Abstract

Fundus autofluorescence (FAF) imaging is a well-established method in ophthalmology; however, the fluorophores involved need more clarification. The FAF lifetimes of 20 post mortem porcine eyes were measured in two spectral channels using fluorescence lifetime imaging ophthalmoscopy (FLIO) and compared with clinical data from 44 healthy young subjects. The FAF intensity ratio of the short and the long wavelength emission (spectral ratio) was determined. Ex vivo porcine fundus fluorescence emission is generally less intense than that seen in human eyes. The porcine retina showed significantly (p<0.05) longer lifetimes than the retinal pigment epithelium (RPE): 584 ± 128 ps vs. 121 ± 55 ps 498-560 nm, 240 ± 42 ps vs. 125 ± 20 ps at 560-720 nm. Furthermore, the lifetimes of the porcine RPE were significantly shorter (121 ± 55 ps and 125 ± 20 ps) than those measured from human fundus in vivo (162 ± 14 ps and 179 ± 13 ps, respectively). The fluorescence emission of porcine retina was shifted towards a shorter wavelength compared to that of RPE and human FAF. This data shows the considerable contribution of fluorophores in the neural retina to total FAF intensity in porcine eyes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

20 June 2018: A typographical correction was made to the author affiliations.


OSA Recommended Articles
Combination of confocal principle and aperture stop separation improves suppression of crystalline lens fluorescence in an eye model

Matthias Klemm, Johannes Blum, Dietmar Link, Martin Hammer, Jens Haueisen, and Dietrich Schweitzer
Biomed. Opt. Express 7(9) 3198-3210 (2016)

Multimodal instrument for high-sensitivity autofluorescence and spectral optical coherence tomography of the human eye fundus

Katarzyna Komar, Patrycjusz Stremplewski, Marta Motoczyńska, Maciej Szkulmowski, and Maciej Wojtkowski
Biomed. Opt. Express 4(11) 2683-2695 (2013)

In vivo imaging of retinal pigment epithelium cells in age related macular degeneration

Ethan A. Rossi, Piero Rangel-Fonseca, Keith Parkins, William Fischer, Lisa R. Latchney, Margaret A. Folwell, David R. Williams, Alfredo Dubra, and Mina M. Chung
Biomed. Opt. Express 4(11) 2527-2539 (2013)

References

  • View by:
  • |
  • |
  • |

  1. F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, and J. J. Weiter, “In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Vis. Sci. 36(3), 718–729 (1995).
    [PubMed]
  2. G. E. Eldred and M. L. Katz, “Fluorophores of the Human Retinal Pigment Epithelium - Separation and Spectral Characterization,” Exp. Eye Res. 47(1), 71–86 (1988).
    [Crossref] [PubMed]
  3. J. P. Greenberg, T. Duncker, R. L. Woods, R. T. Smith, J. R. Sparrow, and F. C. Delori, “Quantitative fundus autofluorescence in healthy eyes,” Invest. Ophthalmol. Vis. Sci. 54(8), 5684–5693 (2013).
    [Crossref] [PubMed]
  4. W. Einbock, A. Moessner, U. E. Schnurrbusch, F. G. Holz, and S. Wolf, “Changes in fundus autofluorescence in patients with age-related maculopathy. Correlation to visual function: a prospective study,” Graefes Arch. Clin. Exp. Ophthalmol. 243(4), 300–305 (2005).
    [Crossref] [PubMed]
  5. S. Schmitz-Valckenberg, A. Bindewald-Wittich, J. Dolar-Szczasny, J. Dreyhaupt, S. Wolf, H. P. Scholl, and F. G. Holz, “Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD,” Invest. Ophthalmol. Vis. Sci. 47(6), 2648–2654 (2006).
    [Crossref] [PubMed]
  6. S. Schmitz-Valckenberg, F. G. Holz, A. C. Bird, and R. F. Spaide, “Fundus autofluorescence imaging: review and perspectives,” Retina 28(3), 385–409 (2008).
    [Crossref] [PubMed]
  7. F. C. Delori, M. R. Fleckner, D. G. Goger, J. J. Weiter, and C. K. Dorey, “Autofluorescence distribution associated with drusen in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 41(2), 496–504 (2000).
    [PubMed]
  8. T. Ben Ami, Y. Tong, A. Bhuiyan, C. Huisingh, Z. Ablonczy, T. Ach, C. A. Curcio, and R. T. Smith, “Spatial and Spectral Characterization of Human Retinal Pigment Epithelium Fluorophore Families by Ex Vivo Hyperspectral Autofluorescence Imaging,” Transl. Vis. Sci. Technol. 5(3), 5 (2016).
    [Crossref] [PubMed]
  9. D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, and C. Biskup, “Time-resolved autofluorescence imaging of human donor retina tissue from donors with significant extramacular drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
    [Crossref] [PubMed]
  10. U. Kellner, S. Kellner, and S. Weinitz, “Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration,” Retina 30(1), 6–15 (2010).
    [Crossref] [PubMed]
  11. M. B. Parodi, P. Iacono, C. Del Turco, and F. Bandello, “Near-infrared fundus autofluorescence in subclinical best vitelliform macular dystrophy,” Am. J. Ophthalmol. 158(6), 1247–1252.e2 (2014).
    [Crossref] [PubMed]
  12. T. Ueda-Consolvo, A. Miyakoshi, H. Ozaki, S. Houki, and A. Hayashi, “Near-infrared fundus autofluorescence-visualized melanin in the choroidal abnormalities of neurofibromatosis type 1,” Clin. Ophthalmol. 6, 1191–1194 (2012).
    [PubMed]
  13. R. Spaide, “Autofluorescence from the outer retina and subretinal space: hypothesis and review,” Retina 28(1), 5–35 (2008).
    [Crossref] [PubMed]
  14. W. Becker, “Fluorescence lifetime imaging--techniques and applications,” J. Microsc. 247(2), 119–136 (2012).
    [Crossref] [PubMed]
  15. D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, and E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
    [Crossref] [PubMed]
  16. D. Schweitzer, A. Kolb, and M. Hammer, “Autofluorescence lifetime measurements in images of the human ocular fundus,” Proc. SPIE 4432, 29–39 (2001).
    [Crossref]
  17. D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
    [Crossref] [PubMed]
  18. C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(4), 2106–2113 (2014).
    [Crossref] [PubMed]
  19. L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4668–4679 (2015).
    [Crossref] [PubMed]
  20. L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring Macular Pigment changes in Macular Holes using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Acta ophthalmologica 95(5), 481–492 (2016).
    [PubMed]
  21. D. M. Ciobanu, L. E. Olar, R. Stefan, I. A. Veresiu, C. G. Bala, P. A. Mircea, and G. Roman, “Fluorophores advanced glycation end products (AGEs)-to-NADH ratio is predictor for diabetic chronic kidney and cardiovascular disease,” J. Diabetes Complications 29(7), 893–897 (2015).
    [Crossref] [PubMed]
  22. J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
    [PubMed]
  23. D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Muller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J Biomed Opt 20, 61106 (2015).
  24. L. Sauer, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) - a novel way to assess changes in MacTel,” in Lowy Medical Reseach Institute (LMRI) annual meeting(New York City, 2017).
  25. C. Dysli, S. Wolf, K. Hatz, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging in Stargardt Disease: Potential Marker for Disease Progression,” Invest. Ophthalmol. Vis. Sci. 57(3), 832–841 (2016).
    [Crossref] [PubMed]
  26. C. Dysli, S. Wolf, H. V. Tran, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Patients With Choroideremia Identify Photoreceptors in Areas With Retinal Pigment Epithelium Atrophy,” Invest. Ophthalmol. Vis. Sci. 57(15), 6714–6721 (2016).
    [Crossref] [PubMed]
  27. C. Dysli, L. Berger, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetimes and Central Serous Chorioretinopathy,” Retina 37(11), 2151–2161 (2017).
    [Crossref] [PubMed]
  28. D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
    [Crossref] [PubMed]
  29. J. H. Prince, C. D. Diesem, I. Eglitis, and G. L. Ruskell, Anatomy and Histology of the Eye and Orbit in Domestic Animals (Charles C. Thomas, 1965).
  30. C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retin. Eye Res. 60, 120–143 (2017).
    [Crossref] [PubMed]
  31. W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
    [Crossref] [PubMed]
  32. M. Klemm, D. Schweitzer, S. Peters, L. Sauer, M. Hammer, and J. Haueisen, “FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye,” PLoS One 10(7), e0131640 (2015).
    [Crossref] [PubMed]
  33. M. Gloesmann, B. Hermann, C. Schubert, H. Sattmann, P. K. Ahnelt, and W. Drexler, “Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 44(4), 1696–1703 (2003).
    [Crossref] [PubMed]
  34. F. Schütt, M. Bergmann, F. G. Holz, and J. Kopitz, “Isolation of intact lysosomes from human RPE cells and effects of A2-E on the integrity of the lysosomal and other cellular membranes,” Graefes Arch. Clin. Exp. Ophthalmol. 240(12), 983–988 (2002).
    [Crossref] [PubMed]
  35. C. N. Keilhauer and F. C. Delori, “Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin,” Invest. Ophthalmol. Vis. Sci. 47(8), 3556–3564 (2006).
    [Crossref] [PubMed]
  36. A. Ehlers, I. Riemann, M. Stark, and K. König, “Multiphoton fluorescence lifetime imaging of human hair,” Microsc. Res. Tech. 70(2), 154–161 (2007).
    [Crossref] [PubMed]
  37. E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol. 18(6), 509–515 (2009).
    [Crossref] [PubMed]
  38. S. Peters, M. Hammer, and D. Schweitzer, “Two-photon excited fluorescence microscopy application for ex vivo investigation of ocular fundus samples,” in ECBO, P. T. C. So, and E. Beaurepaire, eds. (SPIE, Munich, Germany, 2011), pp. 808605–808610.
  39. M. Y. Loguinova, V. E. Zagidullin, T. B. Feldman, Y. V. Rostovtseva, V. Z. Paschenko, A. B. Rubin, and A. A. Ostrovsky, “Spectral Characteristics of Fluorophores Formed via Interaction between All-trans-Retinal with Rhodopsin and Lipids in Photoreceptor Membrane of Retina Rod Outer Segments,” Биол. мембраны 26, 83–93 (2009).
  40. J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2(1), 139–148 (2011).
    [Crossref] [PubMed]
  41. R. Sharma, C. Schwarz, J. J. Hunter, G. Palczewska, K. Palczewski, and D. R. Williams, “Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 58(1), 604–613 (2017).
    [Crossref] [PubMed]
  42. C. Chen, E. Tsina, M. C. Cornwall, R. K. Crouch, S. Vijayaraghavan, and Y. Koutalos, “Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors,” Biophys. J. 88(3), 2278–2287 (2005).
    [Crossref] [PubMed]
  43. M. Garcá, J. Ruiz-Ederra, H. Hernández-Barbáchano, and E. Vecino, “Topography of pig retinal ganglion cells,” J. Comp. Neurol. 486(4), 361–372 (2005).
    [Crossref] [PubMed]
  44. R. T. Smith, M. A. Sohrab, M. Busuioc, and G. Barile, “Reticular macular disease,” Am. J. Ophthalmol. 148(5), 733–743.e2 (2009).
    [Crossref] [PubMed]
  45. M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
    [Crossref] [PubMed]
  46. C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence lifetime imaging of the ocular fundus in mice,” Invest. Ophthalmol. Vis. Sci. 55(11), 7206–7215 (2014).
    [Crossref] [PubMed]
  47. D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).
  48. J. Burd, S. Lum, F. Cahn, and K. Ignotz, “Simultaneous noninvasive clinical measurement of lens autofluorescence and rayleigh scattering using a fluorescence biomicroscope,” J. Diabetes Sci. Technol. 6(6), 1251–1259 (2012).
    [Crossref] [PubMed]
  49. J. Chen, P. R. Callis, and J. King, “Mechanism of the very efficient quenching of tryptophan fluorescence in human gamma D- and gamma S-crystallins: the gamma-crystallin fold may have evolved to protect tryptophan residues from ultraviolet photodamage,” Biochemistry 48(17), 3708–3716 (2009).
    [Crossref] [PubMed]
  50. P. Garcia-Barreno, M. C. Guisasola, and A. Suarez, “Fluorescent and compositional changes in crystallin supramolecular structures in pig lens during development,” Comp. Biochem. Physiol. B Biochem. Mol. Biol. 141(2), 179–185 (2005).
    [Crossref] [PubMed]
  51. A. Batista, H. G. Breunig, A. Uchugonova, A. M. Morgado, and K. König, “Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with a 12-femtosecond laser microscope,” J. Biomed. Opt. 21(3), 036002 (2016).
    [Crossref] [PubMed]
  52. M. L. Beauchemin, “The fine structure of the pig’s retina,” Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 190(1), 27–45 (1974).
    [Crossref] [PubMed]
  53. T. I. Chao, J. Grosche, K. J. Friedrich, B. Biedermann, M. Francke, T. Pannicke, W. Reichelt, M. Wulst, C. Mühle, S. Pritz-Hohmeier, H. Kuhrt, F. Faude, W. Drommer, M. Kasper, E. Buse, and A. Reichenbach, “Comparative studies on mammalian Müller (retinal glial) cells,” J. Neurocytol. 26(7), 439–454 (1997).
    [Crossref] [PubMed]
  54. A. Hendrickson and D. Hicks, “Distribution and density of medium- and short-wavelength selective cones in the domestic pig retina,” Exp. Eye Res. 74(4), 435–444 (2002).
    [Crossref] [PubMed]

2017 (4)

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[PubMed]

C. Dysli, L. Berger, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetimes and Central Serous Chorioretinopathy,” Retina 37(11), 2151–2161 (2017).
[Crossref] [PubMed]

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retin. Eye Res. 60, 120–143 (2017).
[Crossref] [PubMed]

R. Sharma, C. Schwarz, J. J. Hunter, G. Palczewska, K. Palczewski, and D. R. Williams, “Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 58(1), 604–613 (2017).
[Crossref] [PubMed]

2016 (5)

C. Dysli, S. Wolf, K. Hatz, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging in Stargardt Disease: Potential Marker for Disease Progression,” Invest. Ophthalmol. Vis. Sci. 57(3), 832–841 (2016).
[Crossref] [PubMed]

C. Dysli, S. Wolf, H. V. Tran, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Patients With Choroideremia Identify Photoreceptors in Areas With Retinal Pigment Epithelium Atrophy,” Invest. Ophthalmol. Vis. Sci. 57(15), 6714–6721 (2016).
[Crossref] [PubMed]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring Macular Pigment changes in Macular Holes using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Acta ophthalmologica 95(5), 481–492 (2016).
[PubMed]

T. Ben Ami, Y. Tong, A. Bhuiyan, C. Huisingh, Z. Ablonczy, T. Ach, C. A. Curcio, and R. T. Smith, “Spatial and Spectral Characterization of Human Retinal Pigment Epithelium Fluorophore Families by Ex Vivo Hyperspectral Autofluorescence Imaging,” Transl. Vis. Sci. Technol. 5(3), 5 (2016).
[Crossref] [PubMed]

A. Batista, H. G. Breunig, A. Uchugonova, A. M. Morgado, and K. König, “Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with a 12-femtosecond laser microscope,” J. Biomed. Opt. 21(3), 036002 (2016).
[Crossref] [PubMed]

2015 (4)

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4668–4679 (2015).
[Crossref] [PubMed]

D. M. Ciobanu, L. E. Olar, R. Stefan, I. A. Veresiu, C. G. Bala, P. A. Mircea, and G. Roman, “Fluorophores advanced glycation end products (AGEs)-to-NADH ratio is predictor for diabetic chronic kidney and cardiovascular disease,” J. Diabetes Complications 29(7), 893–897 (2015).
[Crossref] [PubMed]

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
[Crossref] [PubMed]

M. Klemm, D. Schweitzer, S. Peters, L. Sauer, M. Hammer, and J. Haueisen, “FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye,” PLoS One 10(7), e0131640 (2015).
[Crossref] [PubMed]

2014 (3)

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(4), 2106–2113 (2014).
[Crossref] [PubMed]

M. B. Parodi, P. Iacono, C. Del Turco, and F. Bandello, “Near-infrared fundus autofluorescence in subclinical best vitelliform macular dystrophy,” Am. J. Ophthalmol. 158(6), 1247–1252.e2 (2014).
[Crossref] [PubMed]

C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence lifetime imaging of the ocular fundus in mice,” Invest. Ophthalmol. Vis. Sci. 55(11), 7206–7215 (2014).
[Crossref] [PubMed]

2013 (1)

J. P. Greenberg, T. Duncker, R. L. Woods, R. T. Smith, J. R. Sparrow, and F. C. Delori, “Quantitative fundus autofluorescence in healthy eyes,” Invest. Ophthalmol. Vis. Sci. 54(8), 5684–5693 (2013).
[Crossref] [PubMed]

2012 (4)

D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, and C. Biskup, “Time-resolved autofluorescence imaging of human donor retina tissue from donors with significant extramacular drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
[Crossref] [PubMed]

T. Ueda-Consolvo, A. Miyakoshi, H. Ozaki, S. Houki, and A. Hayashi, “Near-infrared fundus autofluorescence-visualized melanin in the choroidal abnormalities of neurofibromatosis type 1,” Clin. Ophthalmol. 6, 1191–1194 (2012).
[PubMed]

W. Becker, “Fluorescence lifetime imaging--techniques and applications,” J. Microsc. 247(2), 119–136 (2012).
[Crossref] [PubMed]

J. Burd, S. Lum, F. Cahn, and K. Ignotz, “Simultaneous noninvasive clinical measurement of lens autofluorescence and rayleigh scattering using a fluorescence biomicroscope,” J. Diabetes Sci. Technol. 6(6), 1251–1259 (2012).
[Crossref] [PubMed]

2011 (2)

D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).

J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2(1), 139–148 (2011).
[Crossref] [PubMed]

2010 (1)

U. Kellner, S. Kellner, and S. Weinitz, “Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration,” Retina 30(1), 6–15 (2010).
[Crossref] [PubMed]

2009 (4)

E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol. 18(6), 509–515 (2009).
[Crossref] [PubMed]

M. Y. Loguinova, V. E. Zagidullin, T. B. Feldman, Y. V. Rostovtseva, V. Z. Paschenko, A. B. Rubin, and A. A. Ostrovsky, “Spectral Characteristics of Fluorophores Formed via Interaction between All-trans-Retinal with Rhodopsin and Lipids in Photoreceptor Membrane of Retina Rod Outer Segments,” Биол. мембраны 26, 83–93 (2009).

R. T. Smith, M. A. Sohrab, M. Busuioc, and G. Barile, “Reticular macular disease,” Am. J. Ophthalmol. 148(5), 733–743.e2 (2009).
[Crossref] [PubMed]

J. Chen, P. R. Callis, and J. King, “Mechanism of the very efficient quenching of tryptophan fluorescence in human gamma D- and gamma S-crystallins: the gamma-crystallin fold may have evolved to protect tryptophan residues from ultraviolet photodamage,” Biochemistry 48(17), 3708–3716 (2009).
[Crossref] [PubMed]

2008 (2)

S. Schmitz-Valckenberg, F. G. Holz, A. C. Bird, and R. F. Spaide, “Fundus autofluorescence imaging: review and perspectives,” Retina 28(3), 385–409 (2008).
[Crossref] [PubMed]

R. Spaide, “Autofluorescence from the outer retina and subretinal space: hypothesis and review,” Retina 28(1), 5–35 (2008).
[Crossref] [PubMed]

2007 (3)

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref] [PubMed]

A. Ehlers, I. Riemann, M. Stark, and K. König, “Multiphoton fluorescence lifetime imaging of human hair,” Microsc. Res. Tech. 70(2), 154–161 (2007).
[Crossref] [PubMed]

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

2006 (2)

C. N. Keilhauer and F. C. Delori, “Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin,” Invest. Ophthalmol. Vis. Sci. 47(8), 3556–3564 (2006).
[Crossref] [PubMed]

S. Schmitz-Valckenberg, A. Bindewald-Wittich, J. Dolar-Szczasny, J. Dreyhaupt, S. Wolf, H. P. Scholl, and F. G. Holz, “Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD,” Invest. Ophthalmol. Vis. Sci. 47(6), 2648–2654 (2006).
[Crossref] [PubMed]

2005 (4)

W. Einbock, A. Moessner, U. E. Schnurrbusch, F. G. Holz, and S. Wolf, “Changes in fundus autofluorescence in patients with age-related maculopathy. Correlation to visual function: a prospective study,” Graefes Arch. Clin. Exp. Ophthalmol. 243(4), 300–305 (2005).
[Crossref] [PubMed]

C. Chen, E. Tsina, M. C. Cornwall, R. K. Crouch, S. Vijayaraghavan, and Y. Koutalos, “Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors,” Biophys. J. 88(3), 2278–2287 (2005).
[Crossref] [PubMed]

M. Garcá, J. Ruiz-Ederra, H. Hernández-Barbáchano, and E. Vecino, “Topography of pig retinal ganglion cells,” J. Comp. Neurol. 486(4), 361–372 (2005).
[Crossref] [PubMed]

P. Garcia-Barreno, M. C. Guisasola, and A. Suarez, “Fluorescent and compositional changes in crystallin supramolecular structures in pig lens during development,” Comp. Biochem. Physiol. B Biochem. Mol. Biol. 141(2), 179–185 (2005).
[Crossref] [PubMed]

2004 (2)

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
[Crossref] [PubMed]

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, and E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[Crossref] [PubMed]

2003 (1)

M. Gloesmann, B. Hermann, C. Schubert, H. Sattmann, P. K. Ahnelt, and W. Drexler, “Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 44(4), 1696–1703 (2003).
[Crossref] [PubMed]

2002 (2)

F. Schütt, M. Bergmann, F. G. Holz, and J. Kopitz, “Isolation of intact lysosomes from human RPE cells and effects of A2-E on the integrity of the lysosomal and other cellular membranes,” Graefes Arch. Clin. Exp. Ophthalmol. 240(12), 983–988 (2002).
[Crossref] [PubMed]

A. Hendrickson and D. Hicks, “Distribution and density of medium- and short-wavelength selective cones in the domestic pig retina,” Exp. Eye Res. 74(4), 435–444 (2002).
[Crossref] [PubMed]

2001 (1)

D. Schweitzer, A. Kolb, and M. Hammer, “Autofluorescence lifetime measurements in images of the human ocular fundus,” Proc. SPIE 4432, 29–39 (2001).
[Crossref]

2000 (1)

F. C. Delori, M. R. Fleckner, D. G. Goger, J. J. Weiter, and C. K. Dorey, “Autofluorescence distribution associated with drusen in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 41(2), 496–504 (2000).
[PubMed]

1997 (1)

T. I. Chao, J. Grosche, K. J. Friedrich, B. Biedermann, M. Francke, T. Pannicke, W. Reichelt, M. Wulst, C. Mühle, S. Pritz-Hohmeier, H. Kuhrt, F. Faude, W. Drommer, M. Kasper, E. Buse, and A. Reichenbach, “Comparative studies on mammalian Müller (retinal glial) cells,” J. Neurocytol. 26(7), 439–454 (1997).
[Crossref] [PubMed]

1995 (1)

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, and J. J. Weiter, “In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Vis. Sci. 36(3), 718–729 (1995).
[PubMed]

1988 (1)

G. E. Eldred and M. L. Katz, “Fluorophores of the Human Retinal Pigment Epithelium - Separation and Spectral Characterization,” Exp. Eye Res. 47(1), 71–86 (1988).
[Crossref] [PubMed]

1974 (1)

M. L. Beauchemin, “The fine structure of the pig’s retina,” Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 190(1), 27–45 (1974).
[Crossref] [PubMed]

Abegg, M.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(4), 2106–2113 (2014).
[Crossref] [PubMed]

Ablonczy, Z.

T. Ben Ami, Y. Tong, A. Bhuiyan, C. Huisingh, Z. Ablonczy, T. Ach, C. A. Curcio, and R. T. Smith, “Spatial and Spectral Characterization of Human Retinal Pigment Epithelium Fluorophore Families by Ex Vivo Hyperspectral Autofluorescence Imaging,” Transl. Vis. Sci. Technol. 5(3), 5 (2016).
[Crossref] [PubMed]

Ach, T.

T. Ben Ami, Y. Tong, A. Bhuiyan, C. Huisingh, Z. Ablonczy, T. Ach, C. A. Curcio, and R. T. Smith, “Spatial and Spectral Characterization of Human Retinal Pigment Epithelium Fluorophore Families by Ex Vivo Hyperspectral Autofluorescence Imaging,” Transl. Vis. Sci. Technol. 5(3), 5 (2016).
[Crossref] [PubMed]

Ahnelt, P. K.

M. Gloesmann, B. Hermann, C. Schubert, H. Sattmann, P. K. Ahnelt, and W. Drexler, “Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 44(4), 1696–1703 (2003).
[Crossref] [PubMed]

Anders, R.

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, and E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[Crossref] [PubMed]

Arend, O.

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, and J. J. Weiter, “In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Vis. Sci. 36(3), 718–729 (1995).
[PubMed]

Augsten, R.

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[PubMed]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring Macular Pigment changes in Macular Holes using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Acta ophthalmologica 95(5), 481–492 (2016).
[PubMed]

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4668–4679 (2015).
[Crossref] [PubMed]

Bala, C. G.

D. M. Ciobanu, L. E. Olar, R. Stefan, I. A. Veresiu, C. G. Bala, P. A. Mircea, and G. Roman, “Fluorophores advanced glycation end products (AGEs)-to-NADH ratio is predictor for diabetic chronic kidney and cardiovascular disease,” J. Diabetes Complications 29(7), 893–897 (2015).
[Crossref] [PubMed]

Bandello, F.

M. B. Parodi, P. Iacono, C. Del Turco, and F. Bandello, “Near-infrared fundus autofluorescence in subclinical best vitelliform macular dystrophy,” Am. J. Ophthalmol. 158(6), 1247–1252.e2 (2014).
[Crossref] [PubMed]

Barile, G.

R. T. Smith, M. A. Sohrab, M. Busuioc, and G. Barile, “Reticular macular disease,” Am. J. Ophthalmol. 148(5), 733–743.e2 (2009).
[Crossref] [PubMed]

Batista, A.

A. Batista, H. G. Breunig, A. Uchugonova, A. M. Morgado, and K. König, “Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with a 12-femtosecond laser microscope,” J. Biomed. Opt. 21(3), 036002 (2016).
[Crossref] [PubMed]

Beauchemin, M. L.

M. L. Beauchemin, “The fine structure of the pig’s retina,” Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 190(1), 27–45 (1974).
[Crossref] [PubMed]

Becker, W.

W. Becker, “Fluorescence lifetime imaging--techniques and applications,” J. Microsc. 247(2), 119–136 (2012).
[Crossref] [PubMed]

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref] [PubMed]

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
[Crossref] [PubMed]

Ben Ami, T.

T. Ben Ami, Y. Tong, A. Bhuiyan, C. Huisingh, Z. Ablonczy, T. Ach, C. A. Curcio, and R. T. Smith, “Spatial and Spectral Characterization of Human Retinal Pigment Epithelium Fluorophore Families by Ex Vivo Hyperspectral Autofluorescence Imaging,” Transl. Vis. Sci. Technol. 5(3), 5 (2016).
[Crossref] [PubMed]

Benndorf, K.

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
[Crossref] [PubMed]

Berezin, M. Y.

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retin. Eye Res. 60, 120–143 (2017).
[Crossref] [PubMed]

Berger, L.

C. Dysli, L. Berger, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetimes and Central Serous Chorioretinopathy,” Retina 37(11), 2151–2161 (2017).
[Crossref] [PubMed]

Bergmann, A.

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref] [PubMed]

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
[Crossref] [PubMed]

Bergmann, M.

F. Schütt, M. Bergmann, F. G. Holz, and J. Kopitz, “Isolation of intact lysosomes from human RPE cells and effects of A2-E on the integrity of the lysosomal and other cellular membranes,” Graefes Arch. Clin. Exp. Ophthalmol. 240(12), 983–988 (2002).
[Crossref] [PubMed]

Bhuiyan, A.

T. Ben Ami, Y. Tong, A. Bhuiyan, C. Huisingh, Z. Ablonczy, T. Ach, C. A. Curcio, and R. T. Smith, “Spatial and Spectral Characterization of Human Retinal Pigment Epithelium Fluorophore Families by Ex Vivo Hyperspectral Autofluorescence Imaging,” Transl. Vis. Sci. Technol. 5(3), 5 (2016).
[Crossref] [PubMed]

Biedermann, B.

T. I. Chao, J. Grosche, K. J. Friedrich, B. Biedermann, M. Francke, T. Pannicke, W. Reichelt, M. Wulst, C. Mühle, S. Pritz-Hohmeier, H. Kuhrt, F. Faude, W. Drommer, M. Kasper, E. Buse, and A. Reichenbach, “Comparative studies on mammalian Müller (retinal glial) cells,” J. Neurocytol. 26(7), 439–454 (1997).
[Crossref] [PubMed]

Bindewald-Wittich, A.

S. Schmitz-Valckenberg, A. Bindewald-Wittich, J. Dolar-Szczasny, J. Dreyhaupt, S. Wolf, H. P. Scholl, and F. G. Holz, “Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD,” Invest. Ophthalmol. Vis. Sci. 47(6), 2648–2654 (2006).
[Crossref] [PubMed]

Birckner, E.

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref] [PubMed]

Bird, A. C.

S. Schmitz-Valckenberg, F. G. Holz, A. C. Bird, and R. F. Spaide, “Fundus autofluorescence imaging: review and perspectives,” Retina 28(3), 385–409 (2008).
[Crossref] [PubMed]

Biskup, C.

D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, and C. Biskup, “Time-resolved autofluorescence imaging of human donor retina tissue from donors with significant extramacular drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
[Crossref] [PubMed]

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
[Crossref] [PubMed]

Blatz, J.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(4), 2106–2113 (2014).
[Crossref] [PubMed]

Breunig, H. G.

A. Batista, H. G. Breunig, A. Uchugonova, A. M. Morgado, and K. König, “Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with a 12-femtosecond laser microscope,” J. Biomed. Opt. 21(3), 036002 (2016).
[Crossref] [PubMed]

Burd, J.

J. Burd, S. Lum, F. Cahn, and K. Ignotz, “Simultaneous noninvasive clinical measurement of lens autofluorescence and rayleigh scattering using a fluorescence biomicroscope,” J. Diabetes Sci. Technol. 6(6), 1251–1259 (2012).
[Crossref] [PubMed]

Buse, E.

T. I. Chao, J. Grosche, K. J. Friedrich, B. Biedermann, M. Francke, T. Pannicke, W. Reichelt, M. Wulst, C. Mühle, S. Pritz-Hohmeier, H. Kuhrt, F. Faude, W. Drommer, M. Kasper, E. Buse, and A. Reichenbach, “Comparative studies on mammalian Müller (retinal glial) cells,” J. Neurocytol. 26(7), 439–454 (1997).
[Crossref] [PubMed]

Busuioc, M.

R. T. Smith, M. A. Sohrab, M. Busuioc, and G. Barile, “Reticular macular disease,” Am. J. Ophthalmol. 148(5), 733–743.e2 (2009).
[Crossref] [PubMed]

Cahn, F.

J. Burd, S. Lum, F. Cahn, and K. Ignotz, “Simultaneous noninvasive clinical measurement of lens autofluorescence and rayleigh scattering using a fluorescence biomicroscope,” J. Diabetes Sci. Technol. 6(6), 1251–1259 (2012).
[Crossref] [PubMed]

Callis, P. R.

J. Chen, P. R. Callis, and J. King, “Mechanism of the very efficient quenching of tryptophan fluorescence in human gamma D- and gamma S-crystallins: the gamma-crystallin fold may have evolved to protect tryptophan residues from ultraviolet photodamage,” Biochemistry 48(17), 3708–3716 (2009).
[Crossref] [PubMed]

Chao, T. I.

T. I. Chao, J. Grosche, K. J. Friedrich, B. Biedermann, M. Francke, T. Pannicke, W. Reichelt, M. Wulst, C. Mühle, S. Pritz-Hohmeier, H. Kuhrt, F. Faude, W. Drommer, M. Kasper, E. Buse, and A. Reichenbach, “Comparative studies on mammalian Müller (retinal glial) cells,” J. Neurocytol. 26(7), 439–454 (1997).
[Crossref] [PubMed]

Chen, C.

C. Chen, E. Tsina, M. C. Cornwall, R. K. Crouch, S. Vijayaraghavan, and Y. Koutalos, “Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors,” Biophys. J. 88(3), 2278–2287 (2005).
[Crossref] [PubMed]

Chen, J.

J. Chen, P. R. Callis, and J. King, “Mechanism of the very efficient quenching of tryptophan fluorescence in human gamma D- and gamma S-crystallins: the gamma-crystallin fold may have evolved to protect tryptophan residues from ultraviolet photodamage,” Biochemistry 48(17), 3708–3716 (2009).
[Crossref] [PubMed]

Ciobanu, D. M.

D. M. Ciobanu, L. E. Olar, R. Stefan, I. A. Veresiu, C. G. Bala, P. A. Mircea, and G. Roman, “Fluorophores advanced glycation end products (AGEs)-to-NADH ratio is predictor for diabetic chronic kidney and cardiovascular disease,” J. Diabetes Complications 29(7), 893–897 (2015).
[Crossref] [PubMed]

Cornwall, M. C.

C. Chen, E. Tsina, M. C. Cornwall, R. K. Crouch, S. Vijayaraghavan, and Y. Koutalos, “Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors,” Biophys. J. 88(3), 2278–2287 (2005).
[Crossref] [PubMed]

Crouch, R. K.

C. Chen, E. Tsina, M. C. Cornwall, R. K. Crouch, S. Vijayaraghavan, and Y. Koutalos, “Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors,” Biophys. J. 88(3), 2278–2287 (2005).
[Crossref] [PubMed]

Curcio, C. A.

T. Ben Ami, Y. Tong, A. Bhuiyan, C. Huisingh, Z. Ablonczy, T. Ach, C. A. Curcio, and R. T. Smith, “Spatial and Spectral Characterization of Human Retinal Pigment Epithelium Fluorophore Families by Ex Vivo Hyperspectral Autofluorescence Imaging,” Transl. Vis. Sci. Technol. 5(3), 5 (2016).
[Crossref] [PubMed]

Dawczynski, J.

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
[Crossref] [PubMed]

D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).

Del Turco, C.

M. B. Parodi, P. Iacono, C. Del Turco, and F. Bandello, “Near-infrared fundus autofluorescence in subclinical best vitelliform macular dystrophy,” Am. J. Ophthalmol. 158(6), 1247–1252.e2 (2014).
[Crossref] [PubMed]

Delori, F. C.

J. P. Greenberg, T. Duncker, R. L. Woods, R. T. Smith, J. R. Sparrow, and F. C. Delori, “Quantitative fundus autofluorescence in healthy eyes,” Invest. Ophthalmol. Vis. Sci. 54(8), 5684–5693 (2013).
[Crossref] [PubMed]

C. N. Keilhauer and F. C. Delori, “Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin,” Invest. Ophthalmol. Vis. Sci. 47(8), 3556–3564 (2006).
[Crossref] [PubMed]

F. C. Delori, M. R. Fleckner, D. G. Goger, J. J. Weiter, and C. K. Dorey, “Autofluorescence distribution associated with drusen in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 41(2), 496–504 (2000).
[PubMed]

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, and J. J. Weiter, “In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Vis. Sci. 36(3), 718–729 (1995).
[PubMed]

Deutsch, L.

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
[Crossref] [PubMed]

D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).

Dillon, J.

D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, and C. Biskup, “Time-resolved autofluorescence imaging of human donor retina tissue from donors with significant extramacular drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
[Crossref] [PubMed]

Dimitrow, E.

E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol. 18(6), 509–515 (2009).
[Crossref] [PubMed]

Doebbecke, T.

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, and E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[Crossref] [PubMed]

Dolar-Szczasny, J.

S. Schmitz-Valckenberg, A. Bindewald-Wittich, J. Dolar-Szczasny, J. Dreyhaupt, S. Wolf, H. P. Scholl, and F. G. Holz, “Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD,” Invest. Ophthalmol. Vis. Sci. 47(6), 2648–2654 (2006).
[Crossref] [PubMed]

Dorey, C. K.

F. C. Delori, M. R. Fleckner, D. G. Goger, J. J. Weiter, and C. K. Dorey, “Autofluorescence distribution associated with drusen in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 41(2), 496–504 (2000).
[PubMed]

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, and J. J. Weiter, “In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Vis. Sci. 36(3), 718–729 (1995).
[PubMed]

Drexler, W.

M. Gloesmann, B. Hermann, C. Schubert, H. Sattmann, P. K. Ahnelt, and W. Drexler, “Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 44(4), 1696–1703 (2003).
[Crossref] [PubMed]

Dreyhaupt, J.

S. Schmitz-Valckenberg, A. Bindewald-Wittich, J. Dolar-Szczasny, J. Dreyhaupt, S. Wolf, H. P. Scholl, and F. G. Holz, “Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD,” Invest. Ophthalmol. Vis. Sci. 47(6), 2648–2654 (2006).
[Crossref] [PubMed]

Drommer, W.

T. I. Chao, J. Grosche, K. J. Friedrich, B. Biedermann, M. Francke, T. Pannicke, W. Reichelt, M. Wulst, C. Mühle, S. Pritz-Hohmeier, H. Kuhrt, F. Faude, W. Drommer, M. Kasper, E. Buse, and A. Reichenbach, “Comparative studies on mammalian Müller (retinal glial) cells,” J. Neurocytol. 26(7), 439–454 (1997).
[Crossref] [PubMed]

Dubra, A.

Duncker, T.

J. P. Greenberg, T. Duncker, R. L. Woods, R. T. Smith, J. R. Sparrow, and F. C. Delori, “Quantitative fundus autofluorescence in healthy eyes,” Invest. Ophthalmol. Vis. Sci. 54(8), 5684–5693 (2013).
[Crossref] [PubMed]

Dysli, C.

C. Dysli, L. Berger, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetimes and Central Serous Chorioretinopathy,” Retina 37(11), 2151–2161 (2017).
[Crossref] [PubMed]

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retin. Eye Res. 60, 120–143 (2017).
[Crossref] [PubMed]

C. Dysli, S. Wolf, H. V. Tran, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Patients With Choroideremia Identify Photoreceptors in Areas With Retinal Pigment Epithelium Atrophy,” Invest. Ophthalmol. Vis. Sci. 57(15), 6714–6721 (2016).
[Crossref] [PubMed]

C. Dysli, S. Wolf, K. Hatz, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging in Stargardt Disease: Potential Marker for Disease Progression,” Invest. Ophthalmol. Vis. Sci. 57(3), 832–841 (2016).
[Crossref] [PubMed]

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(4), 2106–2113 (2014).
[Crossref] [PubMed]

C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence lifetime imaging of the ocular fundus in mice,” Invest. Ophthalmol. Vis. Sci. 55(11), 7206–7215 (2014).
[Crossref] [PubMed]

Dysli, M.

C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence lifetime imaging of the ocular fundus in mice,” Invest. Ophthalmol. Vis. Sci. 55(11), 7206–7215 (2014).
[Crossref] [PubMed]

Ehlers, A.

E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol. 18(6), 509–515 (2009).
[Crossref] [PubMed]

A. Ehlers, I. Riemann, M. Stark, and K. König, “Multiphoton fluorescence lifetime imaging of human hair,” Microsc. Res. Tech. 70(2), 154–161 (2007).
[Crossref] [PubMed]

Eickhoff, J.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Einbock, W.

W. Einbock, A. Moessner, U. E. Schnurrbusch, F. G. Holz, and S. Wolf, “Changes in fundus autofluorescence in patients with age-related maculopathy. Correlation to visual function: a prospective study,” Graefes Arch. Clin. Exp. Ophthalmol. 243(4), 300–305 (2005).
[Crossref] [PubMed]

Eldred, G. E.

G. E. Eldred and M. L. Katz, “Fluorophores of the Human Retinal Pigment Epithelium - Separation and Spectral Characterization,” Exp. Eye Res. 47(1), 71–86 (1988).
[Crossref] [PubMed]

Eliceiri, K. W.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Elsner, P.

E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol. 18(6), 509–515 (2009).
[Crossref] [PubMed]

Enzmann, V.

C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence lifetime imaging of the ocular fundus in mice,” Invest. Ophthalmol. Vis. Sci. 55(11), 7206–7215 (2014).
[Crossref] [PubMed]

Faude, F.

T. I. Chao, J. Grosche, K. J. Friedrich, B. Biedermann, M. Francke, T. Pannicke, W. Reichelt, M. Wulst, C. Mühle, S. Pritz-Hohmeier, H. Kuhrt, F. Faude, W. Drommer, M. Kasper, E. Buse, and A. Reichenbach, “Comparative studies on mammalian Müller (retinal glial) cells,” J. Neurocytol. 26(7), 439–454 (1997).
[Crossref] [PubMed]

Feldman, T. B.

M. Y. Loguinova, V. E. Zagidullin, T. B. Feldman, Y. V. Rostovtseva, V. Z. Paschenko, A. B. Rubin, and A. A. Ostrovsky, “Spectral Characteristics of Fluorophores Formed via Interaction between All-trans-Retinal with Rhodopsin and Lipids in Photoreceptor Membrane of Retina Rod Outer Segments,” Биол. мембраны 26, 83–93 (2009).

Fleckner, M. R.

F. C. Delori, M. R. Fleckner, D. G. Goger, J. J. Weiter, and C. K. Dorey, “Autofluorescence distribution associated with drusen in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 41(2), 496–504 (2000).
[PubMed]

Francke, M.

T. I. Chao, J. Grosche, K. J. Friedrich, B. Biedermann, M. Francke, T. Pannicke, W. Reichelt, M. Wulst, C. Mühle, S. Pritz-Hohmeier, H. Kuhrt, F. Faude, W. Drommer, M. Kasper, E. Buse, and A. Reichenbach, “Comparative studies on mammalian Müller (retinal glial) cells,” J. Neurocytol. 26(7), 439–454 (1997).
[Crossref] [PubMed]

Friedrich, K. J.

T. I. Chao, J. Grosche, K. J. Friedrich, B. Biedermann, M. Francke, T. Pannicke, W. Reichelt, M. Wulst, C. Mühle, S. Pritz-Hohmeier, H. Kuhrt, F. Faude, W. Drommer, M. Kasper, E. Buse, and A. Reichenbach, “Comparative studies on mammalian Müller (retinal glial) cells,” J. Neurocytol. 26(7), 439–454 (1997).
[Crossref] [PubMed]

Gaillard, E. R.

D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, and C. Biskup, “Time-resolved autofluorescence imaging of human donor retina tissue from donors with significant extramacular drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
[Crossref] [PubMed]

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, and E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[Crossref] [PubMed]

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, and E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[Crossref] [PubMed]

Garcá, M.

M. Garcá, J. Ruiz-Ederra, H. Hernández-Barbáchano, and E. Vecino, “Topography of pig retinal ganglion cells,” J. Comp. Neurol. 486(4), 361–372 (2005).
[Crossref] [PubMed]

Garcia-Barreno, P.

P. Garcia-Barreno, M. C. Guisasola, and A. Suarez, “Fluorescent and compositional changes in crystallin supramolecular structures in pig lens during development,” Comp. Biochem. Physiol. B Biochem. Mol. Biol. 141(2), 179–185 (2005).
[Crossref] [PubMed]

Gendron-Fitzpatrick, A.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Gloesmann, M.

M. Gloesmann, B. Hermann, C. Schubert, H. Sattmann, P. K. Ahnelt, and W. Drexler, “Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 44(4), 1696–1703 (2003).
[Crossref] [PubMed]

Goger, D. G.

F. C. Delori, M. R. Fleckner, D. G. Goger, J. J. Weiter, and C. K. Dorey, “Autofluorescence distribution associated with drusen in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 41(2), 496–504 (2000).
[PubMed]

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, and J. J. Weiter, “In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Vis. Sci. 36(3), 718–729 (1995).
[PubMed]

Greenberg, J. P.

J. P. Greenberg, T. Duncker, R. L. Woods, R. T. Smith, J. R. Sparrow, and F. C. Delori, “Quantitative fundus autofluorescence in healthy eyes,” Invest. Ophthalmol. Vis. Sci. 54(8), 5684–5693 (2013).
[Crossref] [PubMed]

Grosche, J.

T. I. Chao, J. Grosche, K. J. Friedrich, B. Biedermann, M. Francke, T. Pannicke, W. Reichelt, M. Wulst, C. Mühle, S. Pritz-Hohmeier, H. Kuhrt, F. Faude, W. Drommer, M. Kasper, E. Buse, and A. Reichenbach, “Comparative studies on mammalian Müller (retinal glial) cells,” J. Neurocytol. 26(7), 439–454 (1997).
[Crossref] [PubMed]

Guisasola, M. C.

P. Garcia-Barreno, M. C. Guisasola, and A. Suarez, “Fluorescent and compositional changes in crystallin supramolecular structures in pig lens during development,” Comp. Biochem. Physiol. B Biochem. Mol. Biol. 141(2), 179–185 (2005).
[Crossref] [PubMed]

Hammer, M.

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retin. Eye Res. 60, 120–143 (2017).
[Crossref] [PubMed]

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[PubMed]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring Macular Pigment changes in Macular Holes using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Acta ophthalmologica 95(5), 481–492 (2016).
[PubMed]

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4668–4679 (2015).
[Crossref] [PubMed]

M. Klemm, D. Schweitzer, S. Peters, L. Sauer, M. Hammer, and J. Haueisen, “FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye,” PLoS One 10(7), e0131640 (2015).
[Crossref] [PubMed]

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
[Crossref] [PubMed]

D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, and C. Biskup, “Time-resolved autofluorescence imaging of human donor retina tissue from donors with significant extramacular drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
[Crossref] [PubMed]

D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref] [PubMed]

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, and E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[Crossref] [PubMed]

D. Schweitzer, A. Kolb, and M. Hammer, “Autofluorescence lifetime measurements in images of the human ocular fundus,” Proc. SPIE 4432, 29–39 (2001).
[Crossref]

Hatz, K.

C. Dysli, S. Wolf, K. Hatz, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging in Stargardt Disease: Potential Marker for Disease Progression,” Invest. Ophthalmol. Vis. Sci. 57(3), 832–841 (2016).
[Crossref] [PubMed]

Haueisen, J.

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
[Crossref] [PubMed]

M. Klemm, D. Schweitzer, S. Peters, L. Sauer, M. Hammer, and J. Haueisen, “FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye,” PLoS One 10(7), e0131640 (2015).
[Crossref] [PubMed]

Hayashi, A.

T. Ueda-Consolvo, A. Miyakoshi, H. Ozaki, S. Houki, and A. Hayashi, “Near-infrared fundus autofluorescence-visualized melanin in the choroidal abnormalities of neurofibromatosis type 1,” Clin. Ophthalmol. 6, 1191–1194 (2012).
[PubMed]

Hendrickson, A.

A. Hendrickson and D. Hicks, “Distribution and density of medium- and short-wavelength selective cones in the domestic pig retina,” Exp. Eye Res. 74(4), 435–444 (2002).
[Crossref] [PubMed]

Hermann, B.

M. Gloesmann, B. Hermann, C. Schubert, H. Sattmann, P. K. Ahnelt, and W. Drexler, “Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 44(4), 1696–1703 (2003).
[Crossref] [PubMed]

Hernández-Barbáchano, H.

M. Garcá, J. Ruiz-Ederra, H. Hernández-Barbáchano, and E. Vecino, “Topography of pig retinal ganglion cells,” J. Comp. Neurol. 486(4), 361–372 (2005).
[Crossref] [PubMed]

Hicks, D.

A. Hendrickson and D. Hicks, “Distribution and density of medium- and short-wavelength selective cones in the domestic pig retina,” Exp. Eye Res. 74(4), 435–444 (2002).
[Crossref] [PubMed]

Hink, M. A.

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
[Crossref] [PubMed]

Hoffmann, B.

D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, and C. Biskup, “Time-resolved autofluorescence imaging of human donor retina tissue from donors with significant extramacular drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
[Crossref] [PubMed]

Holz, F. G.

S. Schmitz-Valckenberg, F. G. Holz, A. C. Bird, and R. F. Spaide, “Fundus autofluorescence imaging: review and perspectives,” Retina 28(3), 385–409 (2008).
[Crossref] [PubMed]

S. Schmitz-Valckenberg, A. Bindewald-Wittich, J. Dolar-Szczasny, J. Dreyhaupt, S. Wolf, H. P. Scholl, and F. G. Holz, “Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD,” Invest. Ophthalmol. Vis. Sci. 47(6), 2648–2654 (2006).
[Crossref] [PubMed]

W. Einbock, A. Moessner, U. E. Schnurrbusch, F. G. Holz, and S. Wolf, “Changes in fundus autofluorescence in patients with age-related maculopathy. Correlation to visual function: a prospective study,” Graefes Arch. Clin. Exp. Ophthalmol. 243(4), 300–305 (2005).
[Crossref] [PubMed]

F. Schütt, M. Bergmann, F. G. Holz, and J. Kopitz, “Isolation of intact lysosomes from human RPE cells and effects of A2-E on the integrity of the lysosomal and other cellular membranes,” Graefes Arch. Clin. Exp. Ophthalmol. 240(12), 983–988 (2002).
[Crossref] [PubMed]

Houki, S.

T. Ueda-Consolvo, A. Miyakoshi, H. Ozaki, S. Houki, and A. Hayashi, “Near-infrared fundus autofluorescence-visualized melanin in the choroidal abnormalities of neurofibromatosis type 1,” Clin. Ophthalmol. 6, 1191–1194 (2012).
[PubMed]

Huisingh, C.

T. Ben Ami, Y. Tong, A. Bhuiyan, C. Huisingh, Z. Ablonczy, T. Ach, C. A. Curcio, and R. T. Smith, “Spatial and Spectral Characterization of Human Retinal Pigment Epithelium Fluorophore Families by Ex Vivo Hyperspectral Autofluorescence Imaging,” Transl. Vis. Sci. Technol. 5(3), 5 (2016).
[Crossref] [PubMed]

Hunter, J. J.

R. Sharma, C. Schwarz, J. J. Hunter, G. Palczewska, K. Palczewski, and D. R. Williams, “Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 58(1), 604–613 (2017).
[Crossref] [PubMed]

J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2(1), 139–148 (2011).
[Crossref] [PubMed]

Iacono, P.

M. B. Parodi, P. Iacono, C. Del Turco, and F. Bandello, “Near-infrared fundus autofluorescence in subclinical best vitelliform macular dystrophy,” Am. J. Ophthalmol. 158(6), 1247–1252.e2 (2014).
[Crossref] [PubMed]

Ignotz, K.

J. Burd, S. Lum, F. Cahn, and K. Ignotz, “Simultaneous noninvasive clinical measurement of lens autofluorescence and rayleigh scattering using a fluorescence biomicroscope,” J. Diabetes Sci. Technol. 6(6), 1251–1259 (2012).
[Crossref] [PubMed]

Jentsch, S.

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
[Crossref] [PubMed]

D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref] [PubMed]

Kaatz, M.

E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol. 18(6), 509–515 (2009).
[Crossref] [PubMed]

Kasper, M.

T. I. Chao, J. Grosche, K. J. Friedrich, B. Biedermann, M. Francke, T. Pannicke, W. Reichelt, M. Wulst, C. Mühle, S. Pritz-Hohmeier, H. Kuhrt, F. Faude, W. Drommer, M. Kasper, E. Buse, and A. Reichenbach, “Comparative studies on mammalian Müller (retinal glial) cells,” J. Neurocytol. 26(7), 439–454 (1997).
[Crossref] [PubMed]

Katz, M. L.

G. E. Eldred and M. L. Katz, “Fluorophores of the Human Retinal Pigment Epithelium - Separation and Spectral Characterization,” Exp. Eye Res. 47(1), 71–86 (1988).
[Crossref] [PubMed]

Keilhauer, C. N.

C. N. Keilhauer and F. C. Delori, “Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin,” Invest. Ophthalmol. Vis. Sci. 47(8), 3556–3564 (2006).
[Crossref] [PubMed]

Kellner, S.

U. Kellner, S. Kellner, and S. Weinitz, “Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration,” Retina 30(1), 6–15 (2010).
[Crossref] [PubMed]

Kellner, U.

U. Kellner, S. Kellner, and S. Weinitz, “Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration,” Retina 30(1), 6–15 (2010).
[Crossref] [PubMed]

King, J.

J. Chen, P. R. Callis, and J. King, “Mechanism of the very efficient quenching of tryptophan fluorescence in human gamma D- and gamma S-crystallins: the gamma-crystallin fold may have evolved to protect tryptophan residues from ultraviolet photodamage,” Biochemistry 48(17), 3708–3716 (2009).
[Crossref] [PubMed]

Klemm, M.

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[PubMed]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring Macular Pigment changes in Macular Holes using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Acta ophthalmologica 95(5), 481–492 (2016).
[PubMed]

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
[Crossref] [PubMed]

M. Klemm, D. Schweitzer, S. Peters, L. Sauer, M. Hammer, and J. Haueisen, “FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye,” PLoS One 10(7), e0131640 (2015).
[Crossref] [PubMed]

D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).

Kloos, C. H.

D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).

Koehler, M. J.

E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol. 18(6), 509–515 (2009).
[Crossref] [PubMed]

Kolb, A.

D. Schweitzer, A. Kolb, and M. Hammer, “Autofluorescence lifetime measurements in images of the human ocular fundus,” Proc. SPIE 4432, 29–39 (2001).
[Crossref]

König, K.

A. Batista, H. G. Breunig, A. Uchugonova, A. M. Morgado, and K. König, “Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with a 12-femtosecond laser microscope,” J. Biomed. Opt. 21(3), 036002 (2016).
[Crossref] [PubMed]

E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol. 18(6), 509–515 (2009).
[Crossref] [PubMed]

A. Ehlers, I. Riemann, M. Stark, and K. König, “Multiphoton fluorescence lifetime imaging of human hair,” Microsc. Res. Tech. 70(2), 154–161 (2007).
[Crossref] [PubMed]

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
[Crossref] [PubMed]

Kopitz, J.

F. Schütt, M. Bergmann, F. G. Holz, and J. Kopitz, “Isolation of intact lysosomes from human RPE cells and effects of A2-E on the integrity of the lysosomal and other cellular membranes,” Graefes Arch. Clin. Exp. Ophthalmol. 240(12), 983–988 (2002).
[Crossref] [PubMed]

Koutalos, Y.

C. Chen, E. Tsina, M. C. Cornwall, R. K. Crouch, S. Vijayaraghavan, and Y. Koutalos, “Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors,” Biophys. J. 88(3), 2278–2287 (2005).
[Crossref] [PubMed]

Kowal, J.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(4), 2106–2113 (2014).
[Crossref] [PubMed]

Kuhrt, H.

T. I. Chao, J. Grosche, K. J. Friedrich, B. Biedermann, M. Francke, T. Pannicke, W. Reichelt, M. Wulst, C. Mühle, S. Pritz-Hohmeier, H. Kuhrt, F. Faude, W. Drommer, M. Kasper, E. Buse, and A. Reichenbach, “Comparative studies on mammalian Müller (retinal glial) cells,” J. Neurocytol. 26(7), 439–454 (1997).
[Crossref] [PubMed]

La Schiazza, O.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(4), 2106–2113 (2014).
[Crossref] [PubMed]

Leichtle, A. B.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(4), 2106–2113 (2014).
[Crossref] [PubMed]

Loguinova, M. Y.

M. Y. Loguinova, V. E. Zagidullin, T. B. Feldman, Y. V. Rostovtseva, V. Z. Paschenko, A. B. Rubin, and A. A. Ostrovsky, “Spectral Characteristics of Fluorophores Formed via Interaction between All-trans-Retinal with Rhodopsin and Lipids in Photoreceptor Membrane of Retina Rod Outer Segments,” Биол. мембраны 26, 83–93 (2009).

Lum, S.

J. Burd, S. Lum, F. Cahn, and K. Ignotz, “Simultaneous noninvasive clinical measurement of lens autofluorescence and rayleigh scattering using a fluorescence biomicroscope,” J. Diabetes Sci. Technol. 6(6), 1251–1259 (2012).
[Crossref] [PubMed]

Masella, B.

Menke, M. N.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(4), 2106–2113 (2014).
[Crossref] [PubMed]

Merigan, W. H.

Mircea, P. A.

D. M. Ciobanu, L. E. Olar, R. Stefan, I. A. Veresiu, C. G. Bala, P. A. Mircea, and G. Roman, “Fluorophores advanced glycation end products (AGEs)-to-NADH ratio is predictor for diabetic chronic kidney and cardiovascular disease,” J. Diabetes Complications 29(7), 893–897 (2015).
[Crossref] [PubMed]

Miyakoshi, A.

T. Ueda-Consolvo, A. Miyakoshi, H. Ozaki, S. Houki, and A. Hayashi, “Near-infrared fundus autofluorescence-visualized melanin in the choroidal abnormalities of neurofibromatosis type 1,” Clin. Ophthalmol. 6, 1191–1194 (2012).
[PubMed]

Moessner, A.

W. Einbock, A. Moessner, U. E. Schnurrbusch, F. G. Holz, and S. Wolf, “Changes in fundus autofluorescence in patients with age-related maculopathy. Correlation to visual function: a prospective study,” Graefes Arch. Clin. Exp. Ophthalmol. 243(4), 300–305 (2005).
[Crossref] [PubMed]

Morgado, A. M.

A. Batista, H. G. Breunig, A. Uchugonova, A. M. Morgado, and K. König, “Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with a 12-femtosecond laser microscope,” J. Biomed. Opt. 21(3), 036002 (2016).
[Crossref] [PubMed]

Mueller, U. A.

D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).

Mühle, C.

T. I. Chao, J. Grosche, K. J. Friedrich, B. Biedermann, M. Francke, T. Pannicke, W. Reichelt, M. Wulst, C. Mühle, S. Pritz-Hohmeier, H. Kuhrt, F. Faude, W. Drommer, M. Kasper, E. Buse, and A. Reichenbach, “Comparative studies on mammalian Müller (retinal glial) cells,” J. Neurocytol. 26(7), 439–454 (1997).
[Crossref] [PubMed]

Muller, N.

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[PubMed]

Müller, U. A.

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
[Crossref] [PubMed]

Mullins, R. F.

D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, and C. Biskup, “Time-resolved autofluorescence imaging of human donor retina tissue from donors with significant extramacular drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
[Crossref] [PubMed]

Norgauer, J.

E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol. 18(6), 509–515 (2009).
[Crossref] [PubMed]

Olar, L. E.

D. M. Ciobanu, L. E. Olar, R. Stefan, I. A. Veresiu, C. G. Bala, P. A. Mircea, and G. Roman, “Fluorophores advanced glycation end products (AGEs)-to-NADH ratio is predictor for diabetic chronic kidney and cardiovascular disease,” J. Diabetes Complications 29(7), 893–897 (2015).
[Crossref] [PubMed]

Ostrovsky, A. A.

M. Y. Loguinova, V. E. Zagidullin, T. B. Feldman, Y. V. Rostovtseva, V. Z. Paschenko, A. B. Rubin, and A. A. Ostrovsky, “Spectral Characteristics of Fluorophores Formed via Interaction between All-trans-Retinal with Rhodopsin and Lipids in Photoreceptor Membrane of Retina Rod Outer Segments,” Биол. мембраны 26, 83–93 (2009).

Ozaki, H.

T. Ueda-Consolvo, A. Miyakoshi, H. Ozaki, S. Houki, and A. Hayashi, “Near-infrared fundus autofluorescence-visualized melanin in the choroidal abnormalities of neurofibromatosis type 1,” Clin. Ophthalmol. 6, 1191–1194 (2012).
[PubMed]

Palczewska, G.

R. Sharma, C. Schwarz, J. J. Hunter, G. Palczewska, K. Palczewski, and D. R. Williams, “Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 58(1), 604–613 (2017).
[Crossref] [PubMed]

J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2(1), 139–148 (2011).
[Crossref] [PubMed]

Palczewski, K.

R. Sharma, C. Schwarz, J. J. Hunter, G. Palczewska, K. Palczewski, and D. R. Williams, “Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 58(1), 604–613 (2017).
[Crossref] [PubMed]

J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2(1), 139–148 (2011).
[Crossref] [PubMed]

Pannicke, T.

T. I. Chao, J. Grosche, K. J. Friedrich, B. Biedermann, M. Francke, T. Pannicke, W. Reichelt, M. Wulst, C. Mühle, S. Pritz-Hohmeier, H. Kuhrt, F. Faude, W. Drommer, M. Kasper, E. Buse, and A. Reichenbach, “Comparative studies on mammalian Müller (retinal glial) cells,” J. Neurocytol. 26(7), 439–454 (1997).
[Crossref] [PubMed]

Parodi, M. B.

M. B. Parodi, P. Iacono, C. Del Turco, and F. Bandello, “Near-infrared fundus autofluorescence in subclinical best vitelliform macular dystrophy,” Am. J. Ophthalmol. 158(6), 1247–1252.e2 (2014).
[Crossref] [PubMed]

Paschenko, V. Z.

M. Y. Loguinova, V. E. Zagidullin, T. B. Feldman, Y. V. Rostovtseva, V. Z. Paschenko, A. B. Rubin, and A. A. Ostrovsky, “Spectral Characteristics of Fluorophores Formed via Interaction between All-trans-Retinal with Rhodopsin and Lipids in Photoreceptor Membrane of Retina Rod Outer Segments,” Биол. мембраны 26, 83–93 (2009).

Peters, S.

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[PubMed]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring Macular Pigment changes in Macular Holes using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Acta ophthalmologica 95(5), 481–492 (2016).
[PubMed]

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4668–4679 (2015).
[Crossref] [PubMed]

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
[Crossref] [PubMed]

M. Klemm, D. Schweitzer, S. Peters, L. Sauer, M. Hammer, and J. Haueisen, “FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye,” PLoS One 10(7), e0131640 (2015).
[Crossref] [PubMed]

D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, and C. Biskup, “Time-resolved autofluorescence imaging of human donor retina tissue from donors with significant extramacular drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
[Crossref] [PubMed]

Pritz-Hohmeier, S.

T. I. Chao, J. Grosche, K. J. Friedrich, B. Biedermann, M. Francke, T. Pannicke, W. Reichelt, M. Wulst, C. Mühle, S. Pritz-Hohmeier, H. Kuhrt, F. Faude, W. Drommer, M. Kasper, E. Buse, and A. Reichenbach, “Comparative studies on mammalian Müller (retinal glial) cells,” J. Neurocytol. 26(7), 439–454 (1997).
[Crossref] [PubMed]

Quellec, G.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(4), 2106–2113 (2014).
[Crossref] [PubMed]

Quick, S.

D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).

Ramanujam, N.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Ramm, L.

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring Macular Pigment changes in Macular Holes using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Acta ophthalmologica 95(5), 481–492 (2016).
[PubMed]

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4668–4679 (2015).
[Crossref] [PubMed]

Reichelt, W.

T. I. Chao, J. Grosche, K. J. Friedrich, B. Biedermann, M. Francke, T. Pannicke, W. Reichelt, M. Wulst, C. Mühle, S. Pritz-Hohmeier, H. Kuhrt, F. Faude, W. Drommer, M. Kasper, E. Buse, and A. Reichenbach, “Comparative studies on mammalian Müller (retinal glial) cells,” J. Neurocytol. 26(7), 439–454 (1997).
[Crossref] [PubMed]

Reichenbach, A.

T. I. Chao, J. Grosche, K. J. Friedrich, B. Biedermann, M. Francke, T. Pannicke, W. Reichelt, M. Wulst, C. Mühle, S. Pritz-Hohmeier, H. Kuhrt, F. Faude, W. Drommer, M. Kasper, E. Buse, and A. Reichenbach, “Comparative studies on mammalian Müller (retinal glial) cells,” J. Neurocytol. 26(7), 439–454 (1997).
[Crossref] [PubMed]

Riching, K. M.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Riemann, I.

E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol. 18(6), 509–515 (2009).
[Crossref] [PubMed]

A. Ehlers, I. Riemann, M. Stark, and K. König, “Multiphoton fluorescence lifetime imaging of human hair,” Microsc. Res. Tech. 70(2), 154–161 (2007).
[Crossref] [PubMed]

Roman, G.

D. M. Ciobanu, L. E. Olar, R. Stefan, I. A. Veresiu, C. G. Bala, P. A. Mircea, and G. Roman, “Fluorophores advanced glycation end products (AGEs)-to-NADH ratio is predictor for diabetic chronic kidney and cardiovascular disease,” J. Diabetes Complications 29(7), 893–897 (2015).
[Crossref] [PubMed]

Rostovtseva, Y. V.

M. Y. Loguinova, V. E. Zagidullin, T. B. Feldman, Y. V. Rostovtseva, V. Z. Paschenko, A. B. Rubin, and A. A. Ostrovsky, “Spectral Characteristics of Fluorophores Formed via Interaction between All-trans-Retinal with Rhodopsin and Lipids in Photoreceptor Membrane of Retina Rod Outer Segments,” Биол. мембраны 26, 83–93 (2009).

Rubin, A. B.

M. Y. Loguinova, V. E. Zagidullin, T. B. Feldman, Y. V. Rostovtseva, V. Z. Paschenko, A. B. Rubin, and A. A. Ostrovsky, “Spectral Characteristics of Fluorophores Formed via Interaction between All-trans-Retinal with Rhodopsin and Lipids in Photoreceptor Membrane of Retina Rod Outer Segments,” Биол. мембраны 26, 83–93 (2009).

Ruiz-Ederra, J.

M. Garcá, J. Ruiz-Ederra, H. Hernández-Barbáchano, and E. Vecino, “Topography of pig retinal ganglion cells,” J. Comp. Neurol. 486(4), 361–372 (2005).
[Crossref] [PubMed]

Russell, S.

D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, and C. Biskup, “Time-resolved autofluorescence imaging of human donor retina tissue from donors with significant extramacular drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
[Crossref] [PubMed]

Sattmann, H.

M. Gloesmann, B. Hermann, C. Schubert, H. Sattmann, P. K. Ahnelt, and W. Drexler, “Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 44(4), 1696–1703 (2003).
[Crossref] [PubMed]

Sauer, L.

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retin. Eye Res. 60, 120–143 (2017).
[Crossref] [PubMed]

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[PubMed]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring Macular Pigment changes in Macular Holes using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Acta ophthalmologica 95(5), 481–492 (2016).
[PubMed]

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4668–4679 (2015).
[Crossref] [PubMed]

M. Klemm, D. Schweitzer, S. Peters, L. Sauer, M. Hammer, and J. Haueisen, “FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye,” PLoS One 10(7), e0131640 (2015).
[Crossref] [PubMed]

L. Sauer, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) - a novel way to assess changes in MacTel,” in Lowy Medical Reseach Institute (LMRI) annual meeting(New York City, 2017).

Schenke, S.

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref] [PubMed]

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, and E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[Crossref] [PubMed]

Schmidt, J.

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[PubMed]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring Macular Pigment changes in Macular Holes using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Acta ophthalmologica 95(5), 481–492 (2016).
[PubMed]

Schmitz-Valckenberg, S.

S. Schmitz-Valckenberg, F. G. Holz, A. C. Bird, and R. F. Spaide, “Fundus autofluorescence imaging: review and perspectives,” Retina 28(3), 385–409 (2008).
[Crossref] [PubMed]

S. Schmitz-Valckenberg, A. Bindewald-Wittich, J. Dolar-Szczasny, J. Dreyhaupt, S. Wolf, H. P. Scholl, and F. G. Holz, “Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD,” Invest. Ophthalmol. Vis. Sci. 47(6), 2648–2654 (2006).
[Crossref] [PubMed]

Schnurrbusch, U. E.

W. Einbock, A. Moessner, U. E. Schnurrbusch, F. G. Holz, and S. Wolf, “Changes in fundus autofluorescence in patients with age-related maculopathy. Correlation to visual function: a prospective study,” Graefes Arch. Clin. Exp. Ophthalmol. 243(4), 300–305 (2005).
[Crossref] [PubMed]

Scholl, H. P.

S. Schmitz-Valckenberg, A. Bindewald-Wittich, J. Dolar-Szczasny, J. Dreyhaupt, S. Wolf, H. P. Scholl, and F. G. Holz, “Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD,” Invest. Ophthalmol. Vis. Sci. 47(6), 2648–2654 (2006).
[Crossref] [PubMed]

Schubert, C.

M. Gloesmann, B. Hermann, C. Schubert, H. Sattmann, P. K. Ahnelt, and W. Drexler, “Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 44(4), 1696–1703 (2003).
[Crossref] [PubMed]

Schütt, F.

F. Schütt, M. Bergmann, F. G. Holz, and J. Kopitz, “Isolation of intact lysosomes from human RPE cells and effects of A2-E on the integrity of the lysosomal and other cellular membranes,” Graefes Arch. Clin. Exp. Ophthalmol. 240(12), 983–988 (2002).
[Crossref] [PubMed]

Schwarz, C.

R. Sharma, C. Schwarz, J. J. Hunter, G. Palczewska, K. Palczewski, and D. R. Williams, “Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 58(1), 604–613 (2017).
[Crossref] [PubMed]

Schweitzer, D.

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[PubMed]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring Macular Pigment changes in Macular Holes using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Acta ophthalmologica 95(5), 481–492 (2016).
[PubMed]

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4668–4679 (2015).
[Crossref] [PubMed]

M. Klemm, D. Schweitzer, S. Peters, L. Sauer, M. Hammer, and J. Haueisen, “FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye,” PLoS One 10(7), e0131640 (2015).
[Crossref] [PubMed]

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
[Crossref] [PubMed]

D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, and C. Biskup, “Time-resolved autofluorescence imaging of human donor retina tissue from donors with significant extramacular drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
[Crossref] [PubMed]

D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref] [PubMed]

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, and E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[Crossref] [PubMed]

D. Schweitzer, A. Kolb, and M. Hammer, “Autofluorescence lifetime measurements in images of the human ocular fundus,” Proc. SPIE 4432, 29–39 (2001).
[Crossref]

Schweitzer, F.

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref] [PubMed]

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, and E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[Crossref] [PubMed]

Sharma, R.

R. Sharma, C. Schwarz, J. J. Hunter, G. Palczewska, K. Palczewski, and D. R. Williams, “Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 58(1), 604–613 (2017).
[Crossref] [PubMed]

J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2(1), 139–148 (2011).
[Crossref] [PubMed]

Skala, M. C.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Smith, R. T.

T. Ben Ami, Y. Tong, A. Bhuiyan, C. Huisingh, Z. Ablonczy, T. Ach, C. A. Curcio, and R. T. Smith, “Spatial and Spectral Characterization of Human Retinal Pigment Epithelium Fluorophore Families by Ex Vivo Hyperspectral Autofluorescence Imaging,” Transl. Vis. Sci. Technol. 5(3), 5 (2016).
[Crossref] [PubMed]

J. P. Greenberg, T. Duncker, R. L. Woods, R. T. Smith, J. R. Sparrow, and F. C. Delori, “Quantitative fundus autofluorescence in healthy eyes,” Invest. Ophthalmol. Vis. Sci. 54(8), 5684–5693 (2013).
[Crossref] [PubMed]

R. T. Smith, M. A. Sohrab, M. Busuioc, and G. Barile, “Reticular macular disease,” Am. J. Ophthalmol. 148(5), 733–743.e2 (2009).
[Crossref] [PubMed]

Sohrab, M. A.

R. T. Smith, M. A. Sohrab, M. Busuioc, and G. Barile, “Reticular macular disease,” Am. J. Ophthalmol. 148(5), 733–743.e2 (2009).
[Crossref] [PubMed]

Spaide, R.

R. Spaide, “Autofluorescence from the outer retina and subretinal space: hypothesis and review,” Retina 28(1), 5–35 (2008).
[Crossref] [PubMed]

Spaide, R. F.

S. Schmitz-Valckenberg, F. G. Holz, A. C. Bird, and R. F. Spaide, “Fundus autofluorescence imaging: review and perspectives,” Retina 28(3), 385–409 (2008).
[Crossref] [PubMed]

Sparrow, J. R.

J. P. Greenberg, T. Duncker, R. L. Woods, R. T. Smith, J. R. Sparrow, and F. C. Delori, “Quantitative fundus autofluorescence in healthy eyes,” Invest. Ophthalmol. Vis. Sci. 54(8), 5684–5693 (2013).
[Crossref] [PubMed]

Stark, M.

A. Ehlers, I. Riemann, M. Stark, and K. König, “Multiphoton fluorescence lifetime imaging of human hair,” Microsc. Res. Tech. 70(2), 154–161 (2007).
[Crossref] [PubMed]

Staurenghi, G.

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, and J. J. Weiter, “In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Vis. Sci. 36(3), 718–729 (1995).
[PubMed]

Stefan, R.

D. M. Ciobanu, L. E. Olar, R. Stefan, I. A. Veresiu, C. G. Bala, P. A. Mircea, and G. Roman, “Fluorophores advanced glycation end products (AGEs)-to-NADH ratio is predictor for diabetic chronic kidney and cardiovascular disease,” J. Diabetes Complications 29(7), 893–897 (2015).
[Crossref] [PubMed]

Suarez, A.

P. Garcia-Barreno, M. C. Guisasola, and A. Suarez, “Fluorescent and compositional changes in crystallin supramolecular structures in pig lens during development,” Comp. Biochem. Physiol. B Biochem. Mol. Biol. 141(2), 179–185 (2005).
[Crossref] [PubMed]

Tong, Y.

T. Ben Ami, Y. Tong, A. Bhuiyan, C. Huisingh, Z. Ablonczy, T. Ach, C. A. Curcio, and R. T. Smith, “Spatial and Spectral Characterization of Human Retinal Pigment Epithelium Fluorophore Families by Ex Vivo Hyperspectral Autofluorescence Imaging,” Transl. Vis. Sci. Technol. 5(3), 5 (2016).
[Crossref] [PubMed]

Tran, H. V.

C. Dysli, S. Wolf, H. V. Tran, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Patients With Choroideremia Identify Photoreceptors in Areas With Retinal Pigment Epithelium Atrophy,” Invest. Ophthalmol. Vis. Sci. 57(15), 6714–6721 (2016).
[Crossref] [PubMed]

Tsina, E.

C. Chen, E. Tsina, M. C. Cornwall, R. K. Crouch, S. Vijayaraghavan, and Y. Koutalos, “Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors,” Biophys. J. 88(3), 2278–2287 (2005).
[Crossref] [PubMed]

Uchugonova, A.

A. Batista, H. G. Breunig, A. Uchugonova, A. M. Morgado, and K. König, “Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with a 12-femtosecond laser microscope,” J. Biomed. Opt. 21(3), 036002 (2016).
[Crossref] [PubMed]

Ueda-Consolvo, T.

T. Ueda-Consolvo, A. Miyakoshi, H. Ozaki, S. Houki, and A. Hayashi, “Near-infrared fundus autofluorescence-visualized melanin in the choroidal abnormalities of neurofibromatosis type 1,” Clin. Ophthalmol. 6, 1191–1194 (2012).
[PubMed]

Vecino, E.

M. Garcá, J. Ruiz-Ederra, H. Hernández-Barbáchano, and E. Vecino, “Topography of pig retinal ganglion cells,” J. Comp. Neurol. 486(4), 361–372 (2005).
[Crossref] [PubMed]

Veresiu, I. A.

D. M. Ciobanu, L. E. Olar, R. Stefan, I. A. Veresiu, C. G. Bala, P. A. Mircea, and G. Roman, “Fluorophores advanced glycation end products (AGEs)-to-NADH ratio is predictor for diabetic chronic kidney and cardiovascular disease,” J. Diabetes Complications 29(7), 893–897 (2015).
[Crossref] [PubMed]

Vijayaraghavan, S.

C. Chen, E. Tsina, M. C. Cornwall, R. K. Crouch, S. Vijayaraghavan, and Y. Koutalos, “Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors,” Biophys. J. 88(3), 2278–2287 (2005).
[Crossref] [PubMed]

Weinitz, S.

U. Kellner, S. Kellner, and S. Weinitz, “Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration,” Retina 30(1), 6–15 (2010).
[Crossref] [PubMed]

Weiter, J. J.

F. C. Delori, M. R. Fleckner, D. G. Goger, J. J. Weiter, and C. K. Dorey, “Autofluorescence distribution associated with drusen in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 41(2), 496–504 (2000).
[PubMed]

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, and J. J. Weiter, “In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Vis. Sci. 36(3), 718–729 (1995).
[PubMed]

White, J. G.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Williams, D. R.

R. Sharma, C. Schwarz, J. J. Hunter, G. Palczewska, K. Palczewski, and D. R. Williams, “Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 58(1), 604–613 (2017).
[Crossref] [PubMed]

J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2(1), 139–148 (2011).
[Crossref] [PubMed]

Wolf, S.

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retin. Eye Res. 60, 120–143 (2017).
[Crossref] [PubMed]

C. Dysli, L. Berger, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetimes and Central Serous Chorioretinopathy,” Retina 37(11), 2151–2161 (2017).
[Crossref] [PubMed]

C. Dysli, S. Wolf, H. V. Tran, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Patients With Choroideremia Identify Photoreceptors in Areas With Retinal Pigment Epithelium Atrophy,” Invest. Ophthalmol. Vis. Sci. 57(15), 6714–6721 (2016).
[Crossref] [PubMed]

C. Dysli, S. Wolf, K. Hatz, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging in Stargardt Disease: Potential Marker for Disease Progression,” Invest. Ophthalmol. Vis. Sci. 57(3), 832–841 (2016).
[Crossref] [PubMed]

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(4), 2106–2113 (2014).
[Crossref] [PubMed]

C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence lifetime imaging of the ocular fundus in mice,” Invest. Ophthalmol. Vis. Sci. 55(11), 7206–7215 (2014).
[Crossref] [PubMed]

S. Schmitz-Valckenberg, A. Bindewald-Wittich, J. Dolar-Szczasny, J. Dreyhaupt, S. Wolf, H. P. Scholl, and F. G. Holz, “Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD,” Invest. Ophthalmol. Vis. Sci. 47(6), 2648–2654 (2006).
[Crossref] [PubMed]

W. Einbock, A. Moessner, U. E. Schnurrbusch, F. G. Holz, and S. Wolf, “Changes in fundus autofluorescence in patients with age-related maculopathy. Correlation to visual function: a prospective study,” Graefes Arch. Clin. Exp. Ophthalmol. 243(4), 300–305 (2005).
[Crossref] [PubMed]

Wolf-Schnurrbusch, U.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(4), 2106–2113 (2014).
[Crossref] [PubMed]

Woods, R. L.

J. P. Greenberg, T. Duncker, R. L. Woods, R. T. Smith, J. R. Sparrow, and F. C. Delori, “Quantitative fundus autofluorescence in healthy eyes,” Invest. Ophthalmol. Vis. Sci. 54(8), 5684–5693 (2013).
[Crossref] [PubMed]

Wulst, M.

T. I. Chao, J. Grosche, K. J. Friedrich, B. Biedermann, M. Francke, T. Pannicke, W. Reichelt, M. Wulst, C. Mühle, S. Pritz-Hohmeier, H. Kuhrt, F. Faude, W. Drommer, M. Kasper, E. Buse, and A. Reichenbach, “Comparative studies on mammalian Müller (retinal glial) cells,” J. Neurocytol. 26(7), 439–454 (1997).
[Crossref] [PubMed]

Yin, L.

Zagidullin, V. E.

M. Y. Loguinova, V. E. Zagidullin, T. B. Feldman, Y. V. Rostovtseva, V. Z. Paschenko, A. B. Rubin, and A. A. Ostrovsky, “Spectral Characteristics of Fluorophores Formed via Interaction between All-trans-Retinal with Rhodopsin and Lipids in Photoreceptor Membrane of Retina Rod Outer Segments,” Биол. мембраны 26, 83–93 (2009).

Zinkernagel, M. S.

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retin. Eye Res. 60, 120–143 (2017).
[Crossref] [PubMed]

C. Dysli, L. Berger, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetimes and Central Serous Chorioretinopathy,” Retina 37(11), 2151–2161 (2017).
[Crossref] [PubMed]

C. Dysli, S. Wolf, H. V. Tran, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Patients With Choroideremia Identify Photoreceptors in Areas With Retinal Pigment Epithelium Atrophy,” Invest. Ophthalmol. Vis. Sci. 57(15), 6714–6721 (2016).
[Crossref] [PubMed]

C. Dysli, S. Wolf, K. Hatz, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging in Stargardt Disease: Potential Marker for Disease Progression,” Invest. Ophthalmol. Vis. Sci. 57(3), 832–841 (2016).
[Crossref] [PubMed]

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(4), 2106–2113 (2014).
[Crossref] [PubMed]

C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence lifetime imaging of the ocular fundus in mice,” Invest. Ophthalmol. Vis. Sci. 55(11), 7206–7215 (2014).
[Crossref] [PubMed]

????. ???????? (1)

M. Y. Loguinova, V. E. Zagidullin, T. B. Feldman, Y. V. Rostovtseva, V. Z. Paschenko, A. B. Rubin, and A. A. Ostrovsky, “Spectral Characteristics of Fluorophores Formed via Interaction between All-trans-Retinal with Rhodopsin and Lipids in Photoreceptor Membrane of Retina Rod Outer Segments,” Биол. мембраны 26, 83–93 (2009).

Acta Ophthalmol. (1)

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[PubMed]

Acta ophthalmologica (1)

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring Macular Pigment changes in Macular Holes using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Acta ophthalmologica 95(5), 481–492 (2016).
[PubMed]

Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. (1)

M. L. Beauchemin, “The fine structure of the pig’s retina,” Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 190(1), 27–45 (1974).
[Crossref] [PubMed]

Am. J. Ophthalmol. (2)

R. T. Smith, M. A. Sohrab, M. Busuioc, and G. Barile, “Reticular macular disease,” Am. J. Ophthalmol. 148(5), 733–743.e2 (2009).
[Crossref] [PubMed]

M. B. Parodi, P. Iacono, C. Del Turco, and F. Bandello, “Near-infrared fundus autofluorescence in subclinical best vitelliform macular dystrophy,” Am. J. Ophthalmol. 158(6), 1247–1252.e2 (2014).
[Crossref] [PubMed]

Biochemistry (1)

J. Chen, P. R. Callis, and J. King, “Mechanism of the very efficient quenching of tryptophan fluorescence in human gamma D- and gamma S-crystallins: the gamma-crystallin fold may have evolved to protect tryptophan residues from ultraviolet photodamage,” Biochemistry 48(17), 3708–3716 (2009).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biophys. J. (1)

C. Chen, E. Tsina, M. C. Cornwall, R. K. Crouch, S. Vijayaraghavan, and Y. Koutalos, “Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors,” Biophys. J. 88(3), 2278–2287 (2005).
[Crossref] [PubMed]

Clin. Ophthalmol. (1)

T. Ueda-Consolvo, A. Miyakoshi, H. Ozaki, S. Houki, and A. Hayashi, “Near-infrared fundus autofluorescence-visualized melanin in the choroidal abnormalities of neurofibromatosis type 1,” Clin. Ophthalmol. 6, 1191–1194 (2012).
[PubMed]

Comp. Biochem. Physiol. B Biochem. Mol. Biol. (1)

P. Garcia-Barreno, M. C. Guisasola, and A. Suarez, “Fluorescent and compositional changes in crystallin supramolecular structures in pig lens during development,” Comp. Biochem. Physiol. B Biochem. Mol. Biol. 141(2), 179–185 (2005).
[Crossref] [PubMed]

Exp. Dermatol. (1)

E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol. 18(6), 509–515 (2009).
[Crossref] [PubMed]

Exp. Eye Res. (2)

G. E. Eldred and M. L. Katz, “Fluorophores of the Human Retinal Pigment Epithelium - Separation and Spectral Characterization,” Exp. Eye Res. 47(1), 71–86 (1988).
[Crossref] [PubMed]

A. Hendrickson and D. Hicks, “Distribution and density of medium- and short-wavelength selective cones in the domestic pig retina,” Exp. Eye Res. 74(4), 435–444 (2002).
[Crossref] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (2)

W. Einbock, A. Moessner, U. E. Schnurrbusch, F. G. Holz, and S. Wolf, “Changes in fundus autofluorescence in patients with age-related maculopathy. Correlation to visual function: a prospective study,” Graefes Arch. Clin. Exp. Ophthalmol. 243(4), 300–305 (2005).
[Crossref] [PubMed]

F. Schütt, M. Bergmann, F. G. Holz, and J. Kopitz, “Isolation of intact lysosomes from human RPE cells and effects of A2-E on the integrity of the lysosomal and other cellular membranes,” Graefes Arch. Clin. Exp. Ophthalmol. 240(12), 983–988 (2002).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (13)

C. N. Keilhauer and F. C. Delori, “Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin,” Invest. Ophthalmol. Vis. Sci. 47(8), 3556–3564 (2006).
[Crossref] [PubMed]

C. Dysli, S. Wolf, K. Hatz, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging in Stargardt Disease: Potential Marker for Disease Progression,” Invest. Ophthalmol. Vis. Sci. 57(3), 832–841 (2016).
[Crossref] [PubMed]

C. Dysli, S. Wolf, H. V. Tran, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Patients With Choroideremia Identify Photoreceptors in Areas With Retinal Pigment Epithelium Atrophy,” Invest. Ophthalmol. Vis. Sci. 57(15), 6714–6721 (2016).
[Crossref] [PubMed]

S. Schmitz-Valckenberg, A. Bindewald-Wittich, J. Dolar-Szczasny, J. Dreyhaupt, S. Wolf, H. P. Scholl, and F. G. Holz, “Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD,” Invest. Ophthalmol. Vis. Sci. 47(6), 2648–2654 (2006).
[Crossref] [PubMed]

J. P. Greenberg, T. Duncker, R. L. Woods, R. T. Smith, J. R. Sparrow, and F. C. Delori, “Quantitative fundus autofluorescence in healthy eyes,” Invest. Ophthalmol. Vis. Sci. 54(8), 5684–5693 (2013).
[Crossref] [PubMed]

F. C. Delori, M. R. Fleckner, D. G. Goger, J. J. Weiter, and C. K. Dorey, “Autofluorescence distribution associated with drusen in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 41(2), 496–504 (2000).
[PubMed]

D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, and C. Biskup, “Time-resolved autofluorescence imaging of human donor retina tissue from donors with significant extramacular drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
[Crossref] [PubMed]

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, and J. J. Weiter, “In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Vis. Sci. 36(3), 718–729 (1995).
[PubMed]

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(4), 2106–2113 (2014).
[Crossref] [PubMed]

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4668–4679 (2015).
[Crossref] [PubMed]

M. Gloesmann, B. Hermann, C. Schubert, H. Sattmann, P. K. Ahnelt, and W. Drexler, “Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 44(4), 1696–1703 (2003).
[Crossref] [PubMed]

R. Sharma, C. Schwarz, J. J. Hunter, G. Palczewska, K. Palczewski, and D. R. Williams, “Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 58(1), 604–613 (2017).
[Crossref] [PubMed]

C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence lifetime imaging of the ocular fundus in mice,” Invest. Ophthalmol. Vis. Sci. 55(11), 7206–7215 (2014).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

A. Batista, H. G. Breunig, A. Uchugonova, A. M. Morgado, and K. König, “Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with a 12-femtosecond laser microscope,” J. Biomed. Opt. 21(3), 036002 (2016).
[Crossref] [PubMed]

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, and E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[Crossref] [PubMed]

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
[Crossref] [PubMed]

J. Comp. Neurol. (1)

M. Garcá, J. Ruiz-Ederra, H. Hernández-Barbáchano, and E. Vecino, “Topography of pig retinal ganglion cells,” J. Comp. Neurol. 486(4), 361–372 (2005).
[Crossref] [PubMed]

J. Diabetes Complications (1)

D. M. Ciobanu, L. E. Olar, R. Stefan, I. A. Veresiu, C. G. Bala, P. A. Mircea, and G. Roman, “Fluorophores advanced glycation end products (AGEs)-to-NADH ratio is predictor for diabetic chronic kidney and cardiovascular disease,” J. Diabetes Complications 29(7), 893–897 (2015).
[Crossref] [PubMed]

J. Diabetes Sci. Technol. (1)

J. Burd, S. Lum, F. Cahn, and K. Ignotz, “Simultaneous noninvasive clinical measurement of lens autofluorescence and rayleigh scattering using a fluorescence biomicroscope,” J. Diabetes Sci. Technol. 6(6), 1251–1259 (2012).
[Crossref] [PubMed]

J. Microsc. (1)

W. Becker, “Fluorescence lifetime imaging--techniques and applications,” J. Microsc. 247(2), 119–136 (2012).
[Crossref] [PubMed]

J. Neurocytol. (1)

T. I. Chao, J. Grosche, K. J. Friedrich, B. Biedermann, M. Francke, T. Pannicke, W. Reichelt, M. Wulst, C. Mühle, S. Pritz-Hohmeier, H. Kuhrt, F. Faude, W. Drommer, M. Kasper, E. Buse, and A. Reichenbach, “Comparative studies on mammalian Müller (retinal glial) cells,” J. Neurocytol. 26(7), 439–454 (1997).
[Crossref] [PubMed]

Microsc. Res. Tech. (3)

A. Ehlers, I. Riemann, M. Stark, and K. König, “Multiphoton fluorescence lifetime imaging of human hair,” Microsc. Res. Tech. 70(2), 154–161 (2007).
[Crossref] [PubMed]

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref] [PubMed]

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
[Crossref] [PubMed]

PLoS One (1)

M. Klemm, D. Schweitzer, S. Peters, L. Sauer, M. Hammer, and J. Haueisen, “FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye,” PLoS One 10(7), e0131640 (2015).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Proc. SPIE (2)

D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).

D. Schweitzer, A. Kolb, and M. Hammer, “Autofluorescence lifetime measurements in images of the human ocular fundus,” Proc. SPIE 4432, 29–39 (2001).
[Crossref]

Prog. Retin. Eye Res. (1)

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retin. Eye Res. 60, 120–143 (2017).
[Crossref] [PubMed]

Retina (4)

C. Dysli, L. Berger, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetimes and Central Serous Chorioretinopathy,” Retina 37(11), 2151–2161 (2017).
[Crossref] [PubMed]

R. Spaide, “Autofluorescence from the outer retina and subretinal space: hypothesis and review,” Retina 28(1), 5–35 (2008).
[Crossref] [PubMed]

U. Kellner, S. Kellner, and S. Weinitz, “Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration,” Retina 30(1), 6–15 (2010).
[Crossref] [PubMed]

S. Schmitz-Valckenberg, F. G. Holz, A. C. Bird, and R. F. Spaide, “Fundus autofluorescence imaging: review and perspectives,” Retina 28(3), 385–409 (2008).
[Crossref] [PubMed]

Transl. Vis. Sci. Technol. (1)

T. Ben Ami, Y. Tong, A. Bhuiyan, C. Huisingh, Z. Ablonczy, T. Ach, C. A. Curcio, and R. T. Smith, “Spatial and Spectral Characterization of Human Retinal Pigment Epithelium Fluorophore Families by Ex Vivo Hyperspectral Autofluorescence Imaging,” Transl. Vis. Sci. Technol. 5(3), 5 (2016).
[Crossref] [PubMed]

Other (4)

J. H. Prince, C. D. Diesem, I. Eglitis, and G. L. Ruskell, Anatomy and Histology of the Eye and Orbit in Domestic Animals (Charles C. Thomas, 1965).

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Muller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J Biomed Opt 20, 61106 (2015).

L. Sauer, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) - a novel way to assess changes in MacTel,” in Lowy Medical Reseach Institute (LMRI) annual meeting(New York City, 2017).

S. Peters, M. Hammer, and D. Schweitzer, “Two-photon excited fluorescence microscopy application for ex vivo investigation of ocular fundus samples,” in ECBO, P. T. C. So, and E. Beaurepaire, eds. (SPIE, Munich, Germany, 2011), pp. 808605–808610.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Central (A) and peripheral (B) OCT-scan approximately 1 h post mortem, as well as peripheral (C) scan 7 h post mortem: (1) retinal scan, (2) three-dimensional image of scanned area, and (3) location of depicted scan. The different retinal layers were labeled in the peripheral scan 1 h post mortem. The blue line in the right column shows the scan position shown in the left column.
Fig. 2
Fig. 2 Reflection and fluorescence images from retina in intact eye (1), retina and RPE of the eye cup (2) in focal plane of a model eye (i.e., without influences of anterior ocular media), and (3) lens. For the color-coding of the images, always refer to the nearest scale bar in the row. In the eye cup, the retina was removed in the left half. Thus, in panels 2, the right hand side shows the fluorescence of the retina, whereas at the left side shows that of the RPE.
Fig. 3
Fig. 3 Mean fluorescence lifetime values τm at 498-560 nm (left) and 560-720 nm (right). “Porcine retina” and “porcine RPE” indicate data from the dissected eye cup, “human fundus” was measured in vivo.
Fig. 4
Fig. 4 Spectral ratio of fluorescence intensities at 498-560 nm and 560-720 nm.
Fig. 5
Fig. 5 Two-photon fluorescence lifetime micrographs of human (top) and porcine (bottom) RPE at emission bands 500-550nm (left) and 550-700nm (right). Scale bar: 10 µm.

Tables (1)

Tables Icon

Table 1 Mean fluorescence lifetime values τm at 498-560 nm and 560-720 nm as well as spectral ratio of the fluorescence emission intensity in both wavelength ranges. “Intact retina” and “RPE exposed” indicate data from the dissected eye cup whereas “isolated retina” denotes measurements at the retina dissected from RPE/choroid. “Human fundus” was measured in vivo

Metrics