Abstract

Preterm infants born with very low birth weights are at a high risk of brain injury, in part because the premature brain is believed to be prone to periods of low cerebral blood flow (CBF). Tissue damage is likely to occur if reduction in CBF is sufficient to impair cerebral energy metabolism for extended periods. Therefore, a neuromonitoring method that can detect reductions in CBF, large enough to affect metabolism, could alert the neonatal intensive care team before injury occurs. In this report, we present the development of an optical system that combines diffuse correlation spectroscopy (DCS) for monitoring CBF and broadband near-infrared spectroscopy (B-NIRS) for monitoring the oxidation state of cytochrome c oxidase (oxCCO) – a key biomarker of oxidative metabolism. The hybrid instrument includes a multiplexing system to enable concomitant DCS and B-NIRS measurements while avoiding crosstalk between the two subsystems. The ability of the instrument to monitor dynamic changes in CBF and oxCCO was demonstrated in a piglet model of neonatal hypoxia-ischemia (HI). Experiments conducted in eight animals, including two controls, showed that oxCCO exhibited a delayed response to ischemia while CBF and tissue oxygenation (StO2) responses were instantaneous. These findings suggest that simultaneous neuromonitoring of perfusion and metabolism could provide critical information regarding clinically significant hemodynamic events prior to the onset of brain injury.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
A new broadband near-infrared spectroscopy system for in-vivo measurements of cerebral cytochrome-c-oxidase changes in neonatal brain injury

Gemma Bale, Subhabrata Mitra, Judith Meek, Nicola Robertson, and Ilias Tachtsidis
Biomed. Opt. Express 5(10) 3450-3466 (2014)

Development of a combined broadband near-infrared and diffusion correlation system for monitoring cerebral blood flow and oxidative metabolism in preterm infants

Mamadou Diop, Jessica Kishimoto, Vladislav Toronov, David S. C. Lee, and Keith St. Lawrence
Biomed. Opt. Express 6(10) 3907-3918 (2015)

Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements

Mamadou Diop, Kyle Verdecchia, Ting-Yim Lee, and Keith St Lawrence
Biomed. Opt. Express 2(7) 2068-2081 (2011)

References

  • View by:
  • |
  • |
  • |

  1. H. Blencowe, S. Cousens, M. Z. Oestergaard, D. Chou, A. B. Moller, R. Narwal, A. Adler, C. Vera Garcia, S. Rohde, L. Say, and J. E. Lawn, “National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications,” Lancet 379(9832), 2162–2172 (2012).
    [Crossref] [PubMed]
  2. J. J. Volpe, “Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances,” Lancet Neurol. 8(1), 110–124 (2009).
  3. M. Bracewell and N. Marlow, “Patterns of motor disability in very preterm children,” Ment. Retard. Dev. Disabil. Res. Rev. 8(4), 241–248 (2002).
    [Crossref] [PubMed]
  4. H. Bassan, “Intracranial Hemorrhage in the Preterm Infant: Understanding It, Preventing It,” Clin. Perinatol. 36(4), 737–762 (2009).
    [Crossref] [PubMed]
  5. R. Bapat, P. A. Narayana, Y. Zhou, and N. A. Parikh, “Magnetic resonance spectroscopy at term-equivalent age in extremely preterm infants: Association with cognitive and language development,” Pediatr. Neurol. 51(1), 53–59 (2014).
    [Crossref] [PubMed]
  6. S. Thayyil, M. Chandrasekaran, A. Taylor, A. Bainbridge, E. B. Cady, W. K. K. Chong, S. Murad, R. Z. Omar, and N. J. Robertson, “Cerebral Magnetic Resonance Biomarkers in Neonatal Encephalopathy: A Meta-analysis,” Pediatrics 125(2), e382–e395 (2010).
    [Crossref] [PubMed]
  7. F. Groenendaal, R. H. Veenhoven, J. van der Grond, G. H. Jansen, T. D. Witkamp, and L. S. de Vries, “Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy,” Pediatr. Res. 35(2), 148–151 (1994).
    [Crossref] [PubMed]
  8. D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos Trans A Math Phys Eng Sci 369(1955), 4407–4424 (2011).
    [Crossref] [PubMed]
  9. R. Arora, M. Ridha, D. S. C. Lee, J. Elliott, H. C. Rosenberg, M. Diop, T.-Y. Lee, and K. St Lawrence, “Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus,” Pediatr. Res. 73(6), 713–718 (2013).
    [Crossref] [PubMed]
  10. M. Diop, J. Kishimoto, V. Toronov, D. S. C. Lee, and K. St Lawrence, “Development of a combined broadband near-infrared and diffusion correlation system for monitoring cerebral blood flow and oxidative metabolism in preterm infants,” Biomed. Opt. Express 6(10), 3907–3918 (2015).
    [Crossref] [PubMed]
  11. T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85(Pt 1), 51–63 (2014).
    [Crossref] [PubMed]
  12. K. Verdecchia, M. Diop, T.-Y. Lee, and K. St Lawrence, “Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy,” J. Biomed. Opt. 18(2), 27007 (2013).
    [Crossref] [PubMed]
  13. M. Caldwell, T. Moroz, T. Hapuarachchi, A. Bainbridge, N. J. Robertson, C. E. Cooper, and I. Tachtsidis, “Modelling Blood Flow and Metabolism in the Preclinical Neonatal Brain during and Following Hypoxic-Ischaemia,” PLoS One 10(10), e0140171 (2015).
    [Crossref] [PubMed]
  14. P.-Y. Lin, N. Roche-Labarbe, M. Dehaes, S. Carp, A. Fenoglio, B. Barbieri, K. Hagan, P. E. Grant, and M. A. Franceschini, “Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants,” J. Vis. Exp. 73, e4379 (2013).
    [PubMed]
  15. K. M. Tichauer, D. W. Brown, J. Hadway, T.-Y. Lee, K. St Lawrence, K. S. Lawrence, M. Kenneth, Y. Lee, K. St, and L. Near-infrared, “Near-infrared spectroscopy measurements of cerebral blood flow and oxygen consumption following hypoxia-ischemia in newborn piglets,” J. Appl. Physiol. 100(3), 850–857 (2006).
    [Crossref] [PubMed]
  16. K. M. Tichauer, D. Y. L. Wong, J. A. Hadway, R. J. Rylett, T. Y. Lee, and K. St Lawrence, “Assessing the severity of perinatal hypoxia-ischemia in piglets using near-infrared spectroscopy to measure the cerebral metabolic rate of oxygen,” Pediatr. Res. 65(3), 301–306 (2009).
    [Crossref] [PubMed]
  17. H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
    [Crossref] [PubMed]
  18. K. M. Tichauer, J. T. Elliott, J. A. Hadway, D. S. Lee, T.-Y. Lee, and K. St Lawrence, “Using near-infrared spectroscopy to measure cerebral metabolic rate of oxygen under multiple levels of arterial oxygenation in piglets,” J. Appl. Physiol. 109(3), 878–885 (2010).
    [Crossref] [PubMed]
  19. M. Sakoh, L. Ostergaard, L. Røhl, D. F. Smith, C. Z. Simonsen, J. C. Sørensen, P. V. Poulsen, C. Gyldensted, S. Sakaki, and A. Gjedde, “Relationship between residual cerebral blood flow and oxygen metabolism as predictive of ischemic tissue viability: sequential multitracer positron emission tomography scanning of middle cerebral artery occlusion during the critical first 6 hours after stroke in pigs,” J. Neurosurg. 93(4), 647–657 (2000).
    [Crossref] [PubMed]
  20. G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day : a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21(9), 099801 (2016).
  21. A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1P1), 173–183 (2014).
    [Crossref] [PubMed]
  22. M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury,” J. Neurosurg. 109(3), 424–432 (2008).
    [Crossref] [PubMed]
  23. M. Diop, J. T. Elliott, K. M. Tichauer, T.-Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).
    [Crossref] [PubMed]
  24. G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
    [Crossref] [PubMed]
  25. M. Diop, K. Verdecchia, T.-Y. Lee, and K. St Lawrence, “Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements,” Biomed. Opt. Express 2(7), 2068–2081 (2011).
    [Crossref] [PubMed]
  26. H. Z. Yeganeh, V. Toronov, J. T. Elliott, M. Diop, T.-Y. Lee, and K. St Lawrence, “Broadband continuous-wave technique to measure baseline values and changes in the tissue chromophore concentrations,” Biomed. Opt. Express 3(11), 2761–2770 (2012).
    [Crossref] [PubMed]
  27. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  28. S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
    [Crossref] [PubMed]
  29. S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE 2389(May 1995), 486– 495 (1995).
  30. M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential pathlength factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
    [Crossref] [PubMed]
  31. K. St. Lawrence, K. Verdecchia, J. T. Elliott, and M. Diop, “Measuring Cerebral Hemodynamics and Energy Metabolism by Near-Infrared Spectroscopy,” Hirrlinger J., Waagepetersen H. (Eds) Brain Energy Metabolism, Neurometho (Humana Press, 2014), p. Neuromethods, vol 90.
  32. D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res. 51(5), 564–570 (2002).
    [Crossref] [PubMed]
  33. J. A. Cooper, K. M. Tichauer, M. Boulton, J. Elliott, M. Diop, M. Arango, T.-Y. Lee, and K. St Lawrence, “Continuous monitoring of absolute cerebral blood flow by near-infrared spectroscopy during global and focal temporary vessel occlusion,” J. Appl. Physiol. 110(6), 1691–1698 (2011).
    [Crossref] [PubMed]
  34. C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053–2065 (2001).
    [Crossref] [PubMed]
  35. D. Wang, A. B. Parthasarathy, W. B. Baker, K. Gannon, V. Kavuri, T. Ko, S. Schenkel, Z. Li, Z. Li, M. T. Mullen, J. A. Detre, and A. G. Yodh, “Fast blood flow monitoring in deep tissues with real-time software correlators,” Biomed. Opt. Express 7(3), 776–797 (2016).
    [Crossref] [PubMed]
  36. M. D. Kewin, D. F. Milej, A. Abdalmalak, A. Rajaram, M. Diop, S. de Ribaupierre, K. St. Lawrence, A. Rajaram, M. Diop, S. de Ribaupierre, and K. St. Lawrence, “Validation of a Hyperspectral NIRS Method for Measuring Oxygen Saturation by Comparison to Time-Resolved NIRS,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS) (OSA, 2018), p. OW4C.4.
    [Crossref]
  37. F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: Statistics of photon penetration depth in random media,” Sci. Rep. 6(1), 27057 (2016).
    [Crossref] [PubMed]
  38. P. Farzam, J. Johansson, M. Mireles, G. Jiménez-Valerio, M. Martínez-Lozano, R. Choe, O. Casanovas, and T. Durduran, “Pre-clinical longitudinal monitoring of hemodynamic response to anti-vascular chemotherapy by hybrid diffuse optics,” Biomed. Opt. Express 8(5), 2563–2582 (2017).
    [Crossref] [PubMed]
  39. S. Y. Lee, J. M. Pakela, M. C. Helton, K. Vishwanath, Y. G. Chung, N. J. Kolodziejski, C. J. Stapels, D. R. McAdams, D. E. Fernandez, J. F. Christian, J. O’Reilly, D. Farkas, B. B. Ward, S. E. Feinberg, and M. A. Mycek, “Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps,” J. Biomed. Opt. 22(12), 1–14 (2017).
    [Crossref] [PubMed]
  40. D. J. Rohrbach, N. Rigual, E. Tracy, A. Kowalczewski, K. L. Keymel, M. T. Cooper, W. Mo, H. Baumann, B. W. Henderson, and U. Sunar, “Interlesion differences in the local photodynamic therapy response of oral cavity lesions assessed by diffuse optical spectroscopies,” Biomed. Opt. Express 3(9), 2142–2153 (2012).
    [Crossref] [PubMed]
  41. S. A. Carp, P. Farzam, N. Redes, D. M. Hueber, and M. A. Franceschini, “Combined multi-distance frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition and real-time analysis,” Biomed. Opt. Express 8(9), 3993–4006 (2017).
    [Crossref] [PubMed]
  42. R. Springett, J. Newman, M. Cope, and D. T. Delpy, “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol. 279(5), H2202–H2209 (2000).
    [Crossref] [PubMed]

2017 (3)

2016 (3)

D. Wang, A. B. Parthasarathy, W. B. Baker, K. Gannon, V. Kavuri, T. Ko, S. Schenkel, Z. Li, Z. Li, M. T. Mullen, J. A. Detre, and A. G. Yodh, “Fast blood flow monitoring in deep tissues with real-time software correlators,” Biomed. Opt. Express 7(3), 776–797 (2016).
[Crossref] [PubMed]

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: Statistics of photon penetration depth in random media,” Sci. Rep. 6(1), 27057 (2016).
[Crossref] [PubMed]

G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day : a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21(9), 099801 (2016).

2015 (2)

M. Caldwell, T. Moroz, T. Hapuarachchi, A. Bainbridge, N. J. Robertson, C. E. Cooper, and I. Tachtsidis, “Modelling Blood Flow and Metabolism in the Preclinical Neonatal Brain during and Following Hypoxic-Ischaemia,” PLoS One 10(10), e0140171 (2015).
[Crossref] [PubMed]

M. Diop, J. Kishimoto, V. Toronov, D. S. C. Lee, and K. St Lawrence, “Development of a combined broadband near-infrared and diffusion correlation system for monitoring cerebral blood flow and oxidative metabolism in preterm infants,” Biomed. Opt. Express 6(10), 3907–3918 (2015).
[Crossref] [PubMed]

2014 (3)

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85(Pt 1), 51–63 (2014).
[Crossref] [PubMed]

R. Bapat, P. A. Narayana, Y. Zhou, and N. A. Parikh, “Magnetic resonance spectroscopy at term-equivalent age in extremely preterm infants: Association with cognitive and language development,” Pediatr. Neurol. 51(1), 53–59 (2014).
[Crossref] [PubMed]

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1P1), 173–183 (2014).
[Crossref] [PubMed]

2013 (4)

P.-Y. Lin, N. Roche-Labarbe, M. Dehaes, S. Carp, A. Fenoglio, B. Barbieri, K. Hagan, P. E. Grant, and M. A. Franceschini, “Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants,” J. Vis. Exp. 73, e4379 (2013).
[PubMed]

K. Verdecchia, M. Diop, T.-Y. Lee, and K. St Lawrence, “Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy,” J. Biomed. Opt. 18(2), 27007 (2013).
[Crossref] [PubMed]

R. Arora, M. Ridha, D. S. C. Lee, J. Elliott, H. C. Rosenberg, M. Diop, T.-Y. Lee, and K. St Lawrence, “Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus,” Pediatr. Res. 73(6), 713–718 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (3)

D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos Trans A Math Phys Eng Sci 369(1955), 4407–4424 (2011).
[Crossref] [PubMed]

J. A. Cooper, K. M. Tichauer, M. Boulton, J. Elliott, M. Diop, M. Arango, T.-Y. Lee, and K. St Lawrence, “Continuous monitoring of absolute cerebral blood flow by near-infrared spectroscopy during global and focal temporary vessel occlusion,” J. Appl. Physiol. 110(6), 1691–1698 (2011).
[Crossref] [PubMed]

M. Diop, K. Verdecchia, T.-Y. Lee, and K. St Lawrence, “Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements,” Biomed. Opt. Express 2(7), 2068–2081 (2011).
[Crossref] [PubMed]

2010 (2)

S. Thayyil, M. Chandrasekaran, A. Taylor, A. Bainbridge, E. B. Cady, W. K. K. Chong, S. Murad, R. Z. Omar, and N. J. Robertson, “Cerebral Magnetic Resonance Biomarkers in Neonatal Encephalopathy: A Meta-analysis,” Pediatrics 125(2), e382–e395 (2010).
[Crossref] [PubMed]

K. M. Tichauer, J. T. Elliott, J. A. Hadway, D. S. Lee, T.-Y. Lee, and K. St Lawrence, “Using near-infrared spectroscopy to measure cerebral metabolic rate of oxygen under multiple levels of arterial oxygenation in piglets,” J. Appl. Physiol. 109(3), 878–885 (2010).
[Crossref] [PubMed]

2009 (4)

K. M. Tichauer, D. Y. L. Wong, J. A. Hadway, R. J. Rylett, T. Y. Lee, and K. St Lawrence, “Assessing the severity of perinatal hypoxia-ischemia in piglets using near-infrared spectroscopy to measure the cerebral metabolic rate of oxygen,” Pediatr. Res. 65(3), 301–306 (2009).
[Crossref] [PubMed]

J. J. Volpe, “Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances,” Lancet Neurol. 8(1), 110–124 (2009).

H. Bassan, “Intracranial Hemorrhage in the Preterm Infant: Understanding It, Preventing It,” Clin. Perinatol. 36(4), 737–762 (2009).
[Crossref] [PubMed]

M. Diop, J. T. Elliott, K. M. Tichauer, T.-Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).
[Crossref] [PubMed]

2008 (1)

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury,” J. Neurosurg. 109(3), 424–432 (2008).
[Crossref] [PubMed]

2006 (1)

K. M. Tichauer, D. W. Brown, J. Hadway, T.-Y. Lee, K. St Lawrence, K. S. Lawrence, M. Kenneth, Y. Lee, K. St, and L. Near-infrared, “Near-infrared spectroscopy measurements of cerebral blood flow and oxygen consumption following hypoxia-ischemia in newborn piglets,” J. Appl. Physiol. 100(3), 850–857 (2006).
[Crossref] [PubMed]

2003 (1)

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[Crossref] [PubMed]

2002 (2)

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res. 51(5), 564–570 (2002).
[Crossref] [PubMed]

M. Bracewell and N. Marlow, “Patterns of motor disability in very preterm children,” Ment. Retard. Dev. Disabil. Res. Rev. 8(4), 241–248 (2002).
[Crossref] [PubMed]

2001 (1)

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053–2065 (2001).
[Crossref] [PubMed]

2000 (3)

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[Crossref] [PubMed]

M. Sakoh, L. Ostergaard, L. Røhl, D. F. Smith, C. Z. Simonsen, J. C. Sørensen, P. V. Poulsen, C. Gyldensted, S. Sakaki, and A. Gjedde, “Relationship between residual cerebral blood flow and oxygen metabolism as predictive of ischemic tissue viability: sequential multitracer positron emission tomography scanning of middle cerebral artery occlusion during the critical first 6 hours after stroke in pigs,” J. Neurosurg. 93(4), 647–657 (2000).
[Crossref] [PubMed]

R. Springett, J. Newman, M. Cope, and D. T. Delpy, “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol. 279(5), H2202–H2209 (2000).
[Crossref] [PubMed]

1995 (1)

S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE 2389(May 1995), 486– 495 (1995).

1994 (2)

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[Crossref] [PubMed]

F. Groenendaal, R. H. Veenhoven, J. van der Grond, G. H. Jansen, T. D. Witkamp, and L. S. de Vries, “Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy,” Pediatr. Res. 35(2), 148–151 (1994).
[Crossref] [PubMed]

1993 (1)

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential pathlength factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
[Crossref] [PubMed]

Abdalmalak, A.

M. D. Kewin, D. F. Milej, A. Abdalmalak, A. Rajaram, M. Diop, S. de Ribaupierre, K. St. Lawrence, A. Rajaram, M. Diop, S. de Ribaupierre, and K. St. Lawrence, “Validation of a Hyperspectral NIRS Method for Measuring Oxygen Saturation by Comparison to Time-Resolved NIRS,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS) (OSA, 2018), p. OW4C.4.
[Crossref]

Adler, A.

H. Blencowe, S. Cousens, M. Z. Oestergaard, D. Chou, A. B. Moller, R. Narwal, A. Adler, C. Vera Garcia, S. Rohde, L. Say, and J. E. Lawn, “National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications,” Lancet 379(9832), 2162–2172 (2012).
[Crossref] [PubMed]

Arango, M.

J. A. Cooper, K. M. Tichauer, M. Boulton, J. Elliott, M. Diop, M. Arango, T.-Y. Lee, and K. St Lawrence, “Continuous monitoring of absolute cerebral blood flow by near-infrared spectroscopy during global and focal temporary vessel occlusion,” J. Appl. Physiol. 110(6), 1691–1698 (2011).
[Crossref] [PubMed]

Arora, R.

R. Arora, M. Ridha, D. S. C. Lee, J. Elliott, H. C. Rosenberg, M. Diop, T.-Y. Lee, and K. St Lawrence, “Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus,” Pediatr. Res. 73(6), 713–718 (2013).
[Crossref] [PubMed]

Arridge, S. R.

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential pathlength factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
[Crossref] [PubMed]

Baer, E.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1P1), 173–183 (2014).
[Crossref] [PubMed]

Bainbridge, A.

M. Caldwell, T. Moroz, T. Hapuarachchi, A. Bainbridge, N. J. Robertson, C. E. Cooper, and I. Tachtsidis, “Modelling Blood Flow and Metabolism in the Preclinical Neonatal Brain during and Following Hypoxic-Ischaemia,” PLoS One 10(10), e0140171 (2015).
[Crossref] [PubMed]

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1P1), 173–183 (2014).
[Crossref] [PubMed]

S. Thayyil, M. Chandrasekaran, A. Taylor, A. Bainbridge, E. B. Cady, W. K. K. Chong, S. Murad, R. Z. Omar, and N. J. Robertson, “Cerebral Magnetic Resonance Biomarkers in Neonatal Encephalopathy: A Meta-analysis,” Pediatrics 125(2), e382–e395 (2010).
[Crossref] [PubMed]

Baker, W. B.

Bale, G.

G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day : a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21(9), 099801 (2016).

Bapat, R.

R. Bapat, P. A. Narayana, Y. Zhou, and N. A. Parikh, “Magnetic resonance spectroscopy at term-equivalent age in extremely preterm infants: Association with cognitive and language development,” Pediatr. Neurol. 51(1), 53–59 (2014).
[Crossref] [PubMed]

Barbieri, B.

P.-Y. Lin, N. Roche-Labarbe, M. Dehaes, S. Carp, A. Fenoglio, B. Barbieri, K. Hagan, P. E. Grant, and M. A. Franceschini, “Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants,” J. Vis. Exp. 73, e4379 (2013).
[PubMed]

Bassan, H.

H. Bassan, “Intracranial Hemorrhage in the Preterm Infant: Understanding It, Preventing It,” Clin. Perinatol. 36(4), 737–762 (2009).
[Crossref] [PubMed]

Baumann, H.

Binzoni, T.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: Statistics of photon penetration depth in random media,” Sci. Rep. 6(1), 27057 (2016).
[Crossref] [PubMed]

Blencowe, H.

H. Blencowe, S. Cousens, M. Z. Oestergaard, D. Chou, A. B. Moller, R. Narwal, A. Adler, C. Vera Garcia, S. Rohde, L. Say, and J. E. Lawn, “National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications,” Lancet 379(9832), 2162–2172 (2012).
[Crossref] [PubMed]

Boas, D. A.

D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos Trans A Math Phys Eng Sci 369(1955), 4407–4424 (2011).
[Crossref] [PubMed]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[Crossref] [PubMed]

Boulton, M.

J. A. Cooper, K. M. Tichauer, M. Boulton, J. Elliott, M. Diop, M. Arango, T.-Y. Lee, and K. St Lawrence, “Continuous monitoring of absolute cerebral blood flow by near-infrared spectroscopy during global and focal temporary vessel occlusion,” J. Appl. Physiol. 110(6), 1691–1698 (2011).
[Crossref] [PubMed]

Bracewell, M.

M. Bracewell and N. Marlow, “Patterns of motor disability in very preterm children,” Ment. Retard. Dev. Disabil. Res. Rev. 8(4), 241–248 (2002).
[Crossref] [PubMed]

Broad, K. D.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1P1), 173–183 (2014).
[Crossref] [PubMed]

Brown, D. W.

K. M. Tichauer, D. W. Brown, J. Hadway, T.-Y. Lee, K. St Lawrence, K. S. Lawrence, M. Kenneth, Y. Lee, K. St, and L. Near-infrared, “Near-infrared spectroscopy measurements of cerebral blood flow and oxygen consumption following hypoxia-ischemia in newborn piglets,” J. Appl. Physiol. 100(3), 850–857 (2006).
[Crossref] [PubMed]

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res. 51(5), 564–570 (2002).
[Crossref] [PubMed]

Cady, E. B.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1P1), 173–183 (2014).
[Crossref] [PubMed]

S. Thayyil, M. Chandrasekaran, A. Taylor, A. Bainbridge, E. B. Cady, W. K. K. Chong, S. Murad, R. Z. Omar, and N. J. Robertson, “Cerebral Magnetic Resonance Biomarkers in Neonatal Encephalopathy: A Meta-analysis,” Pediatrics 125(2), e382–e395 (2010).
[Crossref] [PubMed]

Caldwell, M.

M. Caldwell, T. Moroz, T. Hapuarachchi, A. Bainbridge, N. J. Robertson, C. E. Cooper, and I. Tachtsidis, “Modelling Blood Flow and Metabolism in the Preclinical Neonatal Brain during and Following Hypoxic-Ischaemia,” PLoS One 10(10), e0140171 (2015).
[Crossref] [PubMed]

Carp, S.

P.-Y. Lin, N. Roche-Labarbe, M. Dehaes, S. Carp, A. Fenoglio, B. Barbieri, K. Hagan, P. E. Grant, and M. A. Franceschini, “Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants,” J. Vis. Exp. 73, e4379 (2013).
[PubMed]

Carp, S. A.

Casanovas, O.

Chandrasekaran, M.

S. Thayyil, M. Chandrasekaran, A. Taylor, A. Bainbridge, E. B. Cady, W. K. K. Chong, S. Murad, R. Z. Omar, and N. J. Robertson, “Cerebral Magnetic Resonance Biomarkers in Neonatal Encephalopathy: A Meta-analysis,” Pediatrics 125(2), e382–e395 (2010).
[Crossref] [PubMed]

Cheung, C.

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053–2065 (2001).
[Crossref] [PubMed]

Choe, R.

Chong, W. K. K.

S. Thayyil, M. Chandrasekaran, A. Taylor, A. Bainbridge, E. B. Cady, W. K. K. Chong, S. Murad, R. Z. Omar, and N. J. Robertson, “Cerebral Magnetic Resonance Biomarkers in Neonatal Encephalopathy: A Meta-analysis,” Pediatrics 125(2), e382–e395 (2010).
[Crossref] [PubMed]

Chou, D.

H. Blencowe, S. Cousens, M. Z. Oestergaard, D. Chou, A. B. Moller, R. Narwal, A. Adler, C. Vera Garcia, S. Rohde, L. Say, and J. E. Lawn, “National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications,” Lancet 379(9832), 2162–2172 (2012).
[Crossref] [PubMed]

Christian, J. F.

S. Y. Lee, J. M. Pakela, M. C. Helton, K. Vishwanath, Y. G. Chung, N. J. Kolodziejski, C. J. Stapels, D. R. McAdams, D. E. Fernandez, J. F. Christian, J. O’Reilly, D. Farkas, B. B. Ward, S. E. Feinberg, and M. A. Mycek, “Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps,” J. Biomed. Opt. 22(12), 1–14 (2017).
[Crossref] [PubMed]

Chung, Y. G.

S. Y. Lee, J. M. Pakela, M. C. Helton, K. Vishwanath, Y. G. Chung, N. J. Kolodziejski, C. J. Stapels, D. R. McAdams, D. E. Fernandez, J. F. Christian, J. O’Reilly, D. Farkas, B. B. Ward, S. E. Feinberg, and M. A. Mycek, “Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps,” J. Biomed. Opt. 22(12), 1–14 (2017).
[Crossref] [PubMed]

Cooper, C. E.

M. Caldwell, T. Moroz, T. Hapuarachchi, A. Bainbridge, N. J. Robertson, C. E. Cooper, and I. Tachtsidis, “Modelling Blood Flow and Metabolism in the Preclinical Neonatal Brain during and Following Hypoxic-Ischaemia,” PLoS One 10(10), e0140171 (2015).
[Crossref] [PubMed]

Cooper, J. A.

J. A. Cooper, K. M. Tichauer, M. Boulton, J. Elliott, M. Diop, M. Arango, T.-Y. Lee, and K. St Lawrence, “Continuous monitoring of absolute cerebral blood flow by near-infrared spectroscopy during global and focal temporary vessel occlusion,” J. Appl. Physiol. 110(6), 1691–1698 (2011).
[Crossref] [PubMed]

Cooper, M. T.

Cope, M.

R. Springett, J. Newman, M. Cope, and D. T. Delpy, “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol. 279(5), H2202–H2209 (2000).
[Crossref] [PubMed]

S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE 2389(May 1995), 486– 495 (1995).

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[Crossref] [PubMed]

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential pathlength factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
[Crossref] [PubMed]

Cousens, S.

H. Blencowe, S. Cousens, M. Z. Oestergaard, D. Chou, A. B. Moller, R. Narwal, A. Adler, C. Vera Garcia, S. Rohde, L. Say, and J. E. Lawn, “National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications,” Lancet 379(9832), 2162–2172 (2012).
[Crossref] [PubMed]

Culver, J. P.

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053–2065 (2001).
[Crossref] [PubMed]

de Ribaupierre, S.

M. D. Kewin, D. F. Milej, A. Abdalmalak, A. Rajaram, M. Diop, S. de Ribaupierre, K. St. Lawrence, A. Rajaram, M. Diop, S. de Ribaupierre, and K. St. Lawrence, “Validation of a Hyperspectral NIRS Method for Measuring Oxygen Saturation by Comparison to Time-Resolved NIRS,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS) (OSA, 2018), p. OW4C.4.
[Crossref]

M. D. Kewin, D. F. Milej, A. Abdalmalak, A. Rajaram, M. Diop, S. de Ribaupierre, K. St. Lawrence, A. Rajaram, M. Diop, S. de Ribaupierre, and K. St. Lawrence, “Validation of a Hyperspectral NIRS Method for Measuring Oxygen Saturation by Comparison to Time-Resolved NIRS,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS) (OSA, 2018), p. OW4C.4.
[Crossref]

de Vries, L. S.

F. Groenendaal, R. H. Veenhoven, J. van der Grond, G. H. Jansen, T. D. Witkamp, and L. S. de Vries, “Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy,” Pediatr. Res. 35(2), 148–151 (1994).
[Crossref] [PubMed]

Dehaes, M.

P.-Y. Lin, N. Roche-Labarbe, M. Dehaes, S. Carp, A. Fenoglio, B. Barbieri, K. Hagan, P. E. Grant, and M. A. Franceschini, “Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants,” J. Vis. Exp. 73, e4379 (2013).
[PubMed]

Delpy, D. T.

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res. 51(5), 564–570 (2002).
[Crossref] [PubMed]

R. Springett, J. Newman, M. Cope, and D. T. Delpy, “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol. 279(5), H2202–H2209 (2000).
[Crossref] [PubMed]

S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE 2389(May 1995), 486– 495 (1995).

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[Crossref] [PubMed]

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential pathlength factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
[Crossref] [PubMed]

Detre, J. A.

Diop, M.

M. Diop, J. Kishimoto, V. Toronov, D. S. C. Lee, and K. St Lawrence, “Development of a combined broadband near-infrared and diffusion correlation system for monitoring cerebral blood flow and oxidative metabolism in preterm infants,” Biomed. Opt. Express 6(10), 3907–3918 (2015).
[Crossref] [PubMed]

R. Arora, M. Ridha, D. S. C. Lee, J. Elliott, H. C. Rosenberg, M. Diop, T.-Y. Lee, and K. St Lawrence, “Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus,” Pediatr. Res. 73(6), 713–718 (2013).
[Crossref] [PubMed]

K. Verdecchia, M. Diop, T.-Y. Lee, and K. St Lawrence, “Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy,” J. Biomed. Opt. 18(2), 27007 (2013).
[Crossref] [PubMed]

H. Z. Yeganeh, V. Toronov, J. T. Elliott, M. Diop, T.-Y. Lee, and K. St Lawrence, “Broadband continuous-wave technique to measure baseline values and changes in the tissue chromophore concentrations,” Biomed. Opt. Express 3(11), 2761–2770 (2012).
[Crossref] [PubMed]

J. A. Cooper, K. M. Tichauer, M. Boulton, J. Elliott, M. Diop, M. Arango, T.-Y. Lee, and K. St Lawrence, “Continuous monitoring of absolute cerebral blood flow by near-infrared spectroscopy during global and focal temporary vessel occlusion,” J. Appl. Physiol. 110(6), 1691–1698 (2011).
[Crossref] [PubMed]

M. Diop, K. Verdecchia, T.-Y. Lee, and K. St Lawrence, “Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements,” Biomed. Opt. Express 2(7), 2068–2081 (2011).
[Crossref] [PubMed]

M. Diop, J. T. Elliott, K. M. Tichauer, T.-Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).
[Crossref] [PubMed]

M. D. Kewin, D. F. Milej, A. Abdalmalak, A. Rajaram, M. Diop, S. de Ribaupierre, K. St. Lawrence, A. Rajaram, M. Diop, S. de Ribaupierre, and K. St. Lawrence, “Validation of a Hyperspectral NIRS Method for Measuring Oxygen Saturation by Comparison to Time-Resolved NIRS,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS) (OSA, 2018), p. OW4C.4.
[Crossref]

M. D. Kewin, D. F. Milej, A. Abdalmalak, A. Rajaram, M. Diop, S. de Ribaupierre, K. St. Lawrence, A. Rajaram, M. Diop, S. de Ribaupierre, and K. St. Lawrence, “Validation of a Hyperspectral NIRS Method for Measuring Oxygen Saturation by Comparison to Time-Resolved NIRS,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS) (OSA, 2018), p. OW4C.4.
[Crossref]

Durduran, T.

Elliott, J.

R. Arora, M. Ridha, D. S. C. Lee, J. Elliott, H. C. Rosenberg, M. Diop, T.-Y. Lee, and K. St Lawrence, “Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus,” Pediatr. Res. 73(6), 713–718 (2013).
[Crossref] [PubMed]

J. A. Cooper, K. M. Tichauer, M. Boulton, J. Elliott, M. Diop, M. Arango, T.-Y. Lee, and K. St Lawrence, “Continuous monitoring of absolute cerebral blood flow by near-infrared spectroscopy during global and focal temporary vessel occlusion,” J. Appl. Physiol. 110(6), 1691–1698 (2011).
[Crossref] [PubMed]

Elliott, J. T.

H. Z. Yeganeh, V. Toronov, J. T. Elliott, M. Diop, T.-Y. Lee, and K. St Lawrence, “Broadband continuous-wave technique to measure baseline values and changes in the tissue chromophore concentrations,” Biomed. Opt. Express 3(11), 2761–2770 (2012).
[Crossref] [PubMed]

K. M. Tichauer, J. T. Elliott, J. A. Hadway, D. S. Lee, T.-Y. Lee, and K. St Lawrence, “Using near-infrared spectroscopy to measure cerebral metabolic rate of oxygen under multiple levels of arterial oxygenation in piglets,” J. Appl. Physiol. 109(3), 878–885 (2010).
[Crossref] [PubMed]

M. Diop, J. T. Elliott, K. M. Tichauer, T.-Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).
[Crossref] [PubMed]

Elwell, C. E.

G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day : a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21(9), 099801 (2016).

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury,” J. Neurosurg. 109(3), 424–432 (2008).
[Crossref] [PubMed]

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential pathlength factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
[Crossref] [PubMed]

Essenpreis, M.

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential pathlength factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
[Crossref] [PubMed]

Farina, A.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: Statistics of photon penetration depth in random media,” Sci. Rep. 6(1), 27057 (2016).
[Crossref] [PubMed]

Farkas, D.

S. Y. Lee, J. M. Pakela, M. C. Helton, K. Vishwanath, Y. G. Chung, N. J. Kolodziejski, C. J. Stapels, D. R. McAdams, D. E. Fernandez, J. F. Christian, J. O’Reilly, D. Farkas, B. B. Ward, S. E. Feinberg, and M. A. Mycek, “Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps,” J. Biomed. Opt. 22(12), 1–14 (2017).
[Crossref] [PubMed]

Farzam, P.

Faulkner, S. D.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1P1), 173–183 (2014).
[Crossref] [PubMed]

Feinberg, S. E.

S. Y. Lee, J. M. Pakela, M. C. Helton, K. Vishwanath, Y. G. Chung, N. J. Kolodziejski, C. J. Stapels, D. R. McAdams, D. E. Fernandez, J. F. Christian, J. O’Reilly, D. Farkas, B. B. Ward, S. E. Feinberg, and M. A. Mycek, “Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps,” J. Biomed. Opt. 22(12), 1–14 (2017).
[Crossref] [PubMed]

Fenoglio, A.

P.-Y. Lin, N. Roche-Labarbe, M. Dehaes, S. Carp, A. Fenoglio, B. Barbieri, K. Hagan, P. E. Grant, and M. A. Franceschini, “Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants,” J. Vis. Exp. 73, e4379 (2013).
[PubMed]

Fernandez, D. E.

S. Y. Lee, J. M. Pakela, M. C. Helton, K. Vishwanath, Y. G. Chung, N. J. Kolodziejski, C. J. Stapels, D. R. McAdams, D. E. Fernandez, J. F. Christian, J. O’Reilly, D. Farkas, B. B. Ward, S. E. Feinberg, and M. A. Mycek, “Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps,” J. Biomed. Opt. 22(12), 1–14 (2017).
[Crossref] [PubMed]

Franceschini, M. A.

S. A. Carp, P. Farzam, N. Redes, D. M. Hueber, and M. A. Franceschini, “Combined multi-distance frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition and real-time analysis,” Biomed. Opt. Express 8(9), 3993–4006 (2017).
[Crossref] [PubMed]

P.-Y. Lin, N. Roche-Labarbe, M. Dehaes, S. Carp, A. Fenoglio, B. Barbieri, K. Hagan, P. E. Grant, and M. A. Franceschini, “Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants,” J. Vis. Exp. 73, e4379 (2013).
[PubMed]

D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos Trans A Math Phys Eng Sci 369(1955), 4407–4424 (2011).
[Crossref] [PubMed]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[Crossref] [PubMed]

Gannon, K.

Gjedde, A.

M. Sakoh, L. Ostergaard, L. Røhl, D. F. Smith, C. Z. Simonsen, J. C. Sørensen, P. V. Poulsen, C. Gyldensted, S. Sakaki, and A. Gjedde, “Relationship between residual cerebral blood flow and oxygen metabolism as predictive of ischemic tissue viability: sequential multitracer positron emission tomography scanning of middle cerebral artery occlusion during the critical first 6 hours after stroke in pigs,” J. Neurosurg. 93(4), 647–657 (2000).
[Crossref] [PubMed]

Golay, X.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1P1), 173–183 (2014).
[Crossref] [PubMed]

Grant, P. E.

P.-Y. Lin, N. Roche-Labarbe, M. Dehaes, S. Carp, A. Fenoglio, B. Barbieri, K. Hagan, P. E. Grant, and M. A. Franceschini, “Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants,” J. Vis. Exp. 73, e4379 (2013).
[PubMed]

Greenberg, J. H.

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053–2065 (2001).
[Crossref] [PubMed]

Groenendaal, F.

F. Groenendaal, R. H. Veenhoven, J. van der Grond, G. H. Jansen, T. D. Witkamp, and L. S. de Vries, “Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy,” Pediatr. Res. 35(2), 148–151 (1994).
[Crossref] [PubMed]

Gyldensted, C.

M. Sakoh, L. Ostergaard, L. Røhl, D. F. Smith, C. Z. Simonsen, J. C. Sørensen, P. V. Poulsen, C. Gyldensted, S. Sakaki, and A. Gjedde, “Relationship between residual cerebral blood flow and oxygen metabolism as predictive of ischemic tissue viability: sequential multitracer positron emission tomography scanning of middle cerebral artery occlusion during the critical first 6 hours after stroke in pigs,” J. Neurosurg. 93(4), 647–657 (2000).
[Crossref] [PubMed]

Hadway, J.

K. M. Tichauer, D. W. Brown, J. Hadway, T.-Y. Lee, K. St Lawrence, K. S. Lawrence, M. Kenneth, Y. Lee, K. St, and L. Near-infrared, “Near-infrared spectroscopy measurements of cerebral blood flow and oxygen consumption following hypoxia-ischemia in newborn piglets,” J. Appl. Physiol. 100(3), 850–857 (2006).
[Crossref] [PubMed]

Hadway, J. A.

K. M. Tichauer, J. T. Elliott, J. A. Hadway, D. S. Lee, T.-Y. Lee, and K. St Lawrence, “Using near-infrared spectroscopy to measure cerebral metabolic rate of oxygen under multiple levels of arterial oxygenation in piglets,” J. Appl. Physiol. 109(3), 878–885 (2010).
[Crossref] [PubMed]

K. M. Tichauer, D. Y. L. Wong, J. A. Hadway, R. J. Rylett, T. Y. Lee, and K. St Lawrence, “Assessing the severity of perinatal hypoxia-ischemia in piglets using near-infrared spectroscopy to measure the cerebral metabolic rate of oxygen,” Pediatr. Res. 65(3), 301–306 (2009).
[Crossref] [PubMed]

Hagan, K.

P.-Y. Lin, N. Roche-Labarbe, M. Dehaes, S. Carp, A. Fenoglio, B. Barbieri, K. Hagan, P. E. Grant, and M. A. Franceschini, “Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants,” J. Vis. Exp. 73, e4379 (2013).
[PubMed]

Hapuarachchi, T.

M. Caldwell, T. Moroz, T. Hapuarachchi, A. Bainbridge, N. J. Robertson, C. E. Cooper, and I. Tachtsidis, “Modelling Blood Flow and Metabolism in the Preclinical Neonatal Brain during and Following Hypoxic-Ischaemia,” PLoS One 10(10), e0140171 (2015).
[Crossref] [PubMed]

Helton, M. C.

S. Y. Lee, J. M. Pakela, M. C. Helton, K. Vishwanath, Y. G. Chung, N. J. Kolodziejski, C. J. Stapels, D. R. McAdams, D. E. Fernandez, J. F. Christian, J. O’Reilly, D. Farkas, B. B. Ward, S. E. Feinberg, and M. A. Mycek, “Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps,” J. Biomed. Opt. 22(12), 1–14 (2017).
[Crossref] [PubMed]

Henderson, B. W.

Hueber, D. M.

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Jansen, G. H.

F. Groenendaal, R. H. Veenhoven, J. van der Grond, G. H. Jansen, T. D. Witkamp, and L. S. de Vries, “Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy,” Pediatr. Res. 35(2), 148–151 (1994).
[Crossref] [PubMed]

Jiménez-Valerio, G.

Johansson, J.

Kavuri, V.

Kenneth, M.

K. M. Tichauer, D. W. Brown, J. Hadway, T.-Y. Lee, K. St Lawrence, K. S. Lawrence, M. Kenneth, Y. Lee, K. St, and L. Near-infrared, “Near-infrared spectroscopy measurements of cerebral blood flow and oxygen consumption following hypoxia-ischemia in newborn piglets,” J. Appl. Physiol. 100(3), 850–857 (2006).
[Crossref] [PubMed]

Kewin, M. D.

M. D. Kewin, D. F. Milej, A. Abdalmalak, A. Rajaram, M. Diop, S. de Ribaupierre, K. St. Lawrence, A. Rajaram, M. Diop, S. de Ribaupierre, and K. St. Lawrence, “Validation of a Hyperspectral NIRS Method for Measuring Oxygen Saturation by Comparison to Time-Resolved NIRS,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS) (OSA, 2018), p. OW4C.4.
[Crossref]

Keymel, K. L.

Kirkpatrick, P. J.

S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE 2389(May 1995), 486– 495 (1995).

Kishimoto, J.

Ko, T.

Kolodziejski, N. J.

S. Y. Lee, J. M. Pakela, M. C. Helton, K. Vishwanath, Y. G. Chung, N. J. Kolodziejski, C. J. Stapels, D. R. McAdams, D. E. Fernandez, J. F. Christian, J. O’Reilly, D. Farkas, B. B. Ward, S. E. Feinberg, and M. A. Mycek, “Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps,” J. Biomed. Opt. 22(12), 1–14 (2017).
[Crossref] [PubMed]

Kowalczewski, A.

Kurth, C. D.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[Crossref] [PubMed]

Lawn, J. E.

H. Blencowe, S. Cousens, M. Z. Oestergaard, D. Chou, A. B. Moller, R. Narwal, A. Adler, C. Vera Garcia, S. Rohde, L. Say, and J. E. Lawn, “National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications,” Lancet 379(9832), 2162–2172 (2012).
[Crossref] [PubMed]

Lawrence, K. S.

K. M. Tichauer, D. W. Brown, J. Hadway, T.-Y. Lee, K. St Lawrence, K. S. Lawrence, M. Kenneth, Y. Lee, K. St, and L. Near-infrared, “Near-infrared spectroscopy measurements of cerebral blood flow and oxygen consumption following hypoxia-ischemia in newborn piglets,” J. Appl. Physiol. 100(3), 850–857 (2006).
[Crossref] [PubMed]

Lee, D. S.

K. M. Tichauer, J. T. Elliott, J. A. Hadway, D. S. Lee, T.-Y. Lee, and K. St Lawrence, “Using near-infrared spectroscopy to measure cerebral metabolic rate of oxygen under multiple levels of arterial oxygenation in piglets,” J. Appl. Physiol. 109(3), 878–885 (2010).
[Crossref] [PubMed]

Lee, D. S. C.

M. Diop, J. Kishimoto, V. Toronov, D. S. C. Lee, and K. St Lawrence, “Development of a combined broadband near-infrared and diffusion correlation system for monitoring cerebral blood flow and oxidative metabolism in preterm infants,” Biomed. Opt. Express 6(10), 3907–3918 (2015).
[Crossref] [PubMed]

R. Arora, M. Ridha, D. S. C. Lee, J. Elliott, H. C. Rosenberg, M. Diop, T.-Y. Lee, and K. St Lawrence, “Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus,” Pediatr. Res. 73(6), 713–718 (2013).
[Crossref] [PubMed]

Lee, S. Y.

S. Y. Lee, J. M. Pakela, M. C. Helton, K. Vishwanath, Y. G. Chung, N. J. Kolodziejski, C. J. Stapels, D. R. McAdams, D. E. Fernandez, J. F. Christian, J. O’Reilly, D. Farkas, B. B. Ward, S. E. Feinberg, and M. A. Mycek, “Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps,” J. Biomed. Opt. 22(12), 1–14 (2017).
[Crossref] [PubMed]

Lee, T. Y.

K. M. Tichauer, D. Y. L. Wong, J. A. Hadway, R. J. Rylett, T. Y. Lee, and K. St Lawrence, “Assessing the severity of perinatal hypoxia-ischemia in piglets using near-infrared spectroscopy to measure the cerebral metabolic rate of oxygen,” Pediatr. Res. 65(3), 301–306 (2009).
[Crossref] [PubMed]

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res. 51(5), 564–570 (2002).
[Crossref] [PubMed]

Lee, T.-Y.

K. Verdecchia, M. Diop, T.-Y. Lee, and K. St Lawrence, “Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy,” J. Biomed. Opt. 18(2), 27007 (2013).
[Crossref] [PubMed]

R. Arora, M. Ridha, D. S. C. Lee, J. Elliott, H. C. Rosenberg, M. Diop, T.-Y. Lee, and K. St Lawrence, “Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus,” Pediatr. Res. 73(6), 713–718 (2013).
[Crossref] [PubMed]

H. Z. Yeganeh, V. Toronov, J. T. Elliott, M. Diop, T.-Y. Lee, and K. St Lawrence, “Broadband continuous-wave technique to measure baseline values and changes in the tissue chromophore concentrations,” Biomed. Opt. Express 3(11), 2761–2770 (2012).
[Crossref] [PubMed]

J. A. Cooper, K. M. Tichauer, M. Boulton, J. Elliott, M. Diop, M. Arango, T.-Y. Lee, and K. St Lawrence, “Continuous monitoring of absolute cerebral blood flow by near-infrared spectroscopy during global and focal temporary vessel occlusion,” J. Appl. Physiol. 110(6), 1691–1698 (2011).
[Crossref] [PubMed]

M. Diop, K. Verdecchia, T.-Y. Lee, and K. St Lawrence, “Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements,” Biomed. Opt. Express 2(7), 2068–2081 (2011).
[Crossref] [PubMed]

K. M. Tichauer, J. T. Elliott, J. A. Hadway, D. S. Lee, T.-Y. Lee, and K. St Lawrence, “Using near-infrared spectroscopy to measure cerebral metabolic rate of oxygen under multiple levels of arterial oxygenation in piglets,” J. Appl. Physiol. 109(3), 878–885 (2010).
[Crossref] [PubMed]

M. Diop, J. T. Elliott, K. M. Tichauer, T.-Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).
[Crossref] [PubMed]

K. M. Tichauer, D. W. Brown, J. Hadway, T.-Y. Lee, K. St Lawrence, K. S. Lawrence, M. Kenneth, Y. Lee, K. St, and L. Near-infrared, “Near-infrared spectroscopy measurements of cerebral blood flow and oxygen consumption following hypoxia-ischemia in newborn piglets,” J. Appl. Physiol. 100(3), 850–857 (2006).
[Crossref] [PubMed]

Lee, Y.

K. M. Tichauer, D. W. Brown, J. Hadway, T.-Y. Lee, K. St Lawrence, K. S. Lawrence, M. Kenneth, Y. Lee, K. St, and L. Near-infrared, “Near-infrared spectroscopy measurements of cerebral blood flow and oxygen consumption following hypoxia-ischemia in newborn piglets,” J. Appl. Physiol. 100(3), 850–857 (2006).
[Crossref] [PubMed]

Leung, T. S.

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury,” J. Neurosurg. 109(3), 424–432 (2008).
[Crossref] [PubMed]

Li, Z.

Lin, P.-Y.

P.-Y. Lin, N. Roche-Labarbe, M. Dehaes, S. Carp, A. Fenoglio, B. Barbieri, K. Hagan, P. E. Grant, and M. A. Franceschini, “Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants,” J. Vis. Exp. 73, e4379 (2013).
[PubMed]

Marlow, N.

M. Bracewell and N. Marlow, “Patterns of motor disability in very preterm children,” Ment. Retard. Dev. Disabil. Res. Rev. 8(4), 241–248 (2002).
[Crossref] [PubMed]

Martelli, F.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: Statistics of photon penetration depth in random media,” Sci. Rep. 6(1), 27057 (2016).
[Crossref] [PubMed]

Martínez-Lozano, M.

Matcher, S. J.

S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE 2389(May 1995), 486– 495 (1995).

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[Crossref] [PubMed]

McAdams, D. R.

S. Y. Lee, J. M. Pakela, M. C. Helton, K. Vishwanath, Y. G. Chung, N. J. Kolodziejski, C. J. Stapels, D. R. McAdams, D. E. Fernandez, J. F. Christian, J. O’Reilly, D. Farkas, B. B. Ward, S. E. Feinberg, and M. A. Mycek, “Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps,” J. Biomed. Opt. 22(12), 1–14 (2017).
[Crossref] [PubMed]

Milej, D. F.

M. D. Kewin, D. F. Milej, A. Abdalmalak, A. Rajaram, M. Diop, S. de Ribaupierre, K. St. Lawrence, A. Rajaram, M. Diop, S. de Ribaupierre, and K. St. Lawrence, “Validation of a Hyperspectral NIRS Method for Measuring Oxygen Saturation by Comparison to Time-Resolved NIRS,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS) (OSA, 2018), p. OW4C.4.
[Crossref]

Mireles, M.

Mo, W.

Moller, A. B.

H. Blencowe, S. Cousens, M. Z. Oestergaard, D. Chou, A. B. Moller, R. Narwal, A. Adler, C. Vera Garcia, S. Rohde, L. Say, and J. E. Lawn, “National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications,” Lancet 379(9832), 2162–2172 (2012).
[Crossref] [PubMed]

Montenegro, L. M.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[Crossref] [PubMed]

Moroz, T.

M. Caldwell, T. Moroz, T. Hapuarachchi, A. Bainbridge, N. J. Robertson, C. E. Cooper, and I. Tachtsidis, “Modelling Blood Flow and Metabolism in the Preclinical Neonatal Brain during and Following Hypoxic-Ischaemia,” PLoS One 10(10), e0140171 (2015).
[Crossref] [PubMed]

Mullen, M. T.

Murad, S.

S. Thayyil, M. Chandrasekaran, A. Taylor, A. Bainbridge, E. B. Cady, W. K. K. Chong, S. Murad, R. Z. Omar, and N. J. Robertson, “Cerebral Magnetic Resonance Biomarkers in Neonatal Encephalopathy: A Meta-analysis,” Pediatrics 125(2), e382–e395 (2010).
[Crossref] [PubMed]

Mycek, M. A.

S. Y. Lee, J. M. Pakela, M. C. Helton, K. Vishwanath, Y. G. Chung, N. J. Kolodziejski, C. J. Stapels, D. R. McAdams, D. E. Fernandez, J. F. Christian, J. O’Reilly, D. Farkas, B. B. Ward, S. E. Feinberg, and M. A. Mycek, “Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps,” J. Biomed. Opt. 22(12), 1–14 (2017).
[Crossref] [PubMed]

Naeini, J. G.

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res. 51(5), 564–570 (2002).
[Crossref] [PubMed]

Nahid, K.

S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE 2389(May 1995), 486– 495 (1995).

Narayana, P. A.

R. Bapat, P. A. Narayana, Y. Zhou, and N. A. Parikh, “Magnetic resonance spectroscopy at term-equivalent age in extremely preterm infants: Association with cognitive and language development,” Pediatr. Neurol. 51(1), 53–59 (2014).
[Crossref] [PubMed]

Narwal, R.

H. Blencowe, S. Cousens, M. Z. Oestergaard, D. Chou, A. B. Moller, R. Narwal, A. Adler, C. Vera Garcia, S. Rohde, L. Say, and J. E. Lawn, “National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications,” Lancet 379(9832), 2162–2172 (2012).
[Crossref] [PubMed]

Near-infrared, L.

K. M. Tichauer, D. W. Brown, J. Hadway, T.-Y. Lee, K. St Lawrence, K. S. Lawrence, M. Kenneth, Y. Lee, K. St, and L. Near-infrared, “Near-infrared spectroscopy measurements of cerebral blood flow and oxygen consumption following hypoxia-ischemia in newborn piglets,” J. Appl. Physiol. 100(3), 850–857 (2006).
[Crossref] [PubMed]

Newman, J.

R. Springett, J. Newman, M. Cope, and D. T. Delpy, “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol. 279(5), H2202–H2209 (2000).
[Crossref] [PubMed]

Nicolson, S. C.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[Crossref] [PubMed]

O’Reilly, J.

S. Y. Lee, J. M. Pakela, M. C. Helton, K. Vishwanath, Y. G. Chung, N. J. Kolodziejski, C. J. Stapels, D. R. McAdams, D. E. Fernandez, J. F. Christian, J. O’Reilly, D. Farkas, B. B. Ward, S. E. Feinberg, and M. A. Mycek, “Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps,” J. Biomed. Opt. 22(12), 1–14 (2017).
[Crossref] [PubMed]

Oestergaard, M. Z.

H. Blencowe, S. Cousens, M. Z. Oestergaard, D. Chou, A. B. Moller, R. Narwal, A. Adler, C. Vera Garcia, S. Rohde, L. Say, and J. E. Lawn, “National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications,” Lancet 379(9832), 2162–2172 (2012).
[Crossref] [PubMed]

Omar, R. Z.

S. Thayyil, M. Chandrasekaran, A. Taylor, A. Bainbridge, E. B. Cady, W. K. K. Chong, S. Murad, R. Z. Omar, and N. J. Robertson, “Cerebral Magnetic Resonance Biomarkers in Neonatal Encephalopathy: A Meta-analysis,” Pediatrics 125(2), e382–e395 (2010).
[Crossref] [PubMed]

Ostergaard, L.

M. Sakoh, L. Ostergaard, L. Røhl, D. F. Smith, C. Z. Simonsen, J. C. Sørensen, P. V. Poulsen, C. Gyldensted, S. Sakaki, and A. Gjedde, “Relationship between residual cerebral blood flow and oxygen metabolism as predictive of ischemic tissue viability: sequential multitracer positron emission tomography scanning of middle cerebral artery occlusion during the critical first 6 hours after stroke in pigs,” J. Neurosurg. 93(4), 647–657 (2000).
[Crossref] [PubMed]

Pakela, J. M.

S. Y. Lee, J. M. Pakela, M. C. Helton, K. Vishwanath, Y. G. Chung, N. J. Kolodziejski, C. J. Stapels, D. R. McAdams, D. E. Fernandez, J. F. Christian, J. O’Reilly, D. Farkas, B. B. Ward, S. E. Feinberg, and M. A. Mycek, “Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps,” J. Biomed. Opt. 22(12), 1–14 (2017).
[Crossref] [PubMed]

Parikh, N. A.

R. Bapat, P. A. Narayana, Y. Zhou, and N. A. Parikh, “Magnetic resonance spectroscopy at term-equivalent age in extremely preterm infants: Association with cognitive and language development,” Pediatr. Neurol. 51(1), 53–59 (2014).
[Crossref] [PubMed]

Parthasarathy, A. B.

Picot, P. A.

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res. 51(5), 564–570 (2002).
[Crossref] [PubMed]

Pifferi, A.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: Statistics of photon penetration depth in random media,” Sci. Rep. 6(1), 27057 (2016).
[Crossref] [PubMed]

Poulsen, P. V.

M. Sakoh, L. Ostergaard, L. Røhl, D. F. Smith, C. Z. Simonsen, J. C. Sørensen, P. V. Poulsen, C. Gyldensted, S. Sakaki, and A. Gjedde, “Relationship between residual cerebral blood flow and oxygen metabolism as predictive of ischemic tissue viability: sequential multitracer positron emission tomography scanning of middle cerebral artery occlusion during the critical first 6 hours after stroke in pigs,” J. Neurosurg. 93(4), 647–657 (2000).
[Crossref] [PubMed]

Price, D.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1P1), 173–183 (2014).
[Crossref] [PubMed]

Rajaram, A.

M. D. Kewin, D. F. Milej, A. Abdalmalak, A. Rajaram, M. Diop, S. de Ribaupierre, K. St. Lawrence, A. Rajaram, M. Diop, S. de Ribaupierre, and K. St. Lawrence, “Validation of a Hyperspectral NIRS Method for Measuring Oxygen Saturation by Comparison to Time-Resolved NIRS,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS) (OSA, 2018), p. OW4C.4.
[Crossref]

M. D. Kewin, D. F. Milej, A. Abdalmalak, A. Rajaram, M. Diop, S. de Ribaupierre, K. St. Lawrence, A. Rajaram, M. Diop, S. de Ribaupierre, and K. St. Lawrence, “Validation of a Hyperspectral NIRS Method for Measuring Oxygen Saturation by Comparison to Time-Resolved NIRS,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS) (OSA, 2018), p. OW4C.4.
[Crossref]

Redes, N.

Ridha, M.

R. Arora, M. Ridha, D. S. C. Lee, J. Elliott, H. C. Rosenberg, M. Diop, T.-Y. Lee, and K. St Lawrence, “Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus,” Pediatr. Res. 73(6), 713–718 (2013).
[Crossref] [PubMed]

Rigual, N.

Robertson, N. J.

M. Caldwell, T. Moroz, T. Hapuarachchi, A. Bainbridge, N. J. Robertson, C. E. Cooper, and I. Tachtsidis, “Modelling Blood Flow and Metabolism in the Preclinical Neonatal Brain during and Following Hypoxic-Ischaemia,” PLoS One 10(10), e0140171 (2015).
[Crossref] [PubMed]

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1P1), 173–183 (2014).
[Crossref] [PubMed]

S. Thayyil, M. Chandrasekaran, A. Taylor, A. Bainbridge, E. B. Cady, W. K. K. Chong, S. Murad, R. Z. Omar, and N. J. Robertson, “Cerebral Magnetic Resonance Biomarkers in Neonatal Encephalopathy: A Meta-analysis,” Pediatrics 125(2), e382–e395 (2010).
[Crossref] [PubMed]

Roche-Labarbe, N.

P.-Y. Lin, N. Roche-Labarbe, M. Dehaes, S. Carp, A. Fenoglio, B. Barbieri, K. Hagan, P. E. Grant, and M. A. Franceschini, “Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants,” J. Vis. Exp. 73, e4379 (2013).
[PubMed]

Rohde, S.

H. Blencowe, S. Cousens, M. Z. Oestergaard, D. Chou, A. B. Moller, R. Narwal, A. Adler, C. Vera Garcia, S. Rohde, L. Say, and J. E. Lawn, “National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications,” Lancet 379(9832), 2162–2172 (2012).
[Crossref] [PubMed]

Røhl, L.

M. Sakoh, L. Ostergaard, L. Røhl, D. F. Smith, C. Z. Simonsen, J. C. Sørensen, P. V. Poulsen, C. Gyldensted, S. Sakaki, and A. Gjedde, “Relationship between residual cerebral blood flow and oxygen metabolism as predictive of ischemic tissue viability: sequential multitracer positron emission tomography scanning of middle cerebral artery occlusion during the critical first 6 hours after stroke in pigs,” J. Neurosurg. 93(4), 647–657 (2000).
[Crossref] [PubMed]

Rohrbach, D. J.

Rome, J.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[Crossref] [PubMed]

Rosenberg, H. C.

R. Arora, M. Ridha, D. S. C. Lee, J. Elliott, H. C. Rosenberg, M. Diop, T.-Y. Lee, and K. St Lawrence, “Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus,” Pediatr. Res. 73(6), 713–718 (2013).
[Crossref] [PubMed]

Rylett, R. J.

K. M. Tichauer, D. Y. L. Wong, J. A. Hadway, R. J. Rylett, T. Y. Lee, and K. St Lawrence, “Assessing the severity of perinatal hypoxia-ischemia in piglets using near-infrared spectroscopy to measure the cerebral metabolic rate of oxygen,” Pediatr. Res. 65(3), 301–306 (2009).
[Crossref] [PubMed]

Sakaki, S.

M. Sakoh, L. Ostergaard, L. Røhl, D. F. Smith, C. Z. Simonsen, J. C. Sørensen, P. V. Poulsen, C. Gyldensted, S. Sakaki, and A. Gjedde, “Relationship between residual cerebral blood flow and oxygen metabolism as predictive of ischemic tissue viability: sequential multitracer positron emission tomography scanning of middle cerebral artery occlusion during the critical first 6 hours after stroke in pigs,” J. Neurosurg. 93(4), 647–657 (2000).
[Crossref] [PubMed]

Sakoh, M.

M. Sakoh, L. Ostergaard, L. Røhl, D. F. Smith, C. Z. Simonsen, J. C. Sørensen, P. V. Poulsen, C. Gyldensted, S. Sakaki, and A. Gjedde, “Relationship between residual cerebral blood flow and oxygen metabolism as predictive of ischemic tissue viability: sequential multitracer positron emission tomography scanning of middle cerebral artery occlusion during the critical first 6 hours after stroke in pigs,” J. Neurosurg. 93(4), 647–657 (2000).
[Crossref] [PubMed]

Say, L.

H. Blencowe, S. Cousens, M. Z. Oestergaard, D. Chou, A. B. Moller, R. Narwal, A. Adler, C. Vera Garcia, S. Rohde, L. Say, and J. E. Lawn, “National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications,” Lancet 379(9832), 2162–2172 (2012).
[Crossref] [PubMed]

Schenkel, S.

Simonsen, C. Z.

M. Sakoh, L. Ostergaard, L. Røhl, D. F. Smith, C. Z. Simonsen, J. C. Sørensen, P. V. Poulsen, C. Gyldensted, S. Sakaki, and A. Gjedde, “Relationship between residual cerebral blood flow and oxygen metabolism as predictive of ischemic tissue viability: sequential multitracer positron emission tomography scanning of middle cerebral artery occlusion during the critical first 6 hours after stroke in pigs,” J. Neurosurg. 93(4), 647–657 (2000).
[Crossref] [PubMed]

Smith, D. F.

M. Sakoh, L. Ostergaard, L. Røhl, D. F. Smith, C. Z. Simonsen, J. C. Sørensen, P. V. Poulsen, C. Gyldensted, S. Sakaki, and A. Gjedde, “Relationship between residual cerebral blood flow and oxygen metabolism as predictive of ischemic tissue viability: sequential multitracer positron emission tomography scanning of middle cerebral artery occlusion during the critical first 6 hours after stroke in pigs,” J. Neurosurg. 93(4), 647–657 (2000).
[Crossref] [PubMed]

Smith, M.

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury,” J. Neurosurg. 109(3), 424–432 (2008).
[Crossref] [PubMed]

Sørensen, J. C.

M. Sakoh, L. Ostergaard, L. Røhl, D. F. Smith, C. Z. Simonsen, J. C. Sørensen, P. V. Poulsen, C. Gyldensted, S. Sakaki, and A. Gjedde, “Relationship between residual cerebral blood flow and oxygen metabolism as predictive of ischemic tissue viability: sequential multitracer positron emission tomography scanning of middle cerebral artery occlusion during the critical first 6 hours after stroke in pigs,” J. Neurosurg. 93(4), 647–657 (2000).
[Crossref] [PubMed]

Spinelli, L.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: Statistics of photon penetration depth in random media,” Sci. Rep. 6(1), 27057 (2016).
[Crossref] [PubMed]

Springett, R.

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res. 51(5), 564–570 (2002).
[Crossref] [PubMed]

R. Springett, J. Newman, M. Cope, and D. T. Delpy, “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol. 279(5), H2202–H2209 (2000).
[Crossref] [PubMed]

St, K.

K. M. Tichauer, D. W. Brown, J. Hadway, T.-Y. Lee, K. St Lawrence, K. S. Lawrence, M. Kenneth, Y. Lee, K. St, and L. Near-infrared, “Near-infrared spectroscopy measurements of cerebral blood flow and oxygen consumption following hypoxia-ischemia in newborn piglets,” J. Appl. Physiol. 100(3), 850–857 (2006).
[Crossref] [PubMed]

St Lawrence, K.

M. Diop, J. Kishimoto, V. Toronov, D. S. C. Lee, and K. St Lawrence, “Development of a combined broadband near-infrared and diffusion correlation system for monitoring cerebral blood flow and oxidative metabolism in preterm infants,” Biomed. Opt. Express 6(10), 3907–3918 (2015).
[Crossref] [PubMed]

K. Verdecchia, M. Diop, T.-Y. Lee, and K. St Lawrence, “Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy,” J. Biomed. Opt. 18(2), 27007 (2013).
[Crossref] [PubMed]

R. Arora, M. Ridha, D. S. C. Lee, J. Elliott, H. C. Rosenberg, M. Diop, T.-Y. Lee, and K. St Lawrence, “Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus,” Pediatr. Res. 73(6), 713–718 (2013).
[Crossref] [PubMed]

H. Z. Yeganeh, V. Toronov, J. T. Elliott, M. Diop, T.-Y. Lee, and K. St Lawrence, “Broadband continuous-wave technique to measure baseline values and changes in the tissue chromophore concentrations,” Biomed. Opt. Express 3(11), 2761–2770 (2012).
[Crossref] [PubMed]

M. Diop, K. Verdecchia, T.-Y. Lee, and K. St Lawrence, “Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements,” Biomed. Opt. Express 2(7), 2068–2081 (2011).
[Crossref] [PubMed]

J. A. Cooper, K. M. Tichauer, M. Boulton, J. Elliott, M. Diop, M. Arango, T.-Y. Lee, and K. St Lawrence, “Continuous monitoring of absolute cerebral blood flow by near-infrared spectroscopy during global and focal temporary vessel occlusion,” J. Appl. Physiol. 110(6), 1691–1698 (2011).
[Crossref] [PubMed]

K. M. Tichauer, J. T. Elliott, J. A. Hadway, D. S. Lee, T.-Y. Lee, and K. St Lawrence, “Using near-infrared spectroscopy to measure cerebral metabolic rate of oxygen under multiple levels of arterial oxygenation in piglets,” J. Appl. Physiol. 109(3), 878–885 (2010).
[Crossref] [PubMed]

K. M. Tichauer, D. Y. L. Wong, J. A. Hadway, R. J. Rylett, T. Y. Lee, and K. St Lawrence, “Assessing the severity of perinatal hypoxia-ischemia in piglets using near-infrared spectroscopy to measure the cerebral metabolic rate of oxygen,” Pediatr. Res. 65(3), 301–306 (2009).
[Crossref] [PubMed]

M. Diop, J. T. Elliott, K. M. Tichauer, T.-Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).
[Crossref] [PubMed]

K. M. Tichauer, D. W. Brown, J. Hadway, T.-Y. Lee, K. St Lawrence, K. S. Lawrence, M. Kenneth, Y. Lee, K. St, and L. Near-infrared, “Near-infrared spectroscopy measurements of cerebral blood flow and oxygen consumption following hypoxia-ischemia in newborn piglets,” J. Appl. Physiol. 100(3), 850–857 (2006).
[Crossref] [PubMed]

St. Lawrence, K.

M. D. Kewin, D. F. Milej, A. Abdalmalak, A. Rajaram, M. Diop, S. de Ribaupierre, K. St. Lawrence, A. Rajaram, M. Diop, S. de Ribaupierre, and K. St. Lawrence, “Validation of a Hyperspectral NIRS Method for Measuring Oxygen Saturation by Comparison to Time-Resolved NIRS,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS) (OSA, 2018), p. OW4C.4.
[Crossref]

M. D. Kewin, D. F. Milej, A. Abdalmalak, A. Rajaram, M. Diop, S. de Ribaupierre, K. St. Lawrence, A. Rajaram, M. Diop, S. de Ribaupierre, and K. St. Lawrence, “Validation of a Hyperspectral NIRS Method for Measuring Oxygen Saturation by Comparison to Time-Resolved NIRS,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS) (OSA, 2018), p. OW4C.4.
[Crossref]

Stapels, C. J.

S. Y. Lee, J. M. Pakela, M. C. Helton, K. Vishwanath, Y. G. Chung, N. J. Kolodziejski, C. J. Stapels, D. R. McAdams, D. E. Fernandez, J. F. Christian, J. O’Reilly, D. Farkas, B. B. Ward, S. E. Feinberg, and M. A. Mycek, “Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps,” J. Biomed. Opt. 22(12), 1–14 (2017).
[Crossref] [PubMed]

Steven, J. M.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[Crossref] [PubMed]

Strangman, G.

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[Crossref] [PubMed]

Sunar, U.

Tachtsidis, I.

G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day : a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21(9), 099801 (2016).

M. Caldwell, T. Moroz, T. Hapuarachchi, A. Bainbridge, N. J. Robertson, C. E. Cooper, and I. Tachtsidis, “Modelling Blood Flow and Metabolism in the Preclinical Neonatal Brain during and Following Hypoxic-Ischaemia,” PLoS One 10(10), e0140171 (2015).
[Crossref] [PubMed]

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1P1), 173–183 (2014).
[Crossref] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury,” J. Neurosurg. 109(3), 424–432 (2008).
[Crossref] [PubMed]

Takahashi, K.

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053–2065 (2001).
[Crossref] [PubMed]

Taylor, A.

S. Thayyil, M. Chandrasekaran, A. Taylor, A. Bainbridge, E. B. Cady, W. K. K. Chong, S. Murad, R. Z. Omar, and N. J. Robertson, “Cerebral Magnetic Resonance Biomarkers in Neonatal Encephalopathy: A Meta-analysis,” Pediatrics 125(2), e382–e395 (2010).
[Crossref] [PubMed]

Thayyil, S.

S. Thayyil, M. Chandrasekaran, A. Taylor, A. Bainbridge, E. B. Cady, W. K. K. Chong, S. Murad, R. Z. Omar, and N. J. Robertson, “Cerebral Magnetic Resonance Biomarkers in Neonatal Encephalopathy: A Meta-analysis,” Pediatrics 125(2), e382–e395 (2010).
[Crossref] [PubMed]

Thomas, D. L.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1P1), 173–183 (2014).
[Crossref] [PubMed]

Tichauer, K. M.

J. A. Cooper, K. M. Tichauer, M. Boulton, J. Elliott, M. Diop, M. Arango, T.-Y. Lee, and K. St Lawrence, “Continuous monitoring of absolute cerebral blood flow by near-infrared spectroscopy during global and focal temporary vessel occlusion,” J. Appl. Physiol. 110(6), 1691–1698 (2011).
[Crossref] [PubMed]

K. M. Tichauer, J. T. Elliott, J. A. Hadway, D. S. Lee, T.-Y. Lee, and K. St Lawrence, “Using near-infrared spectroscopy to measure cerebral metabolic rate of oxygen under multiple levels of arterial oxygenation in piglets,” J. Appl. Physiol. 109(3), 878–885 (2010).
[Crossref] [PubMed]

K. M. Tichauer, D. Y. L. Wong, J. A. Hadway, R. J. Rylett, T. Y. Lee, and K. St Lawrence, “Assessing the severity of perinatal hypoxia-ischemia in piglets using near-infrared spectroscopy to measure the cerebral metabolic rate of oxygen,” Pediatr. Res. 65(3), 301–306 (2009).
[Crossref] [PubMed]

M. Diop, J. T. Elliott, K. M. Tichauer, T.-Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).
[Crossref] [PubMed]

K. M. Tichauer, D. W. Brown, J. Hadway, T.-Y. Lee, K. St Lawrence, K. S. Lawrence, M. Kenneth, Y. Lee, K. St, and L. Near-infrared, “Near-infrared spectroscopy measurements of cerebral blood flow and oxygen consumption following hypoxia-ischemia in newborn piglets,” J. Appl. Physiol. 100(3), 850–857 (2006).
[Crossref] [PubMed]

Tisdall, M. M.

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury,” J. Neurosurg. 109(3), 424–432 (2008).
[Crossref] [PubMed]

Toronov, V.

Torricelli, A.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: Statistics of photon penetration depth in random media,” Sci. Rep. 6(1), 27057 (2016).
[Crossref] [PubMed]

Tracy, E.

van der Grond, J.

F. Groenendaal, R. H. Veenhoven, J. van der Grond, G. H. Jansen, T. D. Witkamp, and L. S. de Vries, “Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy,” Pediatr. Res. 35(2), 148–151 (1994).
[Crossref] [PubMed]

van der Zee, P.

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential pathlength factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
[Crossref] [PubMed]

Veenhoven, R. H.

F. Groenendaal, R. H. Veenhoven, J. van der Grond, G. H. Jansen, T. D. Witkamp, and L. S. de Vries, “Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy,” Pediatr. Res. 35(2), 148–151 (1994).
[Crossref] [PubMed]

Vera Garcia, C.

H. Blencowe, S. Cousens, M. Z. Oestergaard, D. Chou, A. B. Moller, R. Narwal, A. Adler, C. Vera Garcia, S. Rohde, L. Say, and J. E. Lawn, “National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications,” Lancet 379(9832), 2162–2172 (2012).
[Crossref] [PubMed]

Verdecchia, K.

K. Verdecchia, M. Diop, T.-Y. Lee, and K. St Lawrence, “Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy,” J. Biomed. Opt. 18(2), 27007 (2013).
[Crossref] [PubMed]

M. Diop, K. Verdecchia, T.-Y. Lee, and K. St Lawrence, “Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements,” Biomed. Opt. Express 2(7), 2068–2081 (2011).
[Crossref] [PubMed]

Vishwanath, K.

S. Y. Lee, J. M. Pakela, M. C. Helton, K. Vishwanath, Y. G. Chung, N. J. Kolodziejski, C. J. Stapels, D. R. McAdams, D. E. Fernandez, J. F. Christian, J. O’Reilly, D. Farkas, B. B. Ward, S. E. Feinberg, and M. A. Mycek, “Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps,” J. Biomed. Opt. 22(12), 1–14 (2017).
[Crossref] [PubMed]

Volpe, J. J.

J. J. Volpe, “Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances,” Lancet Neurol. 8(1), 110–124 (2009).

Wang, D.

Ward, B. B.

S. Y. Lee, J. M. Pakela, M. C. Helton, K. Vishwanath, Y. G. Chung, N. J. Kolodziejski, C. J. Stapels, D. R. McAdams, D. E. Fernandez, J. F. Christian, J. O’Reilly, D. Farkas, B. B. Ward, S. E. Feinberg, and M. A. Mycek, “Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps,” J. Biomed. Opt. 22(12), 1–14 (2017).
[Crossref] [PubMed]

Watzman, H. M.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[Crossref] [PubMed]

Witkamp, T. D.

F. Groenendaal, R. H. Veenhoven, J. van der Grond, G. H. Jansen, T. D. Witkamp, and L. S. de Vries, “Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy,” Pediatr. Res. 35(2), 148–151 (1994).
[Crossref] [PubMed]

Wong, D. Y. L.

K. M. Tichauer, D. Y. L. Wong, J. A. Hadway, R. J. Rylett, T. Y. Lee, and K. St Lawrence, “Assessing the severity of perinatal hypoxia-ischemia in piglets using near-infrared spectroscopy to measure the cerebral metabolic rate of oxygen,” Pediatr. Res. 65(3), 301–306 (2009).
[Crossref] [PubMed]

Yeganeh, H. Z.

Yodh, A. G.

D. Wang, A. B. Parthasarathy, W. B. Baker, K. Gannon, V. Kavuri, T. Ko, S. Schenkel, Z. Li, Z. Li, M. T. Mullen, J. A. Detre, and A. G. Yodh, “Fast blood flow monitoring in deep tissues with real-time software correlators,” Biomed. Opt. Express 7(3), 776–797 (2016).
[Crossref] [PubMed]

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85(Pt 1), 51–63 (2014).
[Crossref] [PubMed]

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053–2065 (2001).
[Crossref] [PubMed]

Zhou, Y.

R. Bapat, P. A. Narayana, Y. Zhou, and N. A. Parikh, “Magnetic resonance spectroscopy at term-equivalent age in extremely preterm infants: Association with cognitive and language development,” Pediatr. Neurol. 51(1), 53–59 (2014).
[Crossref] [PubMed]

Zhu, T.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1P1), 173–183 (2014).
[Crossref] [PubMed]

Adv. Exp. Med. Biol. (1)

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential pathlength factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
[Crossref] [PubMed]

Am. J. Physiol. Heart Circ. Physiol. (1)

R. Springett, J. Newman, M. Cope, and D. T. Delpy, “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol. 279(5), H2202–H2209 (2000).
[Crossref] [PubMed]

Anesthesiology (1)

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[Crossref] [PubMed]

Biomed. Opt. Express (7)

M. Diop, J. Kishimoto, V. Toronov, D. S. C. Lee, and K. St Lawrence, “Development of a combined broadband near-infrared and diffusion correlation system for monitoring cerebral blood flow and oxidative metabolism in preterm infants,” Biomed. Opt. Express 6(10), 3907–3918 (2015).
[Crossref] [PubMed]

D. Wang, A. B. Parthasarathy, W. B. Baker, K. Gannon, V. Kavuri, T. Ko, S. Schenkel, Z. Li, Z. Li, M. T. Mullen, J. A. Detre, and A. G. Yodh, “Fast blood flow monitoring in deep tissues with real-time software correlators,” Biomed. Opt. Express 7(3), 776–797 (2016).
[Crossref] [PubMed]

M. Diop, K. Verdecchia, T.-Y. Lee, and K. St Lawrence, “Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements,” Biomed. Opt. Express 2(7), 2068–2081 (2011).
[Crossref] [PubMed]

H. Z. Yeganeh, V. Toronov, J. T. Elliott, M. Diop, T.-Y. Lee, and K. St Lawrence, “Broadband continuous-wave technique to measure baseline values and changes in the tissue chromophore concentrations,” Biomed. Opt. Express 3(11), 2761–2770 (2012).
[Crossref] [PubMed]

P. Farzam, J. Johansson, M. Mireles, G. Jiménez-Valerio, M. Martínez-Lozano, R. Choe, O. Casanovas, and T. Durduran, “Pre-clinical longitudinal monitoring of hemodynamic response to anti-vascular chemotherapy by hybrid diffuse optics,” Biomed. Opt. Express 8(5), 2563–2582 (2017).
[Crossref] [PubMed]

D. J. Rohrbach, N. Rigual, E. Tracy, A. Kowalczewski, K. L. Keymel, M. T. Cooper, W. Mo, H. Baumann, B. W. Henderson, and U. Sunar, “Interlesion differences in the local photodynamic therapy response of oral cavity lesions assessed by diffuse optical spectroscopies,” Biomed. Opt. Express 3(9), 2142–2153 (2012).
[Crossref] [PubMed]

S. A. Carp, P. Farzam, N. Redes, D. M. Hueber, and M. A. Franceschini, “Combined multi-distance frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition and real-time analysis,” Biomed. Opt. Express 8(9), 3993–4006 (2017).
[Crossref] [PubMed]

Clin. Perinatol. (1)

H. Bassan, “Intracranial Hemorrhage in the Preterm Infant: Understanding It, Preventing It,” Clin. Perinatol. 36(4), 737–762 (2009).
[Crossref] [PubMed]

J. Appl. Physiol. (3)

K. M. Tichauer, J. T. Elliott, J. A. Hadway, D. S. Lee, T.-Y. Lee, and K. St Lawrence, “Using near-infrared spectroscopy to measure cerebral metabolic rate of oxygen under multiple levels of arterial oxygenation in piglets,” J. Appl. Physiol. 109(3), 878–885 (2010).
[Crossref] [PubMed]

K. M. Tichauer, D. W. Brown, J. Hadway, T.-Y. Lee, K. St Lawrence, K. S. Lawrence, M. Kenneth, Y. Lee, K. St, and L. Near-infrared, “Near-infrared spectroscopy measurements of cerebral blood flow and oxygen consumption following hypoxia-ischemia in newborn piglets,” J. Appl. Physiol. 100(3), 850–857 (2006).
[Crossref] [PubMed]

J. A. Cooper, K. M. Tichauer, M. Boulton, J. Elliott, M. Diop, M. Arango, T.-Y. Lee, and K. St Lawrence, “Continuous monitoring of absolute cerebral blood flow by near-infrared spectroscopy during global and focal temporary vessel occlusion,” J. Appl. Physiol. 110(6), 1691–1698 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day : a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21(9), 099801 (2016).

K. Verdecchia, M. Diop, T.-Y. Lee, and K. St Lawrence, “Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy,” J. Biomed. Opt. 18(2), 27007 (2013).
[Crossref] [PubMed]

S. Y. Lee, J. M. Pakela, M. C. Helton, K. Vishwanath, Y. G. Chung, N. J. Kolodziejski, C. J. Stapels, D. R. McAdams, D. E. Fernandez, J. F. Christian, J. O’Reilly, D. Farkas, B. B. Ward, S. E. Feinberg, and M. A. Mycek, “Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps,” J. Biomed. Opt. 22(12), 1–14 (2017).
[Crossref] [PubMed]

J. Neurosurg. (2)

M. Sakoh, L. Ostergaard, L. Røhl, D. F. Smith, C. Z. Simonsen, J. C. Sørensen, P. V. Poulsen, C. Gyldensted, S. Sakaki, and A. Gjedde, “Relationship between residual cerebral blood flow and oxygen metabolism as predictive of ischemic tissue viability: sequential multitracer positron emission tomography scanning of middle cerebral artery occlusion during the critical first 6 hours after stroke in pigs,” J. Neurosurg. 93(4), 647–657 (2000).
[Crossref] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury,” J. Neurosurg. 109(3), 424–432 (2008).
[Crossref] [PubMed]

J. Vis. Exp. (1)

P.-Y. Lin, N. Roche-Labarbe, M. Dehaes, S. Carp, A. Fenoglio, B. Barbieri, K. Hagan, P. E. Grant, and M. A. Franceschini, “Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants,” J. Vis. Exp. 73, e4379 (2013).
[PubMed]

Lancet (1)

H. Blencowe, S. Cousens, M. Z. Oestergaard, D. Chou, A. B. Moller, R. Narwal, A. Adler, C. Vera Garcia, S. Rohde, L. Say, and J. E. Lawn, “National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications,” Lancet 379(9832), 2162–2172 (2012).
[Crossref] [PubMed]

Lancet Neurol. (1)

J. J. Volpe, “Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances,” Lancet Neurol. 8(1), 110–124 (2009).

Ment. Retard. Dev. Disabil. Res. Rev. (1)

M. Bracewell and N. Marlow, “Patterns of motor disability in very preterm children,” Ment. Retard. Dev. Disabil. Res. Rev. 8(4), 241–248 (2002).
[Crossref] [PubMed]

Neuroimage (3)

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85(Pt 1), 51–63 (2014).
[Crossref] [PubMed]

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1P1), 173–183 (2014).
[Crossref] [PubMed]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[Crossref] [PubMed]

Pediatr. Neurol. (1)

R. Bapat, P. A. Narayana, Y. Zhou, and N. A. Parikh, “Magnetic resonance spectroscopy at term-equivalent age in extremely preterm infants: Association with cognitive and language development,” Pediatr. Neurol. 51(1), 53–59 (2014).
[Crossref] [PubMed]

Pediatr. Res. (4)

F. Groenendaal, R. H. Veenhoven, J. van der Grond, G. H. Jansen, T. D. Witkamp, and L. S. de Vries, “Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy,” Pediatr. Res. 35(2), 148–151 (1994).
[Crossref] [PubMed]

R. Arora, M. Ridha, D. S. C. Lee, J. Elliott, H. C. Rosenberg, M. Diop, T.-Y. Lee, and K. St Lawrence, “Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus,” Pediatr. Res. 73(6), 713–718 (2013).
[Crossref] [PubMed]

K. M. Tichauer, D. Y. L. Wong, J. A. Hadway, R. J. Rylett, T. Y. Lee, and K. St Lawrence, “Assessing the severity of perinatal hypoxia-ischemia in piglets using near-infrared spectroscopy to measure the cerebral metabolic rate of oxygen,” Pediatr. Res. 65(3), 301–306 (2009).
[Crossref] [PubMed]

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res. 51(5), 564–570 (2002).
[Crossref] [PubMed]

Pediatrics (1)

S. Thayyil, M. Chandrasekaran, A. Taylor, A. Bainbridge, E. B. Cady, W. K. K. Chong, S. Murad, R. Z. Omar, and N. J. Robertson, “Cerebral Magnetic Resonance Biomarkers in Neonatal Encephalopathy: A Meta-analysis,” Pediatrics 125(2), e382–e395 (2010).
[Crossref] [PubMed]

Philos Trans A Math Phys Eng Sci (1)

D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos Trans A Math Phys Eng Sci 369(1955), 4407–4424 (2011).
[Crossref] [PubMed]

Phys. Med. Biol. (3)

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053–2065 (2001).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[Crossref] [PubMed]

PLoS One (1)

M. Caldwell, T. Moroz, T. Hapuarachchi, A. Bainbridge, N. J. Robertson, C. E. Cooper, and I. Tachtsidis, “Modelling Blood Flow and Metabolism in the Preclinical Neonatal Brain during and Following Hypoxic-Ischaemia,” PLoS One 10(10), e0140171 (2015).
[Crossref] [PubMed]

Proc. SPIE (1)

S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE 2389(May 1995), 486– 495 (1995).

Rev. Sci. Instrum. (1)

M. Diop, J. T. Elliott, K. M. Tichauer, T.-Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).
[Crossref] [PubMed]

Sci. Rep. (1)

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: Statistics of photon penetration depth in random media,” Sci. Rep. 6(1), 27057 (2016).
[Crossref] [PubMed]

Other (2)

M. D. Kewin, D. F. Milej, A. Abdalmalak, A. Rajaram, M. Diop, S. de Ribaupierre, K. St. Lawrence, A. Rajaram, M. Diop, S. de Ribaupierre, and K. St. Lawrence, “Validation of a Hyperspectral NIRS Method for Measuring Oxygen Saturation by Comparison to Time-Resolved NIRS,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS) (OSA, 2018), p. OW4C.4.
[Crossref]

K. St. Lawrence, K. Verdecchia, J. T. Elliott, and M. Diop, “Measuring Cerebral Hemodynamics and Energy Metabolism by Near-Infrared Spectroscopy,” Hirrlinger J., Waagepetersen H. (Eds) Brain Energy Metabolism, Neurometho (Humana Press, 2014), p. Neuromethods, vol 90.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Simplified schematic of B-NIRS/DCS system with the shutter-based multiplexer. Red dots: B-NIRS emission and detection probes; blue dots: DCS emission and detection fibers.
Fig. 2
Fig. 2 Autocorrelation functions (blue symbols) acquired with (a) DCS alone, and (b) DCS in the presence of light from the B-NIRS source (10 mm). The red lines in both figures are the best fit to the diffusion approximation.
Fig. 3
Fig. 3 (A) DCS autocorrelation curves with B-NIRS light (30 mm from DCS detection) at varying intensities, (B) diffusion coefficient values without (blue) and with (red) the B-NIRS light; data were averaged over 10 acquisitions, error bars represent standard deviation.
Fig. 4
Fig. 4 Estimation of StO2 from simulated spectra of varying SNR (obtained by varying the number of averaged spectra). The circles represent the mean and the error bars are the standard deviation over 500 repetitions for each set of averaged spectra.
Fig. 5
Fig. 5 Broadband NIRS analysis showing (A) raw intensity measurements at baseline and during HI insult, (B) attenuation and best fit of the 2- (Hb and HbO2) and 3-component models (Hb, HbO2, and oxCCO), and (C) and residuals between measured and modelled attenuation, with CCO difference spectrum (ox-redCCO) for comparison.
Fig. 6
Fig. 6 DCS autocorrelation curves measured in one piglet during (A) baseline (CBF = 35.2 ± 0.8 ml/100g/min), (B) HI insult (CBF = 2.6 ± 0.1 ml/100g/min), and (C) following insult recovery (CBF = 32.5 ± 0.8 ml/100g/min). The red lines represent best fit to the diffusion approximation.
Fig. 7
Fig. 7 Simultaneous monitoring of StO2, absolute CBF, and oxCCO in 3 hypoxia-ischemia (HI) animals (A, B, C) and a control piglet (D). The HI insult began with clamping the carotid arteries (region (i)), followed by inducing hypoxia by reducing the inspired oxygen fraction to 8% (region (ii)).
Fig. 8
Fig. 8 Correlation plots of a) oxCCO vs CBF, and b) StO2 vs CBF; * indicates a significant change in either oxCCO or StO2 from baseline (p<0.05). Error bars represent the standard error of the mean. CBF intervals with mean values of 0.62 and 0.76 show only data from two and one animals, respectively.

Tables (3)

Tables Icon

Table 1 Initial values, lower and upper bounds of the fitting parameters

Tables Icon

Table 2 Monte Carlo simulation of B-NIRS fitting algorithm

Tables Icon

Table 3 Baseline fitting parameters, StO2, CBF

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R(λ)= log 10 ( spectru m λ dar k λ referenc e λ dar k λ )
μ s ' =A ( λ 800(nm) ) α
μ a (λ)=WF ε H 2 O (λ)+H b b ε Hb (λ)+Hb O 2 b ε Hb O 2 (λ)
S t O 2 b = H b O 2 b H b b + H b O 2 b
S t O 2 = ( H b O 2 b + Δ H b O 2 ) ( H b b + Δ H b ) + ( H b O 2 b + Δ H b O 2 )
C b ( t ) = C B F R ( t ) C a ( t )

Metrics