Abstract

Volumetric imaging of connective tissue provides insights into the structure of biological tissue. Second harmonic generation (SHG) microscopy has become a standard method to image collagen rich tissue like skin or cornea. Due to the non-centrosymmetric architecture, no additional label is needed and tissue can be visualized noninvasively. Thus, SHG microscopy enables the investigation of collagen associated diseases, providing high resolution images and a field of view of several hundreds of μm. However, the in toto visualization of larger samples is limited to the working distance of the objective and the integration time of the microscope setup, which can sum up to several hours and days. A faster imaging technique for samples in the mesoscopic range is scanning laser optical tomography (SLOT), which provides linear fluorescence, scattering and absorption as intrinsic contrast mechanisms. Due to the advantages of SHG and the reduced measurement time of SLOT, the integration of SHG in SLOT would be a great extension. This way SHG measurements could be performed faster on large samples, providing isotropic resolution and simultaneous acquisition of all other contrast mechanisms available, such as fluorescence and absorption. SLOT is based on the principle of computed tomography, which requires the rotation of the sample. The SHG signal, however, depends strongly on the sample orientation and the polarization of the laser, which results in SHG intensity fluctuation during sample rotation and prevents successful 3D reconstruction. In this paper we investigate the angular dependence of the SHG signal by simulation and experiment and found a way to eliminate reconstruction artifacts caused by this angular dependence in SHG-SLOT data. This way, it is now possible to visualize samples in the mesoscopic range using SHG-SLOT, with isotropic resolution and in correlation to other contrast mechanisms as absorption, fluorescence and scattering.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
3D second harmonic generation imaging tomography by multi-view excitation

Kirby R. Campbell, Bruce Wen, Emily M. Shelton, Robert Swader, Benjamin L. Cox, Kevin Eliceiri, and Paul J. Campagnola
Optica 4(10) 1171-1179 (2017)

Correlation between polarization sensitive optical coherence tomography and second harmonic generation microscopy in skin

Viet-Hoan Le, Seunghun Lee, Bumju Kim, Yeoreum Yoon, Calvin J. Yoon, Wan Kyun Chung, and Ki Hean Kim
Biomed. Opt. Express 6(7) 2542-2551 (2015)

Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy

R. Malcom Brown, Jr., Andrew C. Millard, and Paul J. Campagnola
Opt. Lett. 28(22) 2207-2209 (2003)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Campagnola and C.-Y. Dong, “Second harmonic generation microscopy : principles and applications to disease diagnosis,” Laser & Photonics Review 5, 13–26 (2011).
    [Crossref]
  2. R. B. LaComb, “Implementation of 3D SHG imaging microscopy for tissue characterization and disease diagnostics: Experiment and simulations,” Doctoral Dissertations (2010).
  3. S.-w. Chu, S.-y. Chen, G.-w. Chern, T.-h. Tsai, and Y.-c. Chen, “Studies of x (2) / x (3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy,” Biophys. J. 86, 3914–3922 (2004).
    [Crossref]
  4. P. Matteini, F. Ratto, F. Rossi, R. Cicchi, C. Stringari, D. Kapsokalyvas, F. S. Pavone, and R. Pini, “Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging,” Opt. Express 17, 4868–4878 (2009).
    [Crossref] [PubMed]
  5. R. Cicchi, C. Matthäus, T. Meyer, A. Lattermann, B. Dietzek, B. R. Brehm, J. Popp, and F. S. Pavone, “Characterization of collagen and cholesterol deposition in atherosclerotic arterial tissue using non-linear microscopy,” J. Biophoton. 7, 135–143 (2014).
    [Crossref]
  6. R. Cicchi, D. Kapsokalyvas, V. De Giorgi, V. Maio, A. Van Wiechen, D. Massi, T. Lotti, and F. S. Pavone, “Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy,” J. Biophoton. 3, 34–43 (2009).
    [Crossref] [PubMed]
  7. T. Yasui, Y. Tohno, and T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259 (2004).
    [Crossref] [PubMed]
  8. J. C. Waters and T. Wittmann, Quantitative imaging in cell biology (Academic Press, 2014).
  9. E. Brown, T. McKee, E. DiTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nature Medicine 9, 796–801 (2003).
    [Crossref] [PubMed]
  10. S.-J. Lin, S.-H. Jee, C.-J. Kuo, R.-J. Wu, W.-C. Lin, J.-S. Chen, Y.-H. Liao, C.-J. Hsu, T.-F. Tsai, Y.-F. Chen, and C.-Y. Dong, “Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging,” Optics letters 31, 2756–2758 (2006).
    [Crossref] [PubMed]
  11. P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Medicine 4, 38 (2006).
    [Crossref] [PubMed]
  12. P. Stoller, B.-m. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. D. Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
    [Crossref] [PubMed]
  13. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting Second-Harmonic Generation Images of Collagen I Fibrils,” Biophys. J. 88, 1377 (2005).
    [Crossref]
  14. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006).
    [Crossref]
  15. A. Erikson, C. D. L. Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12, 1–10 (2007).
    [Crossref]
  16. I. Gusachenko and M.-C. Schanne-Klein, “Numerical simulation of polarization-resolved second-harmonic microscopy in birefringent media,” Phys. Rev. A 88, 53811 (2013).
    [Crossref]
  17. P.-j. Su, W.-l. Chen, Y.-f. Chen, and C.-y. Dong, “Determination of Collagen Nanostructure from Second-Order Susceptibility Tensor Analysis,” Biophysj 100, 2053–2062 (2011).
    [Crossref]
  18. G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M.-C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomedical Optics Express 3, 1 (2012).
    [Crossref] [PubMed]
  19. C. S. Brown, D. H. Burns, F. A. Spelman, and A. C. Nelson, “Computed tomography from optical projections for three-dimensional reconstruction of thick objects,” Applied optics 31, 6247–6254 (1992).
    [Crossref] [PubMed]
  20. S. Kawata, Y. Touki, and S. Minami, “Optical Microscopic Tomography,” in “Inverse Optics II,” R. H. Bates and A. J. Devaney, eds. (1985), p. 15.
  21. S. Kawata, O. Nakamura, and S. Minami, “Optical microscope tomography I Support constraint,” Journal of the Optical Society of America A 4, 292 (1987).
    [Crossref]
  22. O. Nakamura, S. Kawata, and S. Minami, “Optical microscope tomography II Nonnegative constraint by a gradient-projection method,” Journal of the Optical Society of America A 5, 554 (1988).
    [Crossref]
  23. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-sørensen, R. Baldock, and D. Davidson, “Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies,” Science 296, 541–545 (2002).
    [Crossref] [PubMed]
  24. R.-a. Lorbeer, M. Heidrich, C. Lorbeer, D. Fernando, R. Ojeda, G. Bicker, H. Meyer, A. Heisterkamp, L. Zentrum, and D. Hannover, “Highly efficient 3D fluorescence microscopy with a scanning laser optical tomograph,” Optics express 19, 412–417 (2011).
    [Crossref]
  25. M. Kellner, M. Heidrich, R. Beigel, R.-A. Lorbeer, L. Knudsen, T. Ripken, A. Heisterkamp, H. Meyer, M. P. Kühnel, and M. Ochs, “Imaging of the mouse lung with scanning laser optical tomography (SLOT),” Journal of applied physiology (Bethesda, Md. : 1985) 113, 975–983 (2012).
    [Crossref]
  26. L. Nolte, N. Tinne, J. Schulze, D. Heinemann, C. Antonopoulos, H. Meyer, H. G. Nothwang, T. Lenarz, A. Heisterkamp, A. Warnecke, and T. Ripken, “Scanning laser optical tomography for in toto imaging of the murine cochlea,” PloS one 12, e0175431 (2017).
  27. N. Tinne, G. C. Antonopoulos, S. Mohebbi, J. Andrade, L. Nolte, H. Meyer, A. Heisterkamp, O. Majdani, and T. Ripken, “Three-dimensional hard and soft tissue imaging of the human cochlea by scanning laser optical tomography (SLOT),” PLOS ONE 12, e0184069 (2017).
    [Crossref] [PubMed]
  28. M. Heidrich, M. Kühnel, M. Kellner, R. Lorbeer, T. Lange, A. Winkel, M. Stiesch, H. Meyer, and A. Heisterkamp, “3D imaging of biofilms on implants by detection of scattered light with a scanning laser optical tomograph,” Biomedical Optics Express 2, 2982–2994 (2011).
    [Crossref] [PubMed]
  29. R. W. Boyd, Nonlinear optics (Academic Press, 2008).
  30. S. Roth, I. Freund, and IUCr, “Second harmonic generation and orientational order in connective tissue: a mosaic model for fibril orientational ordering in rat-tail tendon,” Journal of Applied Crystallography 15, 72–78 (1982).
    [Crossref]
  31. I. Gusachenko, V. Tran, Y. G. Houssen, J. M. Allain, and M. C. Schanne-Klein, “Polarization-resolved second-harmonic generation in tendon upon mechanical stretching,” Biophys. J. 102, 2220–2229 (2012).
    [Crossref] [PubMed]
  32. A. Deniset-Besseau, J. Duboisset, E. Benichou, F. Hache, P.-F. Brevet, and M.-C. Schanne-Klein, “Measurement of the Second-Order Hyperpolarizability of the Collagen Triple Helix and Determination of Its Physical Origin,” The Journal of Physical Chemistry B 113, 13437–13445 (2009).
    [Crossref] [PubMed]
  33. J. D. Jackson, Classical electrodynamics (Wiley, 1999).
  34. J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring, GNU Octave version 3.8.1 manual: a high-level interactive language for numerical computations (CreateSpace Independent Publishing Platform, 2014).
  35. A. C. Kak and M. Slaney, Principles of computerized tomographic imaging (Society for Industrial and Applied Mathematics, 2001).
    [Crossref]
  36. M. Fang, E. L. Goldstein, A. S. Turner, C. M. Les, B. G. Orr, G. J. Fisher, K. B. Welch, E. D. Rothman, and M. M. Banaszak Holl, “Type I Collagen D-spacing in Fibril Bundles of Dermis, Tendon and Bone: Bridging Between Nano- and Micro-Level Tissue Hierarchy,” ACS nano 6, 9503–9514 (2012).
    [Crossref] [PubMed]
  37. M. Kellner, M. Heidrich, R.-A. Lorbeer, G. C. Antonopoulos, L. Knudsen, C. Wrede, N. Izykowski, R. Grothausmann, D. Jonigk, M. Ochs, T. Ripken, M. P. Kühnel, and H. Meyer, “A combined method for correlative 3D imaging of biological samples from macro to nano scale,” Scientific Reports 6, 35606 (2016).
    [Crossref] [PubMed]
  38. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: Multiphoton microscopy in the biosciences,” Nature Biotechnology 21, 1369–1377 (2003).
    [Crossref] [PubMed]
  39. C. a. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nature Methods 9, 671–675 (2012).
    [Crossref] [PubMed]
  40. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods 9, 676–682 (2012).
    [Crossref] [PubMed]
  41. J. R. Kremer, D. N. Mastronarde, and J. R. McIntosh, “Computer visualization of three-dimensional image data using IMOD,” J.Struct.Biol. 116, 71–76 (1996).
  42. T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second Harmonic Generation Confocal Microscopy of Collagen Type I from Rat Tendon Cryosections,” Biophys. J. 91, 4665 (2006).
    [Crossref] [PubMed]
  43. L. Tian, J. Qu, Z. Guo, Y. Jin, Y. Meng, and X. Deng, “Microscopic second-harmonic generation emission direction in fibrillous collagen type I by quasi-phase-matching theory,” Journal of Applied Physics 108, 054701 (2010).
    [Crossref]

2017 (2)

L. Nolte, N. Tinne, J. Schulze, D. Heinemann, C. Antonopoulos, H. Meyer, H. G. Nothwang, T. Lenarz, A. Heisterkamp, A. Warnecke, and T. Ripken, “Scanning laser optical tomography for in toto imaging of the murine cochlea,” PloS one 12, e0175431 (2017).

N. Tinne, G. C. Antonopoulos, S. Mohebbi, J. Andrade, L. Nolte, H. Meyer, A. Heisterkamp, O. Majdani, and T. Ripken, “Three-dimensional hard and soft tissue imaging of the human cochlea by scanning laser optical tomography (SLOT),” PLOS ONE 12, e0184069 (2017).
[Crossref] [PubMed]

2016 (1)

M. Kellner, M. Heidrich, R.-A. Lorbeer, G. C. Antonopoulos, L. Knudsen, C. Wrede, N. Izykowski, R. Grothausmann, D. Jonigk, M. Ochs, T. Ripken, M. P. Kühnel, and H. Meyer, “A combined method for correlative 3D imaging of biological samples from macro to nano scale,” Scientific Reports 6, 35606 (2016).
[Crossref] [PubMed]

2014 (1)

R. Cicchi, C. Matthäus, T. Meyer, A. Lattermann, B. Dietzek, B. R. Brehm, J. Popp, and F. S. Pavone, “Characterization of collagen and cholesterol deposition in atherosclerotic arterial tissue using non-linear microscopy,” J. Biophoton. 7, 135–143 (2014).
[Crossref]

2013 (1)

I. Gusachenko and M.-C. Schanne-Klein, “Numerical simulation of polarization-resolved second-harmonic microscopy in birefringent media,” Phys. Rev. A 88, 53811 (2013).
[Crossref]

2012 (6)

G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M.-C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomedical Optics Express 3, 1 (2012).
[Crossref] [PubMed]

C. a. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nature Methods 9, 671–675 (2012).
[Crossref] [PubMed]

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods 9, 676–682 (2012).
[Crossref] [PubMed]

I. Gusachenko, V. Tran, Y. G. Houssen, J. M. Allain, and M. C. Schanne-Klein, “Polarization-resolved second-harmonic generation in tendon upon mechanical stretching,” Biophys. J. 102, 2220–2229 (2012).
[Crossref] [PubMed]

M. Kellner, M. Heidrich, R. Beigel, R.-A. Lorbeer, L. Knudsen, T. Ripken, A. Heisterkamp, H. Meyer, M. P. Kühnel, and M. Ochs, “Imaging of the mouse lung with scanning laser optical tomography (SLOT),” Journal of applied physiology (Bethesda, Md. : 1985) 113, 975–983 (2012).
[Crossref]

M. Fang, E. L. Goldstein, A. S. Turner, C. M. Les, B. G. Orr, G. J. Fisher, K. B. Welch, E. D. Rothman, and M. M. Banaszak Holl, “Type I Collagen D-spacing in Fibril Bundles of Dermis, Tendon and Bone: Bridging Between Nano- and Micro-Level Tissue Hierarchy,” ACS nano 6, 9503–9514 (2012).
[Crossref] [PubMed]

2011 (4)

M. Heidrich, M. Kühnel, M. Kellner, R. Lorbeer, T. Lange, A. Winkel, M. Stiesch, H. Meyer, and A. Heisterkamp, “3D imaging of biofilms on implants by detection of scattered light with a scanning laser optical tomograph,” Biomedical Optics Express 2, 2982–2994 (2011).
[Crossref] [PubMed]

P. J. Campagnola and C.-Y. Dong, “Second harmonic generation microscopy : principles and applications to disease diagnosis,” Laser & Photonics Review 5, 13–26 (2011).
[Crossref]

P.-j. Su, W.-l. Chen, Y.-f. Chen, and C.-y. Dong, “Determination of Collagen Nanostructure from Second-Order Susceptibility Tensor Analysis,” Biophysj 100, 2053–2062 (2011).
[Crossref]

R.-a. Lorbeer, M. Heidrich, C. Lorbeer, D. Fernando, R. Ojeda, G. Bicker, H. Meyer, A. Heisterkamp, L. Zentrum, and D. Hannover, “Highly efficient 3D fluorescence microscopy with a scanning laser optical tomograph,” Optics express 19, 412–417 (2011).
[Crossref]

2010 (1)

L. Tian, J. Qu, Z. Guo, Y. Jin, Y. Meng, and X. Deng, “Microscopic second-harmonic generation emission direction in fibrillous collagen type I by quasi-phase-matching theory,” Journal of Applied Physics 108, 054701 (2010).
[Crossref]

2009 (3)

A. Deniset-Besseau, J. Duboisset, E. Benichou, F. Hache, P.-F. Brevet, and M.-C. Schanne-Klein, “Measurement of the Second-Order Hyperpolarizability of the Collagen Triple Helix and Determination of Its Physical Origin,” The Journal of Physical Chemistry B 113, 13437–13445 (2009).
[Crossref] [PubMed]

R. Cicchi, D. Kapsokalyvas, V. De Giorgi, V. Maio, A. Van Wiechen, D. Massi, T. Lotti, and F. S. Pavone, “Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy,” J. Biophoton. 3, 34–43 (2009).
[Crossref] [PubMed]

P. Matteini, F. Ratto, F. Rossi, R. Cicchi, C. Stringari, D. Kapsokalyvas, F. S. Pavone, and R. Pini, “Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging,” Opt. Express 17, 4868–4878 (2009).
[Crossref] [PubMed]

2007 (1)

A. Erikson, C. D. L. Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12, 1–10 (2007).
[Crossref]

2006 (4)

S.-J. Lin, S.-H. Jee, C.-J. Kuo, R.-J. Wu, W.-C. Lin, J.-S. Chen, Y.-H. Liao, C.-J. Hsu, T.-F. Tsai, Y.-F. Chen, and C.-Y. Dong, “Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging,” Optics letters 31, 2756–2758 (2006).
[Crossref] [PubMed]

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Medicine 4, 38 (2006).
[Crossref] [PubMed]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006).
[Crossref]

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second Harmonic Generation Confocal Microscopy of Collagen Type I from Rat Tendon Cryosections,” Biophys. J. 91, 4665 (2006).
[Crossref] [PubMed]

2005 (1)

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting Second-Harmonic Generation Images of Collagen I Fibrils,” Biophys. J. 88, 1377 (2005).
[Crossref]

2004 (2)

T. Yasui, Y. Tohno, and T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259 (2004).
[Crossref] [PubMed]

S.-w. Chu, S.-y. Chen, G.-w. Chern, T.-h. Tsai, and Y.-c. Chen, “Studies of x (2) / x (3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy,” Biophys. J. 86, 3914–3922 (2004).
[Crossref]

2003 (2)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: Multiphoton microscopy in the biosciences,” Nature Biotechnology 21, 1369–1377 (2003).
[Crossref] [PubMed]

E. Brown, T. McKee, E. DiTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nature Medicine 9, 796–801 (2003).
[Crossref] [PubMed]

2002 (2)

P. Stoller, B.-m. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. D. Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref] [PubMed]

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-sørensen, R. Baldock, and D. Davidson, “Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies,” Science 296, 541–545 (2002).
[Crossref] [PubMed]

1996 (1)

J. R. Kremer, D. N. Mastronarde, and J. R. McIntosh, “Computer visualization of three-dimensional image data using IMOD,” J.Struct.Biol. 116, 71–76 (1996).

1992 (1)

C. S. Brown, D. H. Burns, F. A. Spelman, and A. C. Nelson, “Computed tomography from optical projections for three-dimensional reconstruction of thick objects,” Applied optics 31, 6247–6254 (1992).
[Crossref] [PubMed]

1988 (1)

O. Nakamura, S. Kawata, and S. Minami, “Optical microscope tomography II Nonnegative constraint by a gradient-projection method,” Journal of the Optical Society of America A 5, 554 (1988).
[Crossref]

1987 (1)

S. Kawata, O. Nakamura, and S. Minami, “Optical microscope tomography I Support constraint,” Journal of the Optical Society of America A 4, 292 (1987).
[Crossref]

1982 (1)

S. Roth, I. Freund, and IUCr, “Second harmonic generation and orientational order in connective tissue: a mosaic model for fibril orientational ordering in rat-tail tendon,” Journal of Applied Crystallography 15, 72–78 (1982).
[Crossref]

Ahlgren, U.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-sørensen, R. Baldock, and D. Davidson, “Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies,” Science 296, 541–545 (2002).
[Crossref] [PubMed]

Allain, J. M.

I. Gusachenko, V. Tran, Y. G. Houssen, J. M. Allain, and M. C. Schanne-Klein, “Polarization-resolved second-harmonic generation in tendon upon mechanical stretching,” Biophys. J. 102, 2220–2229 (2012).
[Crossref] [PubMed]

Andrade, J.

N. Tinne, G. C. Antonopoulos, S. Mohebbi, J. Andrade, L. Nolte, H. Meyer, A. Heisterkamp, O. Majdani, and T. Ripken, “Three-dimensional hard and soft tissue imaging of the human cochlea by scanning laser optical tomography (SLOT),” PLOS ONE 12, e0184069 (2017).
[Crossref] [PubMed]

Antonopoulos, C.

L. Nolte, N. Tinne, J. Schulze, D. Heinemann, C. Antonopoulos, H. Meyer, H. G. Nothwang, T. Lenarz, A. Heisterkamp, A. Warnecke, and T. Ripken, “Scanning laser optical tomography for in toto imaging of the murine cochlea,” PloS one 12, e0175431 (2017).

Antonopoulos, G. C.

N. Tinne, G. C. Antonopoulos, S. Mohebbi, J. Andrade, L. Nolte, H. Meyer, A. Heisterkamp, O. Majdani, and T. Ripken, “Three-dimensional hard and soft tissue imaging of the human cochlea by scanning laser optical tomography (SLOT),” PLOS ONE 12, e0184069 (2017).
[Crossref] [PubMed]

M. Kellner, M. Heidrich, R.-A. Lorbeer, G. C. Antonopoulos, L. Knudsen, C. Wrede, N. Izykowski, R. Grothausmann, D. Jonigk, M. Ochs, T. Ripken, M. P. Kühnel, and H. Meyer, “A combined method for correlative 3D imaging of biological samples from macro to nano scale,” Scientific Reports 6, 35606 (2016).
[Crossref] [PubMed]

Araki, T.

T. Yasui, Y. Tohno, and T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259 (2004).
[Crossref] [PubMed]

Arganda-Carreras, I.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Baldock, R.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-sørensen, R. Baldock, and D. Davidson, “Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies,” Science 296, 541–545 (2002).
[Crossref] [PubMed]

Banaszak Holl, M. M.

M. Fang, E. L. Goldstein, A. S. Turner, C. M. Les, B. G. Orr, G. J. Fisher, K. B. Welch, E. D. Rothman, and M. M. Banaszak Holl, “Type I Collagen D-spacing in Fibril Bundles of Dermis, Tendon and Bone: Bridging Between Nano- and Micro-Level Tissue Hierarchy,” ACS nano 6, 9503–9514 (2012).
[Crossref] [PubMed]

Bateman, D.

J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring, GNU Octave version 3.8.1 manual: a high-level interactive language for numerical computations (CreateSpace Independent Publishing Platform, 2014).

Becker, D. L.

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second Harmonic Generation Confocal Microscopy of Collagen Type I from Rat Tendon Cryosections,” Biophys. J. 91, 4665 (2006).
[Crossref] [PubMed]

Beigel, R.

M. Kellner, M. Heidrich, R. Beigel, R.-A. Lorbeer, L. Knudsen, T. Ripken, A. Heisterkamp, H. Meyer, M. P. Kühnel, and M. Ochs, “Imaging of the mouse lung with scanning laser optical tomography (SLOT),” Journal of applied physiology (Bethesda, Md. : 1985) 113, 975–983 (2012).
[Crossref]

Benichou, E.

A. Deniset-Besseau, J. Duboisset, E. Benichou, F. Hache, P.-F. Brevet, and M.-C. Schanne-Klein, “Measurement of the Second-Order Hyperpolarizability of the Collagen Triple Helix and Determination of Its Physical Origin,” The Journal of Physical Chemistry B 113, 13437–13445 (2009).
[Crossref] [PubMed]

Bicker, G.

R.-a. Lorbeer, M. Heidrich, C. Lorbeer, D. Fernando, R. Ojeda, G. Bicker, H. Meyer, A. Heisterkamp, L. Zentrum, and D. Hannover, “Highly efficient 3D fluorescence microscopy with a scanning laser optical tomograph,” Optics express 19, 412–417 (2011).
[Crossref]

Boucher, Y.

E. Brown, T. McKee, E. DiTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nature Medicine 9, 796–801 (2003).
[Crossref] [PubMed]

Boyd, R. W.

R. W. Boyd, Nonlinear optics (Academic Press, 2008).

Brehm, B. R.

R. Cicchi, C. Matthäus, T. Meyer, A. Lattermann, B. Dietzek, B. R. Brehm, J. Popp, and F. S. Pavone, “Characterization of collagen and cholesterol deposition in atherosclerotic arterial tissue using non-linear microscopy,” J. Biophoton. 7, 135–143 (2014).
[Crossref]

Brevet, P.-F.

A. Deniset-Besseau, J. Duboisset, E. Benichou, F. Hache, P.-F. Brevet, and M.-C. Schanne-Klein, “Measurement of the Second-Order Hyperpolarizability of the Collagen Triple Helix and Determination of Its Physical Origin,” The Journal of Physical Chemistry B 113, 13437–13445 (2009).
[Crossref] [PubMed]

Brown, C. S.

C. S. Brown, D. H. Burns, F. A. Spelman, and A. C. Nelson, “Computed tomography from optical projections for three-dimensional reconstruction of thick objects,” Applied optics 31, 6247–6254 (1992).
[Crossref] [PubMed]

Brown, E.

E. Brown, T. McKee, E. DiTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nature Medicine 9, 796–801 (2003).
[Crossref] [PubMed]

Burns, D. H.

C. S. Brown, D. H. Burns, F. A. Spelman, and A. C. Nelson, “Computed tomography from optical projections for three-dimensional reconstruction of thick objects,” Applied optics 31, 6247–6254 (1992).
[Crossref] [PubMed]

Campagnola, P. J.

P. J. Campagnola and C.-Y. Dong, “Second harmonic generation microscopy : principles and applications to disease diagnosis,” Laser & Photonics Review 5, 13–26 (2011).
[Crossref]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006).
[Crossref]

Campbell, J. M.

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Medicine 4, 38 (2006).
[Crossref] [PubMed]

Cardona, A.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Chen, J.-S.

S.-J. Lin, S.-H. Jee, C.-J. Kuo, R.-J. Wu, W.-C. Lin, J.-S. Chen, Y.-H. Liao, C.-J. Hsu, T.-F. Tsai, Y.-F. Chen, and C.-Y. Dong, “Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging,” Optics letters 31, 2756–2758 (2006).
[Crossref] [PubMed]

Chen, S.-y.

S.-w. Chu, S.-y. Chen, G.-w. Chern, T.-h. Tsai, and Y.-c. Chen, “Studies of x (2) / x (3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy,” Biophys. J. 86, 3914–3922 (2004).
[Crossref]

Chen, W.-l.

P.-j. Su, W.-l. Chen, Y.-f. Chen, and C.-y. Dong, “Determination of Collagen Nanostructure from Second-Order Susceptibility Tensor Analysis,” Biophysj 100, 2053–2062 (2011).
[Crossref]

Chen, Y.-c.

S.-w. Chu, S.-y. Chen, G.-w. Chern, T.-h. Tsai, and Y.-c. Chen, “Studies of x (2) / x (3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy,” Biophys. J. 86, 3914–3922 (2004).
[Crossref]

Chen, Y.-f.

P.-j. Su, W.-l. Chen, Y.-f. Chen, and C.-y. Dong, “Determination of Collagen Nanostructure from Second-Order Susceptibility Tensor Analysis,” Biophysj 100, 2053–2062 (2011).
[Crossref]

S.-J. Lin, S.-H. Jee, C.-J. Kuo, R.-J. Wu, W.-C. Lin, J.-S. Chen, Y.-H. Liao, C.-J. Hsu, T.-F. Tsai, Y.-F. Chen, and C.-Y. Dong, “Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging,” Optics letters 31, 2756–2758 (2006).
[Crossref] [PubMed]

Chern, G.-w.

S.-w. Chu, S.-y. Chen, G.-w. Chern, T.-h. Tsai, and Y.-c. Chen, “Studies of x (2) / x (3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy,” Biophys. J. 86, 3914–3922 (2004).
[Crossref]

Chu, S.-w.

S.-w. Chu, S.-y. Chen, G.-w. Chern, T.-h. Tsai, and Y.-c. Chen, “Studies of x (2) / x (3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy,” Biophys. J. 86, 3914–3922 (2004).
[Crossref]

Cicchi, R.

R. Cicchi, C. Matthäus, T. Meyer, A. Lattermann, B. Dietzek, B. R. Brehm, J. Popp, and F. S. Pavone, “Characterization of collagen and cholesterol deposition in atherosclerotic arterial tissue using non-linear microscopy,” J. Biophoton. 7, 135–143 (2014).
[Crossref]

P. Matteini, F. Ratto, F. Rossi, R. Cicchi, C. Stringari, D. Kapsokalyvas, F. S. Pavone, and R. Pini, “Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging,” Opt. Express 17, 4868–4878 (2009).
[Crossref] [PubMed]

R. Cicchi, D. Kapsokalyvas, V. De Giorgi, V. Maio, A. Van Wiechen, D. Massi, T. Lotti, and F. S. Pavone, “Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy,” J. Biophoton. 3, 34–43 (2009).
[Crossref] [PubMed]

Davidson, D.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-sørensen, R. Baldock, and D. Davidson, “Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies,” Science 296, 541–545 (2002).
[Crossref] [PubMed]

Davies, C. D. L.

A. Erikson, C. D. L. Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12, 1–10 (2007).
[Crossref]

De Giorgi, V.

R. Cicchi, D. Kapsokalyvas, V. De Giorgi, V. Maio, A. Van Wiechen, D. Massi, T. Lotti, and F. S. Pavone, “Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy,” J. Biophoton. 3, 34–43 (2009).
[Crossref] [PubMed]

Deng, X.

L. Tian, J. Qu, Z. Guo, Y. Jin, Y. Meng, and X. Deng, “Microscopic second-harmonic generation emission direction in fibrillous collagen type I by quasi-phase-matching theory,” Journal of Applied Physics 108, 054701 (2010).
[Crossref]

Deniset-Besseau, A.

A. Deniset-Besseau, J. Duboisset, E. Benichou, F. Hache, P.-F. Brevet, and M.-C. Schanne-Klein, “Measurement of the Second-Order Hyperpolarizability of the Collagen Triple Helix and Determination of Its Physical Origin,” The Journal of Physical Chemistry B 113, 13437–13445 (2009).
[Crossref] [PubMed]

Dietzek, B.

R. Cicchi, C. Matthäus, T. Meyer, A. Lattermann, B. Dietzek, B. R. Brehm, J. Popp, and F. S. Pavone, “Characterization of collagen and cholesterol deposition in atherosclerotic arterial tissue using non-linear microscopy,” J. Biophoton. 7, 135–143 (2014).
[Crossref]

DiTomaso, E.

E. Brown, T. McKee, E. DiTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nature Medicine 9, 796–801 (2003).
[Crossref] [PubMed]

Dong, C.-y.

P.-j. Su, W.-l. Chen, Y.-f. Chen, and C.-y. Dong, “Determination of Collagen Nanostructure from Second-Order Susceptibility Tensor Analysis,” Biophysj 100, 2053–2062 (2011).
[Crossref]

P. J. Campagnola and C.-Y. Dong, “Second harmonic generation microscopy : principles and applications to disease diagnosis,” Laser & Photonics Review 5, 13–26 (2011).
[Crossref]

S.-J. Lin, S.-H. Jee, C.-J. Kuo, R.-J. Wu, W.-C. Lin, J.-S. Chen, Y.-H. Liao, C.-J. Hsu, T.-F. Tsai, Y.-F. Chen, and C.-Y. Dong, “Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging,” Optics letters 31, 2756–2758 (2006).
[Crossref] [PubMed]

Duboisset, J.

A. Deniset-Besseau, J. Duboisset, E. Benichou, F. Hache, P.-F. Brevet, and M.-C. Schanne-Klein, “Measurement of the Second-Order Hyperpolarizability of the Collagen Triple Helix and Determination of Its Physical Origin,” The Journal of Physical Chemistry B 113, 13437–13445 (2009).
[Crossref] [PubMed]

Eaton, J. W.

J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring, GNU Octave version 3.8.1 manual: a high-level interactive language for numerical computations (CreateSpace Independent Publishing Platform, 2014).

Ekwobi, C.

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second Harmonic Generation Confocal Microscopy of Collagen Type I from Rat Tendon Cryosections,” Biophys. J. 91, 4665 (2006).
[Crossref] [PubMed]

Eliceiri, K.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Eliceiri, K. W.

C. a. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nature Methods 9, 671–675 (2012).
[Crossref] [PubMed]

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Medicine 4, 38 (2006).
[Crossref] [PubMed]

Erikson, A.

A. Erikson, C. D. L. Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12, 1–10 (2007).
[Crossref]

Fang, M.

M. Fang, E. L. Goldstein, A. S. Turner, C. M. Les, B. G. Orr, G. J. Fisher, K. B. Welch, E. D. Rothman, and M. M. Banaszak Holl, “Type I Collagen D-spacing in Fibril Bundles of Dermis, Tendon and Bone: Bridging Between Nano- and Micro-Level Tissue Hierarchy,” ACS nano 6, 9503–9514 (2012).
[Crossref] [PubMed]

Fernando, D.

R.-a. Lorbeer, M. Heidrich, C. Lorbeer, D. Fernando, R. Ojeda, G. Bicker, H. Meyer, A. Heisterkamp, L. Zentrum, and D. Hannover, “Highly efficient 3D fluorescence microscopy with a scanning laser optical tomograph,” Optics express 19, 412–417 (2011).
[Crossref]

Fisher, G. J.

M. Fang, E. L. Goldstein, A. S. Turner, C. M. Les, B. G. Orr, G. J. Fisher, K. B. Welch, E. D. Rothman, and M. M. Banaszak Holl, “Type I Collagen D-spacing in Fibril Bundles of Dermis, Tendon and Bone: Bridging Between Nano- and Micro-Level Tissue Hierarchy,” ACS nano 6, 9503–9514 (2012).
[Crossref] [PubMed]

Freund, I.

S. Roth, I. Freund, and IUCr, “Second harmonic generation and orientational order in connective tissue: a mosaic model for fibril orientational ordering in rat-tail tendon,” Journal of Applied Crystallography 15, 72–78 (1982).
[Crossref]

Frise, E.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Goldstein, E. L.

M. Fang, E. L. Goldstein, A. S. Turner, C. M. Les, B. G. Orr, G. J. Fisher, K. B. Welch, E. D. Rothman, and M. M. Banaszak Holl, “Type I Collagen D-spacing in Fibril Bundles of Dermis, Tendon and Bone: Bridging Between Nano- and Micro-Level Tissue Hierarchy,” ACS nano 6, 9503–9514 (2012).
[Crossref] [PubMed]

Grothausmann, R.

M. Kellner, M. Heidrich, R.-A. Lorbeer, G. C. Antonopoulos, L. Knudsen, C. Wrede, N. Izykowski, R. Grothausmann, D. Jonigk, M. Ochs, T. Ripken, M. P. Kühnel, and H. Meyer, “A combined method for correlative 3D imaging of biological samples from macro to nano scale,” Scientific Reports 6, 35606 (2016).
[Crossref] [PubMed]

Guo, Z.

L. Tian, J. Qu, Z. Guo, Y. Jin, Y. Meng, and X. Deng, “Microscopic second-harmonic generation emission direction in fibrillous collagen type I by quasi-phase-matching theory,” Journal of Applied Physics 108, 054701 (2010).
[Crossref]

Gusachenko, I.

I. Gusachenko and M.-C. Schanne-Klein, “Numerical simulation of polarization-resolved second-harmonic microscopy in birefringent media,” Phys. Rev. A 88, 53811 (2013).
[Crossref]

I. Gusachenko, V. Tran, Y. G. Houssen, J. M. Allain, and M. C. Schanne-Klein, “Polarization-resolved second-harmonic generation in tendon upon mechanical stretching,” Biophys. J. 102, 2220–2229 (2012).
[Crossref] [PubMed]

G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M.-C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomedical Optics Express 3, 1 (2012).
[Crossref] [PubMed]

Hache, F.

A. Deniset-Besseau, J. Duboisset, E. Benichou, F. Hache, P.-F. Brevet, and M.-C. Schanne-Klein, “Measurement of the Second-Order Hyperpolarizability of the Collagen Triple Helix and Determination of Its Physical Origin,” The Journal of Physical Chemistry B 113, 13437–13445 (2009).
[Crossref] [PubMed]

Hannover, D.

R.-a. Lorbeer, M. Heidrich, C. Lorbeer, D. Fernando, R. Ojeda, G. Bicker, H. Meyer, A. Heisterkamp, L. Zentrum, and D. Hannover, “Highly efficient 3D fluorescence microscopy with a scanning laser optical tomograph,” Optics express 19, 412–417 (2011).
[Crossref]

Hartenstein, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Hauberg, S.

J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring, GNU Octave version 3.8.1 manual: a high-level interactive language for numerical computations (CreateSpace Independent Publishing Platform, 2014).

Hecksher-sørensen, J.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-sørensen, R. Baldock, and D. Davidson, “Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies,” Science 296, 541–545 (2002).
[Crossref] [PubMed]

Heidrich, M.

M. Kellner, M. Heidrich, R.-A. Lorbeer, G. C. Antonopoulos, L. Knudsen, C. Wrede, N. Izykowski, R. Grothausmann, D. Jonigk, M. Ochs, T. Ripken, M. P. Kühnel, and H. Meyer, “A combined method for correlative 3D imaging of biological samples from macro to nano scale,” Scientific Reports 6, 35606 (2016).
[Crossref] [PubMed]

M. Kellner, M. Heidrich, R. Beigel, R.-A. Lorbeer, L. Knudsen, T. Ripken, A. Heisterkamp, H. Meyer, M. P. Kühnel, and M. Ochs, “Imaging of the mouse lung with scanning laser optical tomography (SLOT),” Journal of applied physiology (Bethesda, Md. : 1985) 113, 975–983 (2012).
[Crossref]

R.-a. Lorbeer, M. Heidrich, C. Lorbeer, D. Fernando, R. Ojeda, G. Bicker, H. Meyer, A. Heisterkamp, L. Zentrum, and D. Hannover, “Highly efficient 3D fluorescence microscopy with a scanning laser optical tomograph,” Optics express 19, 412–417 (2011).
[Crossref]

M. Heidrich, M. Kühnel, M. Kellner, R. Lorbeer, T. Lange, A. Winkel, M. Stiesch, H. Meyer, and A. Heisterkamp, “3D imaging of biofilms on implants by detection of scattered light with a scanning laser optical tomograph,” Biomedical Optics Express 2, 2982–2994 (2011).
[Crossref] [PubMed]

Heinemann, D.

L. Nolte, N. Tinne, J. Schulze, D. Heinemann, C. Antonopoulos, H. Meyer, H. G. Nothwang, T. Lenarz, A. Heisterkamp, A. Warnecke, and T. Ripken, “Scanning laser optical tomography for in toto imaging of the murine cochlea,” PloS one 12, e0175431 (2017).

Heisterkamp, A.

L. Nolte, N. Tinne, J. Schulze, D. Heinemann, C. Antonopoulos, H. Meyer, H. G. Nothwang, T. Lenarz, A. Heisterkamp, A. Warnecke, and T. Ripken, “Scanning laser optical tomography for in toto imaging of the murine cochlea,” PloS one 12, e0175431 (2017).

N. Tinne, G. C. Antonopoulos, S. Mohebbi, J. Andrade, L. Nolte, H. Meyer, A. Heisterkamp, O. Majdani, and T. Ripken, “Three-dimensional hard and soft tissue imaging of the human cochlea by scanning laser optical tomography (SLOT),” PLOS ONE 12, e0184069 (2017).
[Crossref] [PubMed]

M. Kellner, M. Heidrich, R. Beigel, R.-A. Lorbeer, L. Knudsen, T. Ripken, A. Heisterkamp, H. Meyer, M. P. Kühnel, and M. Ochs, “Imaging of the mouse lung with scanning laser optical tomography (SLOT),” Journal of applied physiology (Bethesda, Md. : 1985) 113, 975–983 (2012).
[Crossref]

M. Heidrich, M. Kühnel, M. Kellner, R. Lorbeer, T. Lange, A. Winkel, M. Stiesch, H. Meyer, and A. Heisterkamp, “3D imaging of biofilms on implants by detection of scattered light with a scanning laser optical tomograph,” Biomedical Optics Express 2, 2982–2994 (2011).
[Crossref] [PubMed]

R.-a. Lorbeer, M. Heidrich, C. Lorbeer, D. Fernando, R. Ojeda, G. Bicker, H. Meyer, A. Heisterkamp, L. Zentrum, and D. Hannover, “Highly efficient 3D fluorescence microscopy with a scanning laser optical tomograph,” Optics express 19, 412–417 (2011).
[Crossref]

Hill, B.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-sørensen, R. Baldock, and D. Davidson, “Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies,” Science 296, 541–545 (2002).
[Crossref] [PubMed]

Houssen, Y. G.

I. Gusachenko, V. Tran, Y. G. Houssen, J. M. Allain, and M. C. Schanne-Klein, “Polarization-resolved second-harmonic generation in tendon upon mechanical stretching,” Biophys. J. 102, 2220–2229 (2012).
[Crossref] [PubMed]

Hsu, C.-J.

S.-J. Lin, S.-H. Jee, C.-J. Kuo, R.-J. Wu, W.-C. Lin, J.-S. Chen, Y.-H. Liao, C.-J. Hsu, T.-F. Tsai, Y.-F. Chen, and C.-Y. Dong, “Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging,” Optics letters 31, 2756–2758 (2006).
[Crossref] [PubMed]

Inman, D. R.

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Medicine 4, 38 (2006).
[Crossref] [PubMed]

Izykowski, N.

M. Kellner, M. Heidrich, R.-A. Lorbeer, G. C. Antonopoulos, L. Knudsen, C. Wrede, N. Izykowski, R. Grothausmann, D. Jonigk, M. Ochs, T. Ripken, M. P. Kühnel, and H. Meyer, “A combined method for correlative 3D imaging of biological samples from macro to nano scale,” Scientific Reports 6, 35606 (2016).
[Crossref] [PubMed]

Jackson, J. D.

J. D. Jackson, Classical electrodynamics (Wiley, 1999).

Jain, R. K.

E. Brown, T. McKee, E. DiTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nature Medicine 9, 796–801 (2003).
[Crossref] [PubMed]

Jee, S.-H.

S.-J. Lin, S.-H. Jee, C.-J. Kuo, R.-J. Wu, W.-C. Lin, J.-S. Chen, Y.-H. Liao, C.-J. Hsu, T.-F. Tsai, Y.-F. Chen, and C.-Y. Dong, “Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging,” Optics letters 31, 2756–2758 (2006).
[Crossref] [PubMed]

Jin, Y.

L. Tian, J. Qu, Z. Guo, Y. Jin, Y. Meng, and X. Deng, “Microscopic second-harmonic generation emission direction in fibrillous collagen type I by quasi-phase-matching theory,” Journal of Applied Physics 108, 054701 (2010).
[Crossref]

Jonigk, D.

M. Kellner, M. Heidrich, R.-A. Lorbeer, G. C. Antonopoulos, L. Knudsen, C. Wrede, N. Izykowski, R. Grothausmann, D. Jonigk, M. Ochs, T. Ripken, M. P. Kühnel, and H. Meyer, “A combined method for correlative 3D imaging of biological samples from macro to nano scale,” Scientific Reports 6, 35606 (2016).
[Crossref] [PubMed]

Kak, A. C.

A. C. Kak and M. Slaney, Principles of computerized tomographic imaging (Society for Industrial and Applied Mathematics, 2001).
[Crossref]

Kapsokalyvas, D.

R. Cicchi, D. Kapsokalyvas, V. De Giorgi, V. Maio, A. Van Wiechen, D. Massi, T. Lotti, and F. S. Pavone, “Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy,” J. Biophoton. 3, 34–43 (2009).
[Crossref] [PubMed]

P. Matteini, F. Ratto, F. Rossi, R. Cicchi, C. Stringari, D. Kapsokalyvas, F. S. Pavone, and R. Pini, “Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging,” Opt. Express 17, 4868–4878 (2009).
[Crossref] [PubMed]

Kawata, S.

O. Nakamura, S. Kawata, and S. Minami, “Optical microscope tomography II Nonnegative constraint by a gradient-projection method,” Journal of the Optical Society of America A 5, 554 (1988).
[Crossref]

S. Kawata, O. Nakamura, and S. Minami, “Optical microscope tomography I Support constraint,” Journal of the Optical Society of America A 4, 292 (1987).
[Crossref]

S. Kawata, Y. Touki, and S. Minami, “Optical Microscopic Tomography,” in “Inverse Optics II,” R. H. Bates and A. J. Devaney, eds. (1985), p. 15.

Kaynig, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Keely, P. J.

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Medicine 4, 38 (2006).
[Crossref] [PubMed]

Kellner, M.

M. Kellner, M. Heidrich, R.-A. Lorbeer, G. C. Antonopoulos, L. Knudsen, C. Wrede, N. Izykowski, R. Grothausmann, D. Jonigk, M. Ochs, T. Ripken, M. P. Kühnel, and H. Meyer, “A combined method for correlative 3D imaging of biological samples from macro to nano scale,” Scientific Reports 6, 35606 (2016).
[Crossref] [PubMed]

M. Kellner, M. Heidrich, R. Beigel, R.-A. Lorbeer, L. Knudsen, T. Ripken, A. Heisterkamp, H. Meyer, M. P. Kühnel, and M. Ochs, “Imaging of the mouse lung with scanning laser optical tomography (SLOT),” Journal of applied physiology (Bethesda, Md. : 1985) 113, 975–983 (2012).
[Crossref]

M. Heidrich, M. Kühnel, M. Kellner, R. Lorbeer, T. Lange, A. Winkel, M. Stiesch, H. Meyer, and A. Heisterkamp, “3D imaging of biofilms on implants by detection of scattered light with a scanning laser optical tomograph,” Biomedical Optics Express 2, 2982–2994 (2011).
[Crossref] [PubMed]

Kim, B.-m.

P. Stoller, B.-m. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. D. Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref] [PubMed]

Knudsen, L.

M. Kellner, M. Heidrich, R.-A. Lorbeer, G. C. Antonopoulos, L. Knudsen, C. Wrede, N. Izykowski, R. Grothausmann, D. Jonigk, M. Ochs, T. Ripken, M. P. Kühnel, and H. Meyer, “A combined method for correlative 3D imaging of biological samples from macro to nano scale,” Scientific Reports 6, 35606 (2016).
[Crossref] [PubMed]

M. Kellner, M. Heidrich, R. Beigel, R.-A. Lorbeer, L. Knudsen, T. Ripken, A. Heisterkamp, H. Meyer, M. P. Kühnel, and M. Ochs, “Imaging of the mouse lung with scanning laser optical tomography (SLOT),” Journal of applied physiology (Bethesda, Md. : 1985) 113, 975–983 (2012).
[Crossref]

Kowalczuk, L.

G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M.-C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomedical Optics Express 3, 1 (2012).
[Crossref] [PubMed]

Kremer, J. R.

J. R. Kremer, D. N. Mastronarde, and J. R. McIntosh, “Computer visualization of three-dimensional image data using IMOD,” J.Struct.Biol. 116, 71–76 (1996).

Kühnel, M.

M. Heidrich, M. Kühnel, M. Kellner, R. Lorbeer, T. Lange, A. Winkel, M. Stiesch, H. Meyer, and A. Heisterkamp, “3D imaging of biofilms on implants by detection of scattered light with a scanning laser optical tomograph,” Biomedical Optics Express 2, 2982–2994 (2011).
[Crossref] [PubMed]

Kühnel, M. P.

M. Kellner, M. Heidrich, R.-A. Lorbeer, G. C. Antonopoulos, L. Knudsen, C. Wrede, N. Izykowski, R. Grothausmann, D. Jonigk, M. Ochs, T. Ripken, M. P. Kühnel, and H. Meyer, “A combined method for correlative 3D imaging of biological samples from macro to nano scale,” Scientific Reports 6, 35606 (2016).
[Crossref] [PubMed]

M. Kellner, M. Heidrich, R. Beigel, R.-A. Lorbeer, L. Knudsen, T. Ripken, A. Heisterkamp, H. Meyer, M. P. Kühnel, and M. Ochs, “Imaging of the mouse lung with scanning laser optical tomography (SLOT),” Journal of applied physiology (Bethesda, Md. : 1985) 113, 975–983 (2012).
[Crossref]

Kuo, C.-J.

S.-J. Lin, S.-H. Jee, C.-J. Kuo, R.-J. Wu, W.-C. Lin, J.-S. Chen, Y.-H. Liao, C.-J. Hsu, T.-F. Tsai, Y.-F. Chen, and C.-Y. Dong, “Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging,” Optics letters 31, 2756–2758 (2006).
[Crossref] [PubMed]

LaComb, R. B.

R. B. LaComb, “Implementation of 3D SHG imaging microscopy for tissue characterization and disease diagnostics: Experiment and simulations,” Doctoral Dissertations (2010).

Lamarre, I.

G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M.-C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomedical Optics Express 3, 1 (2012).
[Crossref] [PubMed]

Lange, T.

M. Heidrich, M. Kühnel, M. Kellner, R. Lorbeer, T. Lange, A. Winkel, M. Stiesch, H. Meyer, and A. Heisterkamp, “3D imaging of biofilms on implants by detection of scattered light with a scanning laser optical tomograph,” Biomedical Optics Express 2, 2982–2994 (2011).
[Crossref] [PubMed]

Latour, G.

G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M.-C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomedical Optics Express 3, 1 (2012).
[Crossref] [PubMed]

Lattermann, A.

R. Cicchi, C. Matthäus, T. Meyer, A. Lattermann, B. Dietzek, B. R. Brehm, J. Popp, and F. S. Pavone, “Characterization of collagen and cholesterol deposition in atherosclerotic arterial tissue using non-linear microscopy,” J. Biophoton. 7, 135–143 (2014).
[Crossref]

Lenarz, T.

L. Nolte, N. Tinne, J. Schulze, D. Heinemann, C. Antonopoulos, H. Meyer, H. G. Nothwang, T. Lenarz, A. Heisterkamp, A. Warnecke, and T. Ripken, “Scanning laser optical tomography for in toto imaging of the murine cochlea,” PloS one 12, e0175431 (2017).

Les, C. M.

M. Fang, E. L. Goldstein, A. S. Turner, C. M. Les, B. G. Orr, G. J. Fisher, K. B. Welch, E. D. Rothman, and M. M. Banaszak Holl, “Type I Collagen D-spacing in Fibril Bundles of Dermis, Tendon and Bone: Bridging Between Nano- and Micro-Level Tissue Hierarchy,” ACS nano 6, 9503–9514 (2012).
[Crossref] [PubMed]

Liao, Y.-H.

S.-J. Lin, S.-H. Jee, C.-J. Kuo, R.-J. Wu, W.-C. Lin, J.-S. Chen, Y.-H. Liao, C.-J. Hsu, T.-F. Tsai, Y.-F. Chen, and C.-Y. Dong, “Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging,” Optics letters 31, 2756–2758 (2006).
[Crossref] [PubMed]

Lin, S.-J.

S.-J. Lin, S.-H. Jee, C.-J. Kuo, R.-J. Wu, W.-C. Lin, J.-S. Chen, Y.-H. Liao, C.-J. Hsu, T.-F. Tsai, Y.-F. Chen, and C.-Y. Dong, “Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging,” Optics letters 31, 2756–2758 (2006).
[Crossref] [PubMed]

Lin, W.-C.

S.-J. Lin, S.-H. Jee, C.-J. Kuo, R.-J. Wu, W.-C. Lin, J.-S. Chen, Y.-H. Liao, C.-J. Hsu, T.-F. Tsai, Y.-F. Chen, and C.-Y. Dong, “Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging,” Optics letters 31, 2756–2758 (2006).
[Crossref] [PubMed]

Lindgren, M.

A. Erikson, C. D. L. Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12, 1–10 (2007).
[Crossref]

Longair, M.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Lorbeer, C.

R.-a. Lorbeer, M. Heidrich, C. Lorbeer, D. Fernando, R. Ojeda, G. Bicker, H. Meyer, A. Heisterkamp, L. Zentrum, and D. Hannover, “Highly efficient 3D fluorescence microscopy with a scanning laser optical tomograph,” Optics express 19, 412–417 (2011).
[Crossref]

Lorbeer, R.

M. Heidrich, M. Kühnel, M. Kellner, R. Lorbeer, T. Lange, A. Winkel, M. Stiesch, H. Meyer, and A. Heisterkamp, “3D imaging of biofilms on implants by detection of scattered light with a scanning laser optical tomograph,” Biomedical Optics Express 2, 2982–2994 (2011).
[Crossref] [PubMed]

Lorbeer, R.-A.

M. Kellner, M. Heidrich, R.-A. Lorbeer, G. C. Antonopoulos, L. Knudsen, C. Wrede, N. Izykowski, R. Grothausmann, D. Jonigk, M. Ochs, T. Ripken, M. P. Kühnel, and H. Meyer, “A combined method for correlative 3D imaging of biological samples from macro to nano scale,” Scientific Reports 6, 35606 (2016).
[Crossref] [PubMed]

M. Kellner, M. Heidrich, R. Beigel, R.-A. Lorbeer, L. Knudsen, T. Ripken, A. Heisterkamp, H. Meyer, M. P. Kühnel, and M. Ochs, “Imaging of the mouse lung with scanning laser optical tomography (SLOT),” Journal of applied physiology (Bethesda, Md. : 1985) 113, 975–983 (2012).
[Crossref]

R.-a. Lorbeer, M. Heidrich, C. Lorbeer, D. Fernando, R. Ojeda, G. Bicker, H. Meyer, A. Heisterkamp, L. Zentrum, and D. Hannover, “Highly efficient 3D fluorescence microscopy with a scanning laser optical tomograph,” Optics express 19, 412–417 (2011).
[Crossref]

Lotti, T.

R. Cicchi, D. Kapsokalyvas, V. De Giorgi, V. Maio, A. Van Wiechen, D. Massi, T. Lotti, and F. S. Pavone, “Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy,” J. Biophoton. 3, 34–43 (2009).
[Crossref] [PubMed]

Maio, V.

R. Cicchi, D. Kapsokalyvas, V. De Giorgi, V. Maio, A. Van Wiechen, D. Massi, T. Lotti, and F. S. Pavone, “Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy,” J. Biophoton. 3, 34–43 (2009).
[Crossref] [PubMed]

Majdani, O.

N. Tinne, G. C. Antonopoulos, S. Mohebbi, J. Andrade, L. Nolte, H. Meyer, A. Heisterkamp, O. Majdani, and T. Ripken, “Three-dimensional hard and soft tissue imaging of the human cochlea by scanning laser optical tomography (SLOT),” PLOS ONE 12, e0184069 (2017).
[Crossref] [PubMed]

Massi, D.

R. Cicchi, D. Kapsokalyvas, V. De Giorgi, V. Maio, A. Van Wiechen, D. Massi, T. Lotti, and F. S. Pavone, “Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy,” J. Biophoton. 3, 34–43 (2009).
[Crossref] [PubMed]

Mastronarde, D. N.

J. R. Kremer, D. N. Mastronarde, and J. R. McIntosh, “Computer visualization of three-dimensional image data using IMOD,” J.Struct.Biol. 116, 71–76 (1996).

Matteini, P.

Matthäus, C.

R. Cicchi, C. Matthäus, T. Meyer, A. Lattermann, B. Dietzek, B. R. Brehm, J. Popp, and F. S. Pavone, “Characterization of collagen and cholesterol deposition in atherosclerotic arterial tissue using non-linear microscopy,” J. Biophoton. 7, 135–143 (2014).
[Crossref]

McIntosh, J. R.

J. R. Kremer, D. N. Mastronarde, and J. R. McIntosh, “Computer visualization of three-dimensional image data using IMOD,” J.Struct.Biol. 116, 71–76 (1996).

McKee, T.

E. Brown, T. McKee, E. DiTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nature Medicine 9, 796–801 (2003).
[Crossref] [PubMed]

Meng, Y.

L. Tian, J. Qu, Z. Guo, Y. Jin, Y. Meng, and X. Deng, “Microscopic second-harmonic generation emission direction in fibrillous collagen type I by quasi-phase-matching theory,” Journal of Applied Physics 108, 054701 (2010).
[Crossref]

Meyer, H.

L. Nolte, N. Tinne, J. Schulze, D. Heinemann, C. Antonopoulos, H. Meyer, H. G. Nothwang, T. Lenarz, A. Heisterkamp, A. Warnecke, and T. Ripken, “Scanning laser optical tomography for in toto imaging of the murine cochlea,” PloS one 12, e0175431 (2017).

N. Tinne, G. C. Antonopoulos, S. Mohebbi, J. Andrade, L. Nolte, H. Meyer, A. Heisterkamp, O. Majdani, and T. Ripken, “Three-dimensional hard and soft tissue imaging of the human cochlea by scanning laser optical tomography (SLOT),” PLOS ONE 12, e0184069 (2017).
[Crossref] [PubMed]

M. Kellner, M. Heidrich, R.-A. Lorbeer, G. C. Antonopoulos, L. Knudsen, C. Wrede, N. Izykowski, R. Grothausmann, D. Jonigk, M. Ochs, T. Ripken, M. P. Kühnel, and H. Meyer, “A combined method for correlative 3D imaging of biological samples from macro to nano scale,” Scientific Reports 6, 35606 (2016).
[Crossref] [PubMed]

M. Kellner, M. Heidrich, R. Beigel, R.-A. Lorbeer, L. Knudsen, T. Ripken, A. Heisterkamp, H. Meyer, M. P. Kühnel, and M. Ochs, “Imaging of the mouse lung with scanning laser optical tomography (SLOT),” Journal of applied physiology (Bethesda, Md. : 1985) 113, 975–983 (2012).
[Crossref]

M. Heidrich, M. Kühnel, M. Kellner, R. Lorbeer, T. Lange, A. Winkel, M. Stiesch, H. Meyer, and A. Heisterkamp, “3D imaging of biofilms on implants by detection of scattered light with a scanning laser optical tomograph,” Biomedical Optics Express 2, 2982–2994 (2011).
[Crossref] [PubMed]

R.-a. Lorbeer, M. Heidrich, C. Lorbeer, D. Fernando, R. Ojeda, G. Bicker, H. Meyer, A. Heisterkamp, L. Zentrum, and D. Hannover, “Highly efficient 3D fluorescence microscopy with a scanning laser optical tomograph,” Optics express 19, 412–417 (2011).
[Crossref]

Meyer, T.

R. Cicchi, C. Matthäus, T. Meyer, A. Lattermann, B. Dietzek, B. R. Brehm, J. Popp, and F. S. Pavone, “Characterization of collagen and cholesterol deposition in atherosclerotic arterial tissue using non-linear microscopy,” J. Biophoton. 7, 135–143 (2014).
[Crossref]

Millard, A. C.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006).
[Crossref]

Minami, S.

O. Nakamura, S. Kawata, and S. Minami, “Optical microscope tomography II Nonnegative constraint by a gradient-projection method,” Journal of the Optical Society of America A 5, 554 (1988).
[Crossref]

S. Kawata, O. Nakamura, and S. Minami, “Optical microscope tomography I Support constraint,” Journal of the Optical Society of America A 4, 292 (1987).
[Crossref]

S. Kawata, Y. Touki, and S. Minami, “Optical Microscopic Tomography,” in “Inverse Optics II,” R. H. Bates and A. J. Devaney, eds. (1985), p. 15.

Mohebbi, S.

N. Tinne, G. C. Antonopoulos, S. Mohebbi, J. Andrade, L. Nolte, H. Meyer, A. Heisterkamp, O. Majdani, and T. Ripken, “Three-dimensional hard and soft tissue imaging of the human cochlea by scanning laser optical tomography (SLOT),” PLOS ONE 12, e0184069 (2017).
[Crossref] [PubMed]

Mohler, W. A.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006).
[Crossref]

Nakamura, O.

O. Nakamura, S. Kawata, and S. Minami, “Optical microscope tomography II Nonnegative constraint by a gradient-projection method,” Journal of the Optical Society of America A 5, 554 (1988).
[Crossref]

S. Kawata, O. Nakamura, and S. Minami, “Optical microscope tomography I Support constraint,” Journal of the Optical Society of America A 4, 292 (1987).
[Crossref]

Nelson, A. C.

C. S. Brown, D. H. Burns, F. A. Spelman, and A. C. Nelson, “Computed tomography from optical projections for three-dimensional reconstruction of thick objects,” Applied optics 31, 6247–6254 (1992).
[Crossref] [PubMed]

Nolte, L.

N. Tinne, G. C. Antonopoulos, S. Mohebbi, J. Andrade, L. Nolte, H. Meyer, A. Heisterkamp, O. Majdani, and T. Ripken, “Three-dimensional hard and soft tissue imaging of the human cochlea by scanning laser optical tomography (SLOT),” PLOS ONE 12, e0184069 (2017).
[Crossref] [PubMed]

L. Nolte, N. Tinne, J. Schulze, D. Heinemann, C. Antonopoulos, H. Meyer, H. G. Nothwang, T. Lenarz, A. Heisterkamp, A. Warnecke, and T. Ripken, “Scanning laser optical tomography for in toto imaging of the murine cochlea,” PloS one 12, e0175431 (2017).

Nothwang, H. G.

L. Nolte, N. Tinne, J. Schulze, D. Heinemann, C. Antonopoulos, H. Meyer, H. G. Nothwang, T. Lenarz, A. Heisterkamp, A. Warnecke, and T. Ripken, “Scanning laser optical tomography for in toto imaging of the murine cochlea,” PloS one 12, e0175431 (2017).

Ochs, M.

M. Kellner, M. Heidrich, R.-A. Lorbeer, G. C. Antonopoulos, L. Knudsen, C. Wrede, N. Izykowski, R. Grothausmann, D. Jonigk, M. Ochs, T. Ripken, M. P. Kühnel, and H. Meyer, “A combined method for correlative 3D imaging of biological samples from macro to nano scale,” Scientific Reports 6, 35606 (2016).
[Crossref] [PubMed]

M. Kellner, M. Heidrich, R. Beigel, R.-A. Lorbeer, L. Knudsen, T. Ripken, A. Heisterkamp, H. Meyer, M. P. Kühnel, and M. Ochs, “Imaging of the mouse lung with scanning laser optical tomography (SLOT),” Journal of applied physiology (Bethesda, Md. : 1985) 113, 975–983 (2012).
[Crossref]

Ojeda, R.

R.-a. Lorbeer, M. Heidrich, C. Lorbeer, D. Fernando, R. Ojeda, G. Bicker, H. Meyer, A. Heisterkamp, L. Zentrum, and D. Hannover, “Highly efficient 3D fluorescence microscopy with a scanning laser optical tomograph,” Optics express 19, 412–417 (2011).
[Crossref]

Orr, B. G.

M. Fang, E. L. Goldstein, A. S. Turner, C. M. Les, B. G. Orr, G. J. Fisher, K. B. Welch, E. D. Rothman, and M. M. Banaszak Holl, “Type I Collagen D-spacing in Fibril Bundles of Dermis, Tendon and Bone: Bridging Between Nano- and Micro-Level Tissue Hierarchy,” ACS nano 6, 9503–9514 (2012).
[Crossref] [PubMed]

Pavone, F. S.

R. Cicchi, C. Matthäus, T. Meyer, A. Lattermann, B. Dietzek, B. R. Brehm, J. Popp, and F. S. Pavone, “Characterization of collagen and cholesterol deposition in atherosclerotic arterial tissue using non-linear microscopy,” J. Biophoton. 7, 135–143 (2014).
[Crossref]

P. Matteini, F. Ratto, F. Rossi, R. Cicchi, C. Stringari, D. Kapsokalyvas, F. S. Pavone, and R. Pini, “Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging,” Opt. Express 17, 4868–4878 (2009).
[Crossref] [PubMed]

R. Cicchi, D. Kapsokalyvas, V. De Giorgi, V. Maio, A. Van Wiechen, D. Massi, T. Lotti, and F. S. Pavone, “Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy,” J. Biophoton. 3, 34–43 (2009).
[Crossref] [PubMed]

Perry, P.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-sørensen, R. Baldock, and D. Davidson, “Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies,” Science 296, 541–545 (2002).
[Crossref] [PubMed]

Pietzsch, T.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Pini, R.

Plotnikov, S. V.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006).
[Crossref]

Pluen, A.

E. Brown, T. McKee, E. DiTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nature Medicine 9, 796–801 (2003).
[Crossref] [PubMed]

Popp, J.

R. Cicchi, C. Matthäus, T. Meyer, A. Lattermann, B. Dietzek, B. R. Brehm, J. Popp, and F. S. Pavone, “Characterization of collagen and cholesterol deposition in atherosclerotic arterial tissue using non-linear microscopy,” J. Biophoton. 7, 135–143 (2014).
[Crossref]

Preibisch, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Provenzano, P. P.

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Medicine 4, 38 (2006).
[Crossref] [PubMed]

Qu, J.

L. Tian, J. Qu, Z. Guo, Y. Jin, Y. Meng, and X. Deng, “Microscopic second-harmonic generation emission direction in fibrillous collagen type I by quasi-phase-matching theory,” Journal of Applied Physics 108, 054701 (2010).
[Crossref]

Rasband, W. S.

C. a. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nature Methods 9, 671–675 (2012).
[Crossref] [PubMed]

Ratto, F.

Reiser, K. M.

P. Stoller, B.-m. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. D. Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref] [PubMed]

Ripken, T.

N. Tinne, G. C. Antonopoulos, S. Mohebbi, J. Andrade, L. Nolte, H. Meyer, A. Heisterkamp, O. Majdani, and T. Ripken, “Three-dimensional hard and soft tissue imaging of the human cochlea by scanning laser optical tomography (SLOT),” PLOS ONE 12, e0184069 (2017).
[Crossref] [PubMed]

L. Nolte, N. Tinne, J. Schulze, D. Heinemann, C. Antonopoulos, H. Meyer, H. G. Nothwang, T. Lenarz, A. Heisterkamp, A. Warnecke, and T. Ripken, “Scanning laser optical tomography for in toto imaging of the murine cochlea,” PloS one 12, e0175431 (2017).

M. Kellner, M. Heidrich, R.-A. Lorbeer, G. C. Antonopoulos, L. Knudsen, C. Wrede, N. Izykowski, R. Grothausmann, D. Jonigk, M. Ochs, T. Ripken, M. P. Kühnel, and H. Meyer, “A combined method for correlative 3D imaging of biological samples from macro to nano scale,” Scientific Reports 6, 35606 (2016).
[Crossref] [PubMed]

M. Kellner, M. Heidrich, R. Beigel, R.-A. Lorbeer, L. Knudsen, T. Ripken, A. Heisterkamp, H. Meyer, M. P. Kühnel, and M. Ochs, “Imaging of the mouse lung with scanning laser optical tomography (SLOT),” Journal of applied physiology (Bethesda, Md. : 1985) 113, 975–983 (2012).
[Crossref]

Ross, A.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-sørensen, R. Baldock, and D. Davidson, “Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies,” Science 296, 541–545 (2002).
[Crossref] [PubMed]

Rossi, F.

Roth, S.

S. Roth, I. Freund, and IUCr, “Second harmonic generation and orientational order in connective tissue: a mosaic model for fibril orientational ordering in rat-tail tendon,” Journal of Applied Crystallography 15, 72–78 (1982).
[Crossref]

Rothman, E. D.

M. Fang, E. L. Goldstein, A. S. Turner, C. M. Les, B. G. Orr, G. J. Fisher, K. B. Welch, E. D. Rothman, and M. M. Banaszak Holl, “Type I Collagen D-spacing in Fibril Bundles of Dermis, Tendon and Bone: Bridging Between Nano- and Micro-Level Tissue Hierarchy,” ACS nano 6, 9503–9514 (2012).
[Crossref] [PubMed]

Rubenchik, A. M.

P. Stoller, B.-m. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. D. Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref] [PubMed]

Rueden, C.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Saalfeld, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Schanne-Klein, M. C.

I. Gusachenko, V. Tran, Y. G. Houssen, J. M. Allain, and M. C. Schanne-Klein, “Polarization-resolved second-harmonic generation in tendon upon mechanical stretching,” Biophys. J. 102, 2220–2229 (2012).
[Crossref] [PubMed]

Schanne-Klein, M.-C.

I. Gusachenko and M.-C. Schanne-Klein, “Numerical simulation of polarization-resolved second-harmonic microscopy in birefringent media,” Phys. Rev. A 88, 53811 (2013).
[Crossref]

G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M.-C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomedical Optics Express 3, 1 (2012).
[Crossref] [PubMed]

A. Deniset-Besseau, J. Duboisset, E. Benichou, F. Hache, P.-F. Brevet, and M.-C. Schanne-Klein, “Measurement of the Second-Order Hyperpolarizability of the Collagen Triple Helix and Determination of Its Physical Origin,” The Journal of Physical Chemistry B 113, 13437–13445 (2009).
[Crossref] [PubMed]

Schindelin, J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Schmid, B.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Schneider, C. a.

C. a. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nature Methods 9, 671–675 (2012).
[Crossref] [PubMed]

Schulze, J.

L. Nolte, N. Tinne, J. Schulze, D. Heinemann, C. Antonopoulos, H. Meyer, H. G. Nothwang, T. Lenarz, A. Heisterkamp, A. Warnecke, and T. Ripken, “Scanning laser optical tomography for in toto imaging of the murine cochlea,” PloS one 12, e0175431 (2017).

Seed, B.

E. Brown, T. McKee, E. DiTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nature Medicine 9, 796–801 (2003).
[Crossref] [PubMed]

Sharpe, J.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-sørensen, R. Baldock, and D. Davidson, “Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies,” Science 296, 541–545 (2002).
[Crossref] [PubMed]

Silva, L. B. D.

P. Stoller, B.-m. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. D. Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref] [PubMed]

Slaney, M.

A. C. Kak and M. Slaney, Principles of computerized tomographic imaging (Society for Industrial and Applied Mathematics, 2001).
[Crossref]

Spelman, F. A.

C. S. Brown, D. H. Burns, F. A. Spelman, and A. C. Nelson, “Computed tomography from optical projections for three-dimensional reconstruction of thick objects,” Applied optics 31, 6247–6254 (1992).
[Crossref] [PubMed]

Stiesch, M.

M. Heidrich, M. Kühnel, M. Kellner, R. Lorbeer, T. Lange, A. Winkel, M. Stiesch, H. Meyer, and A. Heisterkamp, “3D imaging of biofilms on implants by detection of scattered light with a scanning laser optical tomograph,” Biomedical Optics Express 2, 2982–2994 (2011).
[Crossref] [PubMed]

Stoller, P.

P. Stoller, B.-m. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. D. Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref] [PubMed]

Stringari, C.

Su, P.-j.

P.-j. Su, W.-l. Chen, Y.-f. Chen, and C.-y. Dong, “Determination of Collagen Nanostructure from Second-Order Susceptibility Tensor Analysis,” Biophysj 100, 2053–2062 (2011).
[Crossref]

Theodossiou, T. A.

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second Harmonic Generation Confocal Microscopy of Collagen Type I from Rat Tendon Cryosections,” Biophys. J. 91, 4665 (2006).
[Crossref] [PubMed]

Thrasivoulou, C.

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second Harmonic Generation Confocal Microscopy of Collagen Type I from Rat Tendon Cryosections,” Biophys. J. 91, 4665 (2006).
[Crossref] [PubMed]

Tian, L.

L. Tian, J. Qu, Z. Guo, Y. Jin, Y. Meng, and X. Deng, “Microscopic second-harmonic generation emission direction in fibrillous collagen type I by quasi-phase-matching theory,” Journal of Applied Physics 108, 054701 (2010).
[Crossref]

Tinevez, J.-Y.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Tinne, N.

N. Tinne, G. C. Antonopoulos, S. Mohebbi, J. Andrade, L. Nolte, H. Meyer, A. Heisterkamp, O. Majdani, and T. Ripken, “Three-dimensional hard and soft tissue imaging of the human cochlea by scanning laser optical tomography (SLOT),” PLOS ONE 12, e0184069 (2017).
[Crossref] [PubMed]

L. Nolte, N. Tinne, J. Schulze, D. Heinemann, C. Antonopoulos, H. Meyer, H. G. Nothwang, T. Lenarz, A. Heisterkamp, A. Warnecke, and T. Ripken, “Scanning laser optical tomography for in toto imaging of the murine cochlea,” PloS one 12, e0175431 (2017).

Tohno, Y.

T. Yasui, Y. Tohno, and T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259 (2004).
[Crossref] [PubMed]

Tomancak, P.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Touki, Y.

S. Kawata, Y. Touki, and S. Minami, “Optical Microscopic Tomography,” in “Inverse Optics II,” R. H. Bates and A. J. Devaney, eds. (1985), p. 15.

Tran, V.

I. Gusachenko, V. Tran, Y. G. Houssen, J. M. Allain, and M. C. Schanne-Klein, “Polarization-resolved second-harmonic generation in tendon upon mechanical stretching,” Biophys. J. 102, 2220–2229 (2012).
[Crossref] [PubMed]

Tsai, T.-F.

S.-J. Lin, S.-H. Jee, C.-J. Kuo, R.-J. Wu, W.-C. Lin, J.-S. Chen, Y.-H. Liao, C.-J. Hsu, T.-F. Tsai, Y.-F. Chen, and C.-Y. Dong, “Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging,” Optics letters 31, 2756–2758 (2006).
[Crossref] [PubMed]

Tsai, T.-h.

S.-w. Chu, S.-y. Chen, G.-w. Chern, T.-h. Tsai, and Y.-c. Chen, “Studies of x (2) / x (3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy,” Biophys. J. 86, 3914–3922 (2004).
[Crossref]

Turner, A. S.

M. Fang, E. L. Goldstein, A. S. Turner, C. M. Les, B. G. Orr, G. J. Fisher, K. B. Welch, E. D. Rothman, and M. M. Banaszak Holl, “Type I Collagen D-spacing in Fibril Bundles of Dermis, Tendon and Bone: Bridging Between Nano- and Micro-Level Tissue Hierarchy,” ACS nano 6, 9503–9514 (2012).
[Crossref] [PubMed]

Van Wiechen, A.

R. Cicchi, D. Kapsokalyvas, V. De Giorgi, V. Maio, A. Van Wiechen, D. Massi, T. Lotti, and F. S. Pavone, “Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy,” J. Biophoton. 3, 34–43 (2009).
[Crossref] [PubMed]

Warnecke, A.

L. Nolte, N. Tinne, J. Schulze, D. Heinemann, C. Antonopoulos, H. Meyer, H. G. Nothwang, T. Lenarz, A. Heisterkamp, A. Warnecke, and T. Ripken, “Scanning laser optical tomography for in toto imaging of the murine cochlea,” PloS one 12, e0175431 (2017).

Waters, J. C.

J. C. Waters and T. Wittmann, Quantitative imaging in cell biology (Academic Press, 2014).

Webb, W. W.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting Second-Harmonic Generation Images of Collagen I Fibrils,” Biophys. J. 88, 1377 (2005).
[Crossref]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: Multiphoton microscopy in the biosciences,” Nature Biotechnology 21, 1369–1377 (2003).
[Crossref] [PubMed]

Wehbring, R.

J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring, GNU Octave version 3.8.1 manual: a high-level interactive language for numerical computations (CreateSpace Independent Publishing Platform, 2014).

Welch, K. B.

M. Fang, E. L. Goldstein, A. S. Turner, C. M. Les, B. G. Orr, G. J. Fisher, K. B. Welch, E. D. Rothman, and M. M. Banaszak Holl, “Type I Collagen D-spacing in Fibril Bundles of Dermis, Tendon and Bone: Bridging Between Nano- and Micro-Level Tissue Hierarchy,” ACS nano 6, 9503–9514 (2012).
[Crossref] [PubMed]

White, D. J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods 9, 676–682 (2012).
[Crossref] [PubMed]

White, J. G.

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Medicine 4, 38 (2006).
[Crossref] [PubMed]

Williams, R. M.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting Second-Harmonic Generation Images of Collagen I Fibrils,” Biophys. J. 88, 1377 (2005).
[Crossref]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: Multiphoton microscopy in the biosciences,” Nature Biotechnology 21, 1369–1377 (2003).
[Crossref] [PubMed]

Winkel, A.

M. Heidrich, M. Kühnel, M. Kellner, R. Lorbeer, T. Lange, A. Winkel, M. Stiesch, H. Meyer, and A. Heisterkamp, “3D imaging of biofilms on implants by detection of scattered light with a scanning laser optical tomograph,” Biomedical Optics Express 2, 2982–2994 (2011).
[Crossref] [PubMed]

Wittmann, T.

J. C. Waters and T. Wittmann, Quantitative imaging in cell biology (Academic Press, 2014).

Wrede, C.

M. Kellner, M. Heidrich, R.-A. Lorbeer, G. C. Antonopoulos, L. Knudsen, C. Wrede, N. Izykowski, R. Grothausmann, D. Jonigk, M. Ochs, T. Ripken, M. P. Kühnel, and H. Meyer, “A combined method for correlative 3D imaging of biological samples from macro to nano scale,” Scientific Reports 6, 35606 (2016).
[Crossref] [PubMed]

Wu, R.-J.

S.-J. Lin, S.-H. Jee, C.-J. Kuo, R.-J. Wu, W.-C. Lin, J.-S. Chen, Y.-H. Liao, C.-J. Hsu, T.-F. Tsai, Y.-F. Chen, and C.-Y. Dong, “Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging,” Optics letters 31, 2756–2758 (2006).
[Crossref] [PubMed]

Yasui, T.

T. Yasui, Y. Tohno, and T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259 (2004).
[Crossref] [PubMed]

Zentrum, L.

R.-a. Lorbeer, M. Heidrich, C. Lorbeer, D. Fernando, R. Ojeda, G. Bicker, H. Meyer, A. Heisterkamp, L. Zentrum, and D. Hannover, “Highly efficient 3D fluorescence microscopy with a scanning laser optical tomograph,” Optics express 19, 412–417 (2011).
[Crossref]

Zipfel, W. R.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting Second-Harmonic Generation Images of Collagen I Fibrils,” Biophys. J. 88, 1377 (2005).
[Crossref]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: Multiphoton microscopy in the biosciences,” Nature Biotechnology 21, 1369–1377 (2003).
[Crossref] [PubMed]

ACS nano (1)

M. Fang, E. L. Goldstein, A. S. Turner, C. M. Les, B. G. Orr, G. J. Fisher, K. B. Welch, E. D. Rothman, and M. M. Banaszak Holl, “Type I Collagen D-spacing in Fibril Bundles of Dermis, Tendon and Bone: Bridging Between Nano- and Micro-Level Tissue Hierarchy,” ACS nano 6, 9503–9514 (2012).
[Crossref] [PubMed]

Applied optics (1)

C. S. Brown, D. H. Burns, F. A. Spelman, and A. C. Nelson, “Computed tomography from optical projections for three-dimensional reconstruction of thick objects,” Applied optics 31, 6247–6254 (1992).
[Crossref] [PubMed]

Biomedical Optics Express (2)

G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M.-C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomedical Optics Express 3, 1 (2012).
[Crossref] [PubMed]

M. Heidrich, M. Kühnel, M. Kellner, R. Lorbeer, T. Lange, A. Winkel, M. Stiesch, H. Meyer, and A. Heisterkamp, “3D imaging of biofilms on implants by detection of scattered light with a scanning laser optical tomograph,” Biomedical Optics Express 2, 2982–2994 (2011).
[Crossref] [PubMed]

Biophys. J. (5)

I. Gusachenko, V. Tran, Y. G. Houssen, J. M. Allain, and M. C. Schanne-Klein, “Polarization-resolved second-harmonic generation in tendon upon mechanical stretching,” Biophys. J. 102, 2220–2229 (2012).
[Crossref] [PubMed]

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting Second-Harmonic Generation Images of Collagen I Fibrils,” Biophys. J. 88, 1377 (2005).
[Crossref]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006).
[Crossref]

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second Harmonic Generation Confocal Microscopy of Collagen Type I from Rat Tendon Cryosections,” Biophys. J. 91, 4665 (2006).
[Crossref] [PubMed]

S.-w. Chu, S.-y. Chen, G.-w. Chern, T.-h. Tsai, and Y.-c. Chen, “Studies of x (2) / x (3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy,” Biophys. J. 86, 3914–3922 (2004).
[Crossref]

Biophysj (1)

P.-j. Su, W.-l. Chen, Y.-f. Chen, and C.-y. Dong, “Determination of Collagen Nanostructure from Second-Order Susceptibility Tensor Analysis,” Biophysj 100, 2053–2062 (2011).
[Crossref]

BMC Medicine (1)

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Medicine 4, 38 (2006).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

P. Stoller, B.-m. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. D. Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref] [PubMed]

T. Yasui, Y. Tohno, and T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259 (2004).
[Crossref] [PubMed]

A. Erikson, C. D. L. Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12, 1–10 (2007).
[Crossref]

J. Biophoton. (2)

R. Cicchi, C. Matthäus, T. Meyer, A. Lattermann, B. Dietzek, B. R. Brehm, J. Popp, and F. S. Pavone, “Characterization of collagen and cholesterol deposition in atherosclerotic arterial tissue using non-linear microscopy,” J. Biophoton. 7, 135–143 (2014).
[Crossref]

R. Cicchi, D. Kapsokalyvas, V. De Giorgi, V. Maio, A. Van Wiechen, D. Massi, T. Lotti, and F. S. Pavone, “Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy,” J. Biophoton. 3, 34–43 (2009).
[Crossref] [PubMed]

J.Struct.Biol. (1)

J. R. Kremer, D. N. Mastronarde, and J. R. McIntosh, “Computer visualization of three-dimensional image data using IMOD,” J.Struct.Biol. 116, 71–76 (1996).

Journal of Applied Crystallography (1)

S. Roth, I. Freund, and IUCr, “Second harmonic generation and orientational order in connective tissue: a mosaic model for fibril orientational ordering in rat-tail tendon,” Journal of Applied Crystallography 15, 72–78 (1982).
[Crossref]

Journal of Applied Physics (1)

L. Tian, J. Qu, Z. Guo, Y. Jin, Y. Meng, and X. Deng, “Microscopic second-harmonic generation emission direction in fibrillous collagen type I by quasi-phase-matching theory,” Journal of Applied Physics 108, 054701 (2010).
[Crossref]

Journal of applied physiology (Bethesda, Md. : 1985) (1)

M. Kellner, M. Heidrich, R. Beigel, R.-A. Lorbeer, L. Knudsen, T. Ripken, A. Heisterkamp, H. Meyer, M. P. Kühnel, and M. Ochs, “Imaging of the mouse lung with scanning laser optical tomography (SLOT),” Journal of applied physiology (Bethesda, Md. : 1985) 113, 975–983 (2012).
[Crossref]

Journal of the Optical Society of America A (2)

S. Kawata, O. Nakamura, and S. Minami, “Optical microscope tomography I Support constraint,” Journal of the Optical Society of America A 4, 292 (1987).
[Crossref]

O. Nakamura, S. Kawata, and S. Minami, “Optical microscope tomography II Nonnegative constraint by a gradient-projection method,” Journal of the Optical Society of America A 5, 554 (1988).
[Crossref]

Laser & Photonics Review (1)

P. J. Campagnola and C.-Y. Dong, “Second harmonic generation microscopy : principles and applications to disease diagnosis,” Laser & Photonics Review 5, 13–26 (2011).
[Crossref]

Nature Biotechnology (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: Multiphoton microscopy in the biosciences,” Nature Biotechnology 21, 1369–1377 (2003).
[Crossref] [PubMed]

Nature Medicine (1)

E. Brown, T. McKee, E. DiTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nature Medicine 9, 796–801 (2003).
[Crossref] [PubMed]

Nature Methods (2)

C. a. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nature Methods 9, 671–675 (2012).
[Crossref] [PubMed]

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Optics express (1)

R.-a. Lorbeer, M. Heidrich, C. Lorbeer, D. Fernando, R. Ojeda, G. Bicker, H. Meyer, A. Heisterkamp, L. Zentrum, and D. Hannover, “Highly efficient 3D fluorescence microscopy with a scanning laser optical tomograph,” Optics express 19, 412–417 (2011).
[Crossref]

Optics letters (1)

S.-J. Lin, S.-H. Jee, C.-J. Kuo, R.-J. Wu, W.-C. Lin, J.-S. Chen, Y.-H. Liao, C.-J. Hsu, T.-F. Tsai, Y.-F. Chen, and C.-Y. Dong, “Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging,” Optics letters 31, 2756–2758 (2006).
[Crossref] [PubMed]

Phys. Rev. A (1)

I. Gusachenko and M.-C. Schanne-Klein, “Numerical simulation of polarization-resolved second-harmonic microscopy in birefringent media,” Phys. Rev. A 88, 53811 (2013).
[Crossref]

PloS one (1)

L. Nolte, N. Tinne, J. Schulze, D. Heinemann, C. Antonopoulos, H. Meyer, H. G. Nothwang, T. Lenarz, A. Heisterkamp, A. Warnecke, and T. Ripken, “Scanning laser optical tomography for in toto imaging of the murine cochlea,” PloS one 12, e0175431 (2017).

N. Tinne, G. C. Antonopoulos, S. Mohebbi, J. Andrade, L. Nolte, H. Meyer, A. Heisterkamp, O. Majdani, and T. Ripken, “Three-dimensional hard and soft tissue imaging of the human cochlea by scanning laser optical tomography (SLOT),” PLOS ONE 12, e0184069 (2017).
[Crossref] [PubMed]

Science (1)

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-sørensen, R. Baldock, and D. Davidson, “Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies,” Science 296, 541–545 (2002).
[Crossref] [PubMed]

Scientific Reports (1)

M. Kellner, M. Heidrich, R.-A. Lorbeer, G. C. Antonopoulos, L. Knudsen, C. Wrede, N. Izykowski, R. Grothausmann, D. Jonigk, M. Ochs, T. Ripken, M. P. Kühnel, and H. Meyer, “A combined method for correlative 3D imaging of biological samples from macro to nano scale,” Scientific Reports 6, 35606 (2016).
[Crossref] [PubMed]

The Journal of Physical Chemistry B (1)

A. Deniset-Besseau, J. Duboisset, E. Benichou, F. Hache, P.-F. Brevet, and M.-C. Schanne-Klein, “Measurement of the Second-Order Hyperpolarizability of the Collagen Triple Helix and Determination of Its Physical Origin,” The Journal of Physical Chemistry B 113, 13437–13445 (2009).
[Crossref] [PubMed]

Other (7)

J. D. Jackson, Classical electrodynamics (Wiley, 1999).

J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring, GNU Octave version 3.8.1 manual: a high-level interactive language for numerical computations (CreateSpace Independent Publishing Platform, 2014).

A. C. Kak and M. Slaney, Principles of computerized tomographic imaging (Society for Industrial and Applied Mathematics, 2001).
[Crossref]

R. W. Boyd, Nonlinear optics (Academic Press, 2008).

S. Kawata, Y. Touki, and S. Minami, “Optical Microscopic Tomography,” in “Inverse Optics II,” R. H. Bates and A. J. Devaney, eds. (1985), p. 15.

J. C. Waters and T. Wittmann, Quantitative imaging in cell biology (Academic Press, 2014).

R. B. LaComb, “Implementation of 3D SHG imaging microscopy for tissue characterization and disease diagnostics: Experiment and simulations,” Doctoral Dissertations (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Reference coordinate system for laser polarization E⃗ (red arrow) and collagen orientation (green rod). Light propagates in z-direction. The laser polarization is placed in the x-y-plane and is tilted by the polarization α to the x-axis. The orientation of the collagen fiber is specified by the tilt angle θ and the rotation angle φ. The sample rotates around the x-axis during SLOT measurements. To obtain a better overview, all relevant axes and angles are listed in the right side of the figure.
Fig. 2
Fig. 2 Simulated SHG intensity for different input polarizations α and different tilts θ of the collagen fiber during sample rotation (φ). For α = 0° the SHG intensity differs in amplitude for different tilts θ, but stays constant during sample rotation. For other values of α the SHG intensity changes during rotation (angles are defined in Fig 1).
Fig. 3
Fig. 3 The effects of the angular intensity modulation of the SHG signal on the reconstruction are shown. An area of circle is used as a phantom and shg reconstruction is compared to the non-modulated case. (A) The procedure of the simulation is shown. An area of circle is used as an input phantom, which can be seen as a cross section of a tendon. This phantom is radon transformed (RT), as it is the case during a SLOT measurement. In case of SHG-SLOT, the sinogram is affected by the intensity modulation (IM) that is due to the angel dependence of SHG. This modulation also depends on the input polarization α. Reconstructing this SHG sinogram results in a reconstruction with artifacts (for good visualization the contrast of the images is adjusted individually). The profiles of these images are shown as green dotted lines and orange dashed lines in B and C, respectively. The black solid line shows the profile for a reconstruction without SHG affected intensity modulation. (B) Profiles of the reconstructed images in horizontal direction are shown. For α = 0° (green dotted line) the shape of the profile is equal to the non-modulated case (black solid line). Only the amplitude is increased. Also for α = 90° (orange dashed line) the amplitude is slightly increased. Additionally the shape of the profile is affected by a broadening of the structure. (C) Profile of the reconstructed images in vertical direction. For α = 0° (green dotted line) the shape of the profile is equal to the non-modulated case (balck solid line). Only the amplitude is increased. Also for α = 90° (orange dashed line) the amplitude is slightly increased. Additionally the shape of the profile is affected by a drop to negative values right next to the structure.
Fig. 4
Fig. 4 The extent of the reconstruction artifacts is shown shown. (A) The geometrical distortion outside the circle is measured by Δ which is shown in a false color image. Only for α = 0° or θ = 0° no artifacts can be observed. (B) The amplitude ratio η is shown. Only for certain combinations of α and θ the ratio becomes one.
Fig. 5
Fig. 5 A schematic drawing of the SLOT setup is shown. The light of a laser diode (cw-Laser) is coupled into a single mode fiber (SMF) and subsequently collimated and adjusted in diameter by a zoom lens (ZL). The beam of a fs-pulsed laser (fs-Laser), also adjustable in diameter (ZL), is overlayed with the cw-beam path by a dichroic mirror (DM). By scanning (SM) the beam over the sample (S), which is placed inside a cuvette (C), the fluorescence/scattering (yellow) or the SHG signal (green) can be generated. The sample is connected to a stepping motor, which can rotate the sample by the rotation angle φ. Fluorescence/scattering or SHG can be detected (separated by a filter (F)) from both sides of the sample by PMT1 and PMT2 (PMT: photomultiplier tube) or in forward direction by PMT3, which was used in this study, exclusively. The laser light that transmits the sample is reflected by a dichroic mirror (DM) behind the sample (S) and detected by a photo diode (PD).
Fig. 6
Fig. 6 Measurements of SHG in the SLOT setup. (A) The average intensity in the projection images was measured. For α = 90° (orange line) the intensity fluctuates, as predicted in previous simulations. For α = 0° (green) the intensity is almost constant, but still affected by the quadratic dependence of the SHG intensity on the sample length. (B) The square root of every pixel in the projection image was calculated and the average intensity was again measured for every step of rotation. Now the measurements are in very well agreement with the simulation (dashed red lines). For the simulations a tilt angle of θ = 35° was assumed. (C) Reconstructed cross sections of the tendon fascicle for α = 0° (top) and α = 90° (bottom) (for good visualization the contrast of the images is adjusted individually, scalebar: 100 μm). (D) The profiles of the cross section are shown in horizontal direction. Similar artifacts occur outside the sample for α = 90° as simulated before. The intensity is also reduced and a broadening of the structure outside occurs. (E) The profiles of the cross section are shown in vertical direction. Similar artifacts occur outside the sample for α = 90° as simulated before. The intensity is also reduced and a drop in intensity below zero occurs).
Fig. 7
Fig. 7 A rat lymph node was optically cleared by CRISTAL and imaged using the SHG-SLOT setup. (A,B) Single slices of the 3D dataset. Due to the isotropic resolution of SLOT axial (A) and lateral (B) slices provide the same image quality. The capsule (Ca) shows a bright SHG signal and defines the outer shell of the lymph node. The trabeculae (*) extend the capsule into the center of the lymph node. The vessel (V) (artery and vein) appear as hollow structures in (B). Furthermore the hilus (H) is visible, where the vessels enter the the lymph node. (C) Maximum intensity projection of the 3D data set. Filamentous structure in the lymph node becomes visible. (D) 3D rendering of the lymph node. (scale bar = 1 mm)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d 12 = χ x y y ( 2 ) = χ y x y ( 2 ) = d 26 and d 13 = χ x z z ( 2 ) = χ z x z ( 2 ) = d 35 .
P SHG = 0 [ d 11 d 12 d 12 0 0 0 0 0 0 0 0 d 12 0 0 0 0 d 12 0 ] [ E c x 2 E c y 2 E c z 2 2 E c y E c z 2 E c x E c z 2 E c x E c y ] ,
E c = M _ E = [ cos ( θ ) sin ( θ ) sin ( φ ) sin ( θ ) cos ( φ ) 0 cos ( φ ) sin ( φ ) sin ( θ ) cos ( θ ) sin ( φ ) cos ( θ ) cos ( φ ) ] [ E 0 cos ( α ) E 0 sin ( α ) 0 ] .
W SHG = c k 2 V 2 12 π 0 | P SHG | 2 = a | P SHG | 2 ,