffers from a strong signal decay with depth, which we overcome by optimizing our system sensitivity through a combination of zero-delay acquisition and focus tracking. In a phantom study, we demonstrate the quantification of bilirubin concentrations between 0 and 650 µM with only a 10% difference to the expected value, thereby covering the entire clinical pathophysiological range.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Screening neonatal jaundice based on the sclera color of the eye using digital photography

Terence S. Leung, Karan Kapur, Ashley Guilliam, Jade Okell, Bee Lim, Lindsay W. MacDonald, and Judith Meek
Biomed. Opt. Express 6(11) 4529-4538 (2015)

Deep imaging of absorption and scattering features by multispectral multiple scattering low coherence interferometry

Yang Zhao, Jason R. Maher, Mohamed M. Ibrahim, Jennifer S. Chien, Howard Levinson, and Adam Wax
Biomed. Opt. Express 7(10) 3916-3926 (2016)

Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography

Guy Lamouche, Brendan F. Kennedy, Kelsey M. Kennedy, Charles-Etienne Bisaillon, Andrea Curatolo, Gord Campbell, Valérie Pazos, and David D. Sampson
Biomed. Opt. Express 3(6) 1381-1398 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. W. Hansen, “Prevention of neurodevelopmental sequelae of jaundice in the newborn,” Dev. Med. Child Neurol. 53(Suppl 4), 24–28 (2011).
    [Crossref] [PubMed]
  2. N. Bosschaart, J. H. Kok, A. M. Newsum, D. M. Ouweneel, R. Mentink, T. G. van Leeuwen, and M. C. Aalders, “Limitations and opportunities of transcutaneous bilirubin measurements,” Pediatrics 129(4), 689–694 (2012).
    [Crossref] [PubMed]
  3. K. Grohmann, M. Roser, B. Rolinski, I. Kadow, C. Müller, A. Goerlach-Graw, M. Nauck, and H. Küster, “Bilirubin measurement for neonates: Comparison of 9 frequently used methods,” Pediatrics 117(4), 1174–1183 (2006).
    [Crossref] [PubMed]
  4. A. Knudsen, “The Cephalocaudal Progression of Jaundice in Newborns in Relation to the Transfer of Bilirubin from Plasma to Skin,” Early Hum. Dev. 22(1), 23–28 (1990).
    [Crossref] [PubMed]
  5. N. Bosschaart, M. C. G. Aalders, D. J. Faber, J. J. A. Weda, M. J. C. van Gemert, and T. G. van Leeuwen, “Quantitative measurements of absorption spectra in scattering media by low-coherence spectroscopy,” Opt. Lett. 34(23), 3746–3748 (2009).
    [Crossref] [PubMed]
  6. F. E. Robles and A. Wax, “Separating the scattering and absorption coefficients using the real and imaginary parts of the refractive index with low-coherence interferometry,” Opt. Lett. 35(17), 2843–2845 (2010).
    [Crossref] [PubMed]
  7. J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
    [Crossref] [PubMed]
  8. J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
    [Crossref] [PubMed]
  9. S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography,” Biomed. Opt. Express 6(4), 1429–1450 (2015).
    [Crossref] [PubMed]
  10. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
    [Crossref] [PubMed]
  11. S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
    [Crossref] [PubMed]
  12. N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “In vivo low-coherence spectroscopic measurements of local hemoglobin absorption spectra in human skin,” J. Biomed. Opt. 16(10), 100504 (2011).
    [Crossref] [PubMed]
  13. S. Pi, A. Camino, W. Cepurna, X. Wei, M. Zhang, D. Huang, J. Morrison, and Y. Jia, “Automated spectroscopic retinal oximetry with visible-light optical coherence tomography,” Biomed. Opt. Express 9(5), 2056–2067 (2018).
    [Crossref] [PubMed]
  14. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express 11(26), 3598–3604 (2003).
    [Crossref] [PubMed]
  15. N. Bosschaart, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “Spectral domain detection in low-coherence spectroscopy,” Biomed. Opt. Express 3(9), 2263–2272 (2012).
    [Crossref] [PubMed]
  16. N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt. 16(3), 030503 (2011).
    [Crossref] [PubMed]
  17. N. Bosschaart, R. Mentink, J. H. Kok, T. G. van Leeuwen, and M. C. G. Aalders, “Optical properties of neonatal skin measured in vivo as a function of age and skin pigmentation,” J. Biomed. Opt. 16(9), 097003 (2011).
    [Crossref] [PubMed]

2018 (1)

2016 (1)

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

2015 (2)

S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography,” Biomed. Opt. Express 6(4), 1429–1450 (2015).
[Crossref] [PubMed]

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
[Crossref] [PubMed]

2013 (1)

2012 (2)

N. Bosschaart, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “Spectral domain detection in low-coherence spectroscopy,” Biomed. Opt. Express 3(9), 2263–2272 (2012).
[Crossref] [PubMed]

N. Bosschaart, J. H. Kok, A. M. Newsum, D. M. Ouweneel, R. Mentink, T. G. van Leeuwen, and M. C. Aalders, “Limitations and opportunities of transcutaneous bilirubin measurements,” Pediatrics 129(4), 689–694 (2012).
[Crossref] [PubMed]

2011 (5)

T. W. Hansen, “Prevention of neurodevelopmental sequelae of jaundice in the newborn,” Dev. Med. Child Neurol. 53(Suppl 4), 24–28 (2011).
[Crossref] [PubMed]

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt. 16(3), 030503 (2011).
[Crossref] [PubMed]

N. Bosschaart, R. Mentink, J. H. Kok, T. G. van Leeuwen, and M. C. G. Aalders, “Optical properties of neonatal skin measured in vivo as a function of age and skin pigmentation,” J. Biomed. Opt. 16(9), 097003 (2011).
[Crossref] [PubMed]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “In vivo low-coherence spectroscopic measurements of local hemoglobin absorption spectra in human skin,” J. Biomed. Opt. 16(10), 100504 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

2006 (1)

K. Grohmann, M. Roser, B. Rolinski, I. Kadow, C. Müller, A. Goerlach-Graw, M. Nauck, and H. Küster, “Bilirubin measurement for neonates: Comparison of 9 frequently used methods,” Pediatrics 117(4), 1174–1183 (2006).
[Crossref] [PubMed]

2003 (1)

1990 (1)

A. Knudsen, “The Cephalocaudal Progression of Jaundice in Newborns in Relation to the Transfer of Bilirubin from Plasma to Skin,” Early Hum. Dev. 22(1), 23–28 (1990).
[Crossref] [PubMed]

Aalders, M. C.

N. Bosschaart, J. H. Kok, A. M. Newsum, D. M. Ouweneel, R. Mentink, T. G. van Leeuwen, and M. C. Aalders, “Limitations and opportunities of transcutaneous bilirubin measurements,” Pediatrics 129(4), 689–694 (2012).
[Crossref] [PubMed]

N. Bosschaart, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “Spectral domain detection in low-coherence spectroscopy,” Biomed. Opt. Express 3(9), 2263–2272 (2012).
[Crossref] [PubMed]

Aalders, M. C. G.

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt. 16(3), 030503 (2011).
[Crossref] [PubMed]

N. Bosschaart, R. Mentink, J. H. Kok, T. G. van Leeuwen, and M. C. G. Aalders, “Optical properties of neonatal skin measured in vivo as a function of age and skin pigmentation,” J. Biomed. Opt. 16(9), 097003 (2011).
[Crossref] [PubMed]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “In vivo low-coherence spectroscopic measurements of local hemoglobin absorption spectra in human skin,” J. Biomed. Opt. 16(10), 100504 (2011).
[Crossref] [PubMed]

N. Bosschaart, M. C. G. Aalders, D. J. Faber, J. J. A. Weda, M. J. C. van Gemert, and T. G. van Leeuwen, “Quantitative measurements of absorption spectra in scattering media by low-coherence spectroscopy,” Opt. Lett. 34(23), 3746–3748 (2009).
[Crossref] [PubMed]

Backman, V.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
[Crossref] [PubMed]

J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
[Crossref] [PubMed]

Bosschaart, N.

N. Bosschaart, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “Spectral domain detection in low-coherence spectroscopy,” Biomed. Opt. Express 3(9), 2263–2272 (2012).
[Crossref] [PubMed]

N. Bosschaart, J. H. Kok, A. M. Newsum, D. M. Ouweneel, R. Mentink, T. G. van Leeuwen, and M. C. Aalders, “Limitations and opportunities of transcutaneous bilirubin measurements,” Pediatrics 129(4), 689–694 (2012).
[Crossref] [PubMed]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “In vivo low-coherence spectroscopic measurements of local hemoglobin absorption spectra in human skin,” J. Biomed. Opt. 16(10), 100504 (2011).
[Crossref] [PubMed]

N. Bosschaart, R. Mentink, J. H. Kok, T. G. van Leeuwen, and M. C. G. Aalders, “Optical properties of neonatal skin measured in vivo as a function of age and skin pigmentation,” J. Biomed. Opt. 16(9), 097003 (2011).
[Crossref] [PubMed]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt. 16(3), 030503 (2011).
[Crossref] [PubMed]

N. Bosschaart, M. C. G. Aalders, D. J. Faber, J. J. A. Weda, M. J. C. van Gemert, and T. G. van Leeuwen, “Quantitative measurements of absorption spectra in scattering media by low-coherence spectroscopy,” Opt. Lett. 34(23), 3746–3748 (2009).
[Crossref] [PubMed]

Bouma, B.

Camino, A.

Cepurna, W.

Chen, S.

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
[Crossref] [PubMed]

Chong, S. P.

de Boer, J.

Faber, D. J.

N. Bosschaart, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “Spectral domain detection in low-coherence spectroscopy,” Biomed. Opt. Express 3(9), 2263–2272 (2012).
[Crossref] [PubMed]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt. 16(3), 030503 (2011).
[Crossref] [PubMed]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “In vivo low-coherence spectroscopic measurements of local hemoglobin absorption spectra in human skin,” J. Biomed. Opt. 16(10), 100504 (2011).
[Crossref] [PubMed]

N. Bosschaart, M. C. G. Aalders, D. J. Faber, J. J. A. Weda, M. J. C. van Gemert, and T. G. van Leeuwen, “Quantitative measurements of absorption spectra in scattering media by low-coherence spectroscopy,” Opt. Lett. 34(23), 3746–3748 (2009).
[Crossref] [PubMed]

Fawzi, A.

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

Fawzi, A. A.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
[Crossref] [PubMed]

Goerlach-Graw, A.

K. Grohmann, M. Roser, B. Rolinski, I. Kadow, C. Müller, A. Goerlach-Graw, M. Nauck, and H. Küster, “Bilirubin measurement for neonates: Comparison of 9 frequently used methods,” Pediatrics 117(4), 1174–1183 (2006).
[Crossref] [PubMed]

Grant, G.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Grohmann, K.

K. Grohmann, M. Roser, B. Rolinski, I. Kadow, C. Müller, A. Goerlach-Graw, M. Nauck, and H. Küster, “Bilirubin measurement for neonates: Comparison of 9 frequently used methods,” Pediatrics 117(4), 1174–1183 (2006).
[Crossref] [PubMed]

Hansen, T. W.

T. W. Hansen, “Prevention of neurodevelopmental sequelae of jaundice in the newborn,” Dev. Med. Child Neurol. 53(Suppl 4), 24–28 (2011).
[Crossref] [PubMed]

Huang, D.

Jia, Y.

Kadow, I.

K. Grohmann, M. Roser, B. Rolinski, I. Kadow, C. Müller, A. Goerlach-Graw, M. Nauck, and H. Küster, “Bilirubin measurement for neonates: Comparison of 9 frequently used methods,” Pediatrics 117(4), 1174–1183 (2006).
[Crossref] [PubMed]

Knudsen, A.

A. Knudsen, “The Cephalocaudal Progression of Jaundice in Newborns in Relation to the Transfer of Bilirubin from Plasma to Skin,” Early Hum. Dev. 22(1), 23–28 (1990).
[Crossref] [PubMed]

Kok, J. H.

N. Bosschaart, J. H. Kok, A. M. Newsum, D. M. Ouweneel, R. Mentink, T. G. van Leeuwen, and M. C. Aalders, “Limitations and opportunities of transcutaneous bilirubin measurements,” Pediatrics 129(4), 689–694 (2012).
[Crossref] [PubMed]

N. Bosschaart, R. Mentink, J. H. Kok, T. G. van Leeuwen, and M. C. G. Aalders, “Optical properties of neonatal skin measured in vivo as a function of age and skin pigmentation,” J. Biomed. Opt. 16(9), 097003 (2011).
[Crossref] [PubMed]

Küster, H.

K. Grohmann, M. Roser, B. Rolinski, I. Kadow, C. Müller, A. Goerlach-Graw, M. Nauck, and H. Küster, “Bilirubin measurement for neonates: Comparison of 9 frequently used methods,” Pediatrics 117(4), 1174–1183 (2006).
[Crossref] [PubMed]

Leahy, C.

Linsenmeier, R. A.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
[Crossref] [PubMed]

Liu, W.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
[Crossref] [PubMed]

J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
[Crossref] [PubMed]

Mentink, R.

N. Bosschaart, J. H. Kok, A. M. Newsum, D. M. Ouweneel, R. Mentink, T. G. van Leeuwen, and M. C. Aalders, “Limitations and opportunities of transcutaneous bilirubin measurements,” Pediatrics 129(4), 689–694 (2012).
[Crossref] [PubMed]

N. Bosschaart, R. Mentink, J. H. Kok, T. G. van Leeuwen, and M. C. G. Aalders, “Optical properties of neonatal skin measured in vivo as a function of age and skin pigmentation,” J. Biomed. Opt. 16(9), 097003 (2011).
[Crossref] [PubMed]

Merkle, C. W.

Morrison, J.

Müller, C.

K. Grohmann, M. Roser, B. Rolinski, I. Kadow, C. Müller, A. Goerlach-Graw, M. Nauck, and H. Küster, “Bilirubin measurement for neonates: Comparison of 9 frequently used methods,” Pediatrics 117(4), 1174–1183 (2006).
[Crossref] [PubMed]

Nauck, M.

K. Grohmann, M. Roser, B. Rolinski, I. Kadow, C. Müller, A. Goerlach-Graw, M. Nauck, and H. Küster, “Bilirubin measurement for neonates: Comparison of 9 frequently used methods,” Pediatrics 117(4), 1174–1183 (2006).
[Crossref] [PubMed]

Newsum, A. M.

N. Bosschaart, J. H. Kok, A. M. Newsum, D. M. Ouweneel, R. Mentink, T. G. van Leeuwen, and M. C. Aalders, “Limitations and opportunities of transcutaneous bilirubin measurements,” Pediatrics 129(4), 689–694 (2012).
[Crossref] [PubMed]

Ouweneel, D. M.

N. Bosschaart, J. H. Kok, A. M. Newsum, D. M. Ouweneel, R. Mentink, T. G. van Leeuwen, and M. C. Aalders, “Limitations and opportunities of transcutaneous bilirubin measurements,” Pediatrics 129(4), 689–694 (2012).
[Crossref] [PubMed]

Park, B.

Pi, S.

Radhakrishnan, H.

Robles, F. E.

Rolinski, B.

K. Grohmann, M. Roser, B. Rolinski, I. Kadow, C. Müller, A. Goerlach-Graw, M. Nauck, and H. Küster, “Bilirubin measurement for neonates: Comparison of 9 frequently used methods,” Pediatrics 117(4), 1174–1183 (2006).
[Crossref] [PubMed]

Roser, M.

K. Grohmann, M. Roser, B. Rolinski, I. Kadow, C. Müller, A. Goerlach-Graw, M. Nauck, and H. Küster, “Bilirubin measurement for neonates: Comparison of 9 frequently used methods,” Pediatrics 117(4), 1174–1183 (2006).
[Crossref] [PubMed]

Sheibani, N.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
[Crossref] [PubMed]

Shu, X.

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

Sorenson, C. M.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
[Crossref] [PubMed]

Srinivasan, V. J.

Tearney, G.

van Gemert, M. J. C.

van Leeuwen, T. G.

N. Bosschaart, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “Spectral domain detection in low-coherence spectroscopy,” Biomed. Opt. Express 3(9), 2263–2272 (2012).
[Crossref] [PubMed]

N. Bosschaart, J. H. Kok, A. M. Newsum, D. M. Ouweneel, R. Mentink, T. G. van Leeuwen, and M. C. Aalders, “Limitations and opportunities of transcutaneous bilirubin measurements,” Pediatrics 129(4), 689–694 (2012).
[Crossref] [PubMed]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “In vivo low-coherence spectroscopic measurements of local hemoglobin absorption spectra in human skin,” J. Biomed. Opt. 16(10), 100504 (2011).
[Crossref] [PubMed]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt. 16(3), 030503 (2011).
[Crossref] [PubMed]

N. Bosschaart, R. Mentink, J. H. Kok, T. G. van Leeuwen, and M. C. G. Aalders, “Optical properties of neonatal skin measured in vivo as a function of age and skin pigmentation,” J. Biomed. Opt. 16(9), 097003 (2011).
[Crossref] [PubMed]

N. Bosschaart, M. C. G. Aalders, D. J. Faber, J. J. A. Weda, M. J. C. van Gemert, and T. G. van Leeuwen, “Quantitative measurements of absorption spectra in scattering media by low-coherence spectroscopy,” Opt. Lett. 34(23), 3746–3748 (2009).
[Crossref] [PubMed]

Wax, A.

Weda, J. J. A.

Wei, Q.

Wei, X.

Wilson, C.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Yi, J.

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
[Crossref] [PubMed]

J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
[Crossref] [PubMed]

Yun, S.

Zhang, H. F.

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
[Crossref] [PubMed]

J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
[Crossref] [PubMed]

Zhang, M.

Biomed. Opt. Express (3)

Dev. Med. Child Neurol. (1)

T. W. Hansen, “Prevention of neurodevelopmental sequelae of jaundice in the newborn,” Dev. Med. Child Neurol. 53(Suppl 4), 24–28 (2011).
[Crossref] [PubMed]

Early Hum. Dev. (1)

A. Knudsen, “The Cephalocaudal Progression of Jaundice in Newborns in Relation to the Transfer of Bilirubin from Plasma to Skin,” Early Hum. Dev. 22(1), 23–28 (1990).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt. 16(3), 030503 (2011).
[Crossref] [PubMed]

N. Bosschaart, R. Mentink, J. H. Kok, T. G. van Leeuwen, and M. C. G. Aalders, “Optical properties of neonatal skin measured in vivo as a function of age and skin pigmentation,” J. Biomed. Opt. 16(9), 097003 (2011).
[Crossref] [PubMed]

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “In vivo low-coherence spectroscopic measurements of local hemoglobin absorption spectra in human skin,” J. Biomed. Opt. 16(10), 100504 (2011).
[Crossref] [PubMed]

Light Sci. Appl. (1)

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Pediatrics (2)

N. Bosschaart, J. H. Kok, A. M. Newsum, D. M. Ouweneel, R. Mentink, T. G. van Leeuwen, and M. C. Aalders, “Limitations and opportunities of transcutaneous bilirubin measurements,” Pediatrics 129(4), 689–694 (2012).
[Crossref] [PubMed]

K. Grohmann, M. Roser, B. Rolinski, I. Kadow, C. Müller, A. Goerlach-Graw, M. Nauck, and H. Küster, “Bilirubin measurement for neonates: Comparison of 9 frequently used methods,” Pediatrics 117(4), 1174–1183 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic overview of the sOCT setup. NDF: neutral density filters, L#: lens #, BE: beam expander, SPF: short pass filter, M: mirror, BS: beam splitter, DCG: dispersion compensation glass, MS: motorized stage, PDM: piezo driven mirror, C: cuvette with sample, SMF: single mode fiber.
Fig. 2
Fig. 2 Schematic overview of the data acquisition and processing as performed in this study. All numbers and letters within parentheses denote the data processing steps that are explained in section 2.2. For all data sets containing complex data (2 b-d), only the absolute values are shown. ZD: zero-delay, LB: Lambert-Beer.
Fig. 3
Fig. 3 a. Average attenuation spectra µt(λ) for the samples with a fixed concentration of polystyrene spheres and varying bilirubin concentrations in the clinical pathophysiological range. Mie theory was used to estimate the theoretical scattering coefficient spectrum. Fits are obtained by fitting Eq. (4) to µt(λ). Error bars ( ± 10%) are not shown for visibility reasons. b. Estimated bilirubin concentrations (average of 3 measurements, error bars represent standard deviations). Except for the 0 µM bilirubin sample, all averaged values agree within 10% to the expected values. The results cover the full clinical pathophysiological range (indicated by the yellow box).
Fig. 4
Fig. 4 a. OCT image used to discriminate between the silicone layer and the sample. b. Attenuation spectra µt(λ) for the 335µM bilirubin sample with and without the silicone layer (average of 3 measurements). Fits are obtained by fitting Eq. (4) to µt(λ). Mie theory was used to estimate the theoretical scattering coefficient spectrum.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I det (λ,t) I s (λ)+ I r (λ)+ I s (λ) I r (λ) ( e i 2π λ ΔOPL(t) + e i 2π λ ΔOPL(t) )
I filt (λ,t) I s (λ) I r (λ) e i 2π λ ΔOPL(t)
ln( (S( λ, d ZD ) S bg ) 2 )=ln( α(λ) )2 µ t ( λ ) d ZD
µ t ( λ )=a λ b +  C i µ a,i ( λ )

Metrics