Abstract

For centuries, surgeons have relied on their sense of touch to identify vital structures such as blood vessels in traditional open surgery. Over the past two decades, surgeons have shifted to minimally invasive surgical (MIS) approaches, including laparoscopic surgery, which include benefits such as less scarring, less risk for infection, and quicker recovery times. In fact, some surgeries such as cholecystectomies have seen more than an 80% adoption of this technique because of those benefits. However, due to the fundamental challenges associated with using laparoscopic surgery, there has been a lower adoption in more complex specialties, such as colorectal and thoracic surgery, where the field of surgery has bleeding, fat, scar tissue, and adhesions. These problems are exacerbated by complicating factors such as inflammation, cancer, chronic disease, obesity, and re-operations. Importantly, surgeons will often convert from laparoscopy to open surgery if they can no longer proceed using the minimally invasive approach because of issues described with these complicating factors, thereby negating the benefits that the patient would have seen. When the surgeon does attempt these procedures with those issues, the surgery takes on average 30 min – 1 hour longer. A new method by which surgeons can visualize structures like blood vessels could reduce the conversion rates and operating time, thereby driving a greater adoption of laparoscopic surgery in these complex procedures. Here, we show that by adding near infrared (NIR) LEDs and a linear image sensor onto the opposing jaws of the laparoscopic graspers, blood vessels that are embedded within tissues can be detected and localized efficiently, even those not visible using current imaging techniques. We show the results of Monte Carlo simulations to support our claim, including that blood vessels ranging from 2 to 6 mm and buried under up to 1 cm of tissue can be detected. We also report developing a smart grasper handheld prototype to run ex vivo experiments. The results of these experiments matched with those of the Monte Carlo simulations and the estimated blood vessel size showed a strong correlation with the actual size. This technology will be incorporated into already existing laparoscopic tools to assist surgeons during MIS procedures.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

5 April 2018: A typographical correction was made to the abstract.


OSA Recommended Articles
Sensitivity analysis aimed at blood vessels detection using interstitial optical tomography during brain needle biopsy procedures

Julien Pichette, Andréanne Goyette, Fabien Picot, Marie-Andrée Tremblay, Gilles Soulez, Brian C. Wilson, and Frédéric Leblond
Biomed. Opt. Express 6(11) 4238-4254 (2015)

Localization of adipose tissue embedded biliary tree vessels by use of near-infrared diffuse photon propagation models: a computational feasibility study

George Alexandrakis, Dharmendra Nadkar, Nimit L. Patel, Hanli Liu, and Edward H. Livingston
Appl. Opt. 47(29) 5261-5271 (2008)

Transillumination optical tomography of tissue-engineered blood vessels: a Monte Carlo simulation

Gang Yao and Mark A. Haidekker
Appl. Opt. 44(20) 4265-4271 (2005)

References

  • View by:
  • |
  • |
  • |

  1. J. F. Magrina, R. Cetta, Y. Chang, G. Guevara, and P. M. Magtibay, “Analysis of secondary cytoreduction for recurrent ovarian cancer by robotics, laparoscopy and laparotomy,” Gynecologic Oncology 129, 336–340 (2013).
    [Crossref] [PubMed]
  2. E. David-Montefiori, R. Rouzier, C. Chapron, and E. Darai, “Surgical routes and complications of hysterectomy for benign disorders: a prospective observational study in French university hospitals,” Human Reproduction 22(1), 260–265 (2007).
    [Crossref]
  3. N. J. Crane, B. McHone, J. Hawksworth, J. P. Pearl, J. Denobile, D. Tadaki, P. A. Pinto, I. W. Levin, and E. A. Elster, “Enhanced surgical imaging: laparoscopic vessel identification and assessment of tissue oxygenation,” J. Am. Coll. Surg. 206(3), 1159–1166 (2008).
    [Crossref] [PubMed]
  4. R. L. Prosst, E. D. Fernandez, W. Neff, C. Braun, T. Neufang, and S. Post, “Evaluation of MR-angiography for preoperative assessment of living kidney donors,” Clin. Transplant 19, 522–526 (2005).
    [Crossref] [PubMed]
  5. A. Rafii, S. Camatte, L. Lelievre, E. Darai, and F. Lecuru, “Previous abdominal surgery and closed entry for gynaecological laparoscopy: a prospective study,” BJOG: an Int. J. of Obstetrics and Gynaecology 112, 100–102 (2005).
    [Crossref]
  6. K. Martay, G. Dembo, Y. Vater, K. Charpentier, A. Levy, R. Bakthavatsalam, and P. R. Freund, “Unexpected surgical difficulties leading to hemorrhage and gas embolus during laparoscopic donor nephrectomy: a case report,” Can. J. Anesth,  50, 891–894 (2003).
    [Crossref] [PubMed]
  7. I. S. Gill, L. R. Kavoussi, R. V. Clayman, R. Ehrlich, R. Evans, G. Fuchs, A. Gersham, J. C. Hulbert, E. M. McDougall, T. Rosenthal, W. W. Schuessler, and T. Shepard, “Complications of laparoscopic nephrectomy in 185 patients: a multi-institutional review,” J. Urol. 154, 479–483 (1995).
    [Crossref] [PubMed]
  8. G. Pareek, S. P. Hedican, J. R. Gee, R. C. Bruskewitz, and S. Y. Nakada, “Meta-analysis of the complications of laparoscopic renal surgery: Comparison of procedures and techniques,” J. Urol. 175, 1208–1213 (2006).
    [Crossref] [PubMed]
  9. Assuming a 1% incidence rate (see Opitz, et. al.) and $210K cost per incidence based upon review of Northwestern Memorial Surgical Outcome Data for 2011 analyzing surgeries coded with excessive hemorrhaging.
  10. I. Opitz, W. Gantert, U. Giger, T. Kocher, and L. Krahenbuhl, “Bleeding remains a major complication during laparoscopic surgery: analysis of the SALTS database,” Langenbeck’s Archives of Surgery 390(2) 128–133 (2005).
    [Crossref]
  11. H. Iqbal and Q. Pan, “Image guided surgery in the management of head and neck cancer,” Oral Oncol,  57, 32–39 (2016).
    [Crossref] [PubMed]
  12. R. L. Satcher, “How intraoperative navigation is changing musculoskeletal tumor surgery,” Orthop. Clin. North Am. 44(4), 645–656 (2013).
    [Crossref] [PubMed]
  13. S. Atallah, G. Nassif, and S. Larach, “Stereotactic navigation for TAMIS-TME: opening the gateway to frameless, image-guided abdominal and pelvic surgery,” Surg. Endosc. 29(1), 207–211 (2015).
    [Crossref]
  14. A. S. Sethi, S. M. Regan, and C. P. Sundaram, “The use of a Doppler ultrasound probe during vascular dissection in laparoscopic renal surgery,” J Endourology 23(9), 1377–1382 (2009).
    [Crossref]
  15. P. Newman and G. Rozycki, “The history of ultrasound,” Surgical Clinics of North America 78(2), 179–195 (1998).
    [Crossref] [PubMed]
  16. J. L. Saumet, D. L. Kellogg, W. F. Taylor, and J. M. Johnson, “Cutaneous laser-Doppler flowmetry: influence of underlying muscle blood flow,” Journal of Applied Physiology 65.1, 478–481 (1988).
    [Crossref] [PubMed]
  17. L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Computer Methods and Programs in Biomedicine 47(2), 131–146 (1995).
    [Crossref] [PubMed]
  18. S. L. Jacques, “Optical properties of biological tissues: a review,” Physics in Medicine & Biology 11(58), R37 (2013).
    [Crossref]

2016 (1)

H. Iqbal and Q. Pan, “Image guided surgery in the management of head and neck cancer,” Oral Oncol,  57, 32–39 (2016).
[Crossref] [PubMed]

2015 (1)

S. Atallah, G. Nassif, and S. Larach, “Stereotactic navigation for TAMIS-TME: opening the gateway to frameless, image-guided abdominal and pelvic surgery,” Surg. Endosc. 29(1), 207–211 (2015).
[Crossref]

2013 (3)

R. L. Satcher, “How intraoperative navigation is changing musculoskeletal tumor surgery,” Orthop. Clin. North Am. 44(4), 645–656 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Physics in Medicine & Biology 11(58), R37 (2013).
[Crossref]

J. F. Magrina, R. Cetta, Y. Chang, G. Guevara, and P. M. Magtibay, “Analysis of secondary cytoreduction for recurrent ovarian cancer by robotics, laparoscopy and laparotomy,” Gynecologic Oncology 129, 336–340 (2013).
[Crossref] [PubMed]

2009 (1)

A. S. Sethi, S. M. Regan, and C. P. Sundaram, “The use of a Doppler ultrasound probe during vascular dissection in laparoscopic renal surgery,” J Endourology 23(9), 1377–1382 (2009).
[Crossref]

2008 (1)

N. J. Crane, B. McHone, J. Hawksworth, J. P. Pearl, J. Denobile, D. Tadaki, P. A. Pinto, I. W. Levin, and E. A. Elster, “Enhanced surgical imaging: laparoscopic vessel identification and assessment of tissue oxygenation,” J. Am. Coll. Surg. 206(3), 1159–1166 (2008).
[Crossref] [PubMed]

2007 (1)

E. David-Montefiori, R. Rouzier, C. Chapron, and E. Darai, “Surgical routes and complications of hysterectomy for benign disorders: a prospective observational study in French university hospitals,” Human Reproduction 22(1), 260–265 (2007).
[Crossref]

2006 (1)

G. Pareek, S. P. Hedican, J. R. Gee, R. C. Bruskewitz, and S. Y. Nakada, “Meta-analysis of the complications of laparoscopic renal surgery: Comparison of procedures and techniques,” J. Urol. 175, 1208–1213 (2006).
[Crossref] [PubMed]

2005 (3)

I. Opitz, W. Gantert, U. Giger, T. Kocher, and L. Krahenbuhl, “Bleeding remains a major complication during laparoscopic surgery: analysis of the SALTS database,” Langenbeck’s Archives of Surgery 390(2) 128–133 (2005).
[Crossref]

R. L. Prosst, E. D. Fernandez, W. Neff, C. Braun, T. Neufang, and S. Post, “Evaluation of MR-angiography for preoperative assessment of living kidney donors,” Clin. Transplant 19, 522–526 (2005).
[Crossref] [PubMed]

A. Rafii, S. Camatte, L. Lelievre, E. Darai, and F. Lecuru, “Previous abdominal surgery and closed entry for gynaecological laparoscopy: a prospective study,” BJOG: an Int. J. of Obstetrics and Gynaecology 112, 100–102 (2005).
[Crossref]

2003 (1)

K. Martay, G. Dembo, Y. Vater, K. Charpentier, A. Levy, R. Bakthavatsalam, and P. R. Freund, “Unexpected surgical difficulties leading to hemorrhage and gas embolus during laparoscopic donor nephrectomy: a case report,” Can. J. Anesth,  50, 891–894 (2003).
[Crossref] [PubMed]

1998 (1)

P. Newman and G. Rozycki, “The history of ultrasound,” Surgical Clinics of North America 78(2), 179–195 (1998).
[Crossref] [PubMed]

1995 (2)

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Computer Methods and Programs in Biomedicine 47(2), 131–146 (1995).
[Crossref] [PubMed]

I. S. Gill, L. R. Kavoussi, R. V. Clayman, R. Ehrlich, R. Evans, G. Fuchs, A. Gersham, J. C. Hulbert, E. M. McDougall, T. Rosenthal, W. W. Schuessler, and T. Shepard, “Complications of laparoscopic nephrectomy in 185 patients: a multi-institutional review,” J. Urol. 154, 479–483 (1995).
[Crossref] [PubMed]

1988 (1)

J. L. Saumet, D. L. Kellogg, W. F. Taylor, and J. M. Johnson, “Cutaneous laser-Doppler flowmetry: influence of underlying muscle blood flow,” Journal of Applied Physiology 65.1, 478–481 (1988).
[Crossref] [PubMed]

Atallah, S.

S. Atallah, G. Nassif, and S. Larach, “Stereotactic navigation for TAMIS-TME: opening the gateway to frameless, image-guided abdominal and pelvic surgery,” Surg. Endosc. 29(1), 207–211 (2015).
[Crossref]

Bakthavatsalam, R.

K. Martay, G. Dembo, Y. Vater, K. Charpentier, A. Levy, R. Bakthavatsalam, and P. R. Freund, “Unexpected surgical difficulties leading to hemorrhage and gas embolus during laparoscopic donor nephrectomy: a case report,” Can. J. Anesth,  50, 891–894 (2003).
[Crossref] [PubMed]

Braun, C.

R. L. Prosst, E. D. Fernandez, W. Neff, C. Braun, T. Neufang, and S. Post, “Evaluation of MR-angiography for preoperative assessment of living kidney donors,” Clin. Transplant 19, 522–526 (2005).
[Crossref] [PubMed]

Bruskewitz, R. C.

G. Pareek, S. P. Hedican, J. R. Gee, R. C. Bruskewitz, and S. Y. Nakada, “Meta-analysis of the complications of laparoscopic renal surgery: Comparison of procedures and techniques,” J. Urol. 175, 1208–1213 (2006).
[Crossref] [PubMed]

Camatte, S.

A. Rafii, S. Camatte, L. Lelievre, E. Darai, and F. Lecuru, “Previous abdominal surgery and closed entry for gynaecological laparoscopy: a prospective study,” BJOG: an Int. J. of Obstetrics and Gynaecology 112, 100–102 (2005).
[Crossref]

Cetta, R.

J. F. Magrina, R. Cetta, Y. Chang, G. Guevara, and P. M. Magtibay, “Analysis of secondary cytoreduction for recurrent ovarian cancer by robotics, laparoscopy and laparotomy,” Gynecologic Oncology 129, 336–340 (2013).
[Crossref] [PubMed]

Chang, Y.

J. F. Magrina, R. Cetta, Y. Chang, G. Guevara, and P. M. Magtibay, “Analysis of secondary cytoreduction for recurrent ovarian cancer by robotics, laparoscopy and laparotomy,” Gynecologic Oncology 129, 336–340 (2013).
[Crossref] [PubMed]

Chapron, C.

E. David-Montefiori, R. Rouzier, C. Chapron, and E. Darai, “Surgical routes and complications of hysterectomy for benign disorders: a prospective observational study in French university hospitals,” Human Reproduction 22(1), 260–265 (2007).
[Crossref]

Charpentier, K.

K. Martay, G. Dembo, Y. Vater, K. Charpentier, A. Levy, R. Bakthavatsalam, and P. R. Freund, “Unexpected surgical difficulties leading to hemorrhage and gas embolus during laparoscopic donor nephrectomy: a case report,” Can. J. Anesth,  50, 891–894 (2003).
[Crossref] [PubMed]

Clayman, R. V.

I. S. Gill, L. R. Kavoussi, R. V. Clayman, R. Ehrlich, R. Evans, G. Fuchs, A. Gersham, J. C. Hulbert, E. M. McDougall, T. Rosenthal, W. W. Schuessler, and T. Shepard, “Complications of laparoscopic nephrectomy in 185 patients: a multi-institutional review,” J. Urol. 154, 479–483 (1995).
[Crossref] [PubMed]

Crane, N. J.

N. J. Crane, B. McHone, J. Hawksworth, J. P. Pearl, J. Denobile, D. Tadaki, P. A. Pinto, I. W. Levin, and E. A. Elster, “Enhanced surgical imaging: laparoscopic vessel identification and assessment of tissue oxygenation,” J. Am. Coll. Surg. 206(3), 1159–1166 (2008).
[Crossref] [PubMed]

Darai, E.

E. David-Montefiori, R. Rouzier, C. Chapron, and E. Darai, “Surgical routes and complications of hysterectomy for benign disorders: a prospective observational study in French university hospitals,” Human Reproduction 22(1), 260–265 (2007).
[Crossref]

A. Rafii, S. Camatte, L. Lelievre, E. Darai, and F. Lecuru, “Previous abdominal surgery and closed entry for gynaecological laparoscopy: a prospective study,” BJOG: an Int. J. of Obstetrics and Gynaecology 112, 100–102 (2005).
[Crossref]

David-Montefiori, E.

E. David-Montefiori, R. Rouzier, C. Chapron, and E. Darai, “Surgical routes and complications of hysterectomy for benign disorders: a prospective observational study in French university hospitals,” Human Reproduction 22(1), 260–265 (2007).
[Crossref]

Dembo, G.

K. Martay, G. Dembo, Y. Vater, K. Charpentier, A. Levy, R. Bakthavatsalam, and P. R. Freund, “Unexpected surgical difficulties leading to hemorrhage and gas embolus during laparoscopic donor nephrectomy: a case report,” Can. J. Anesth,  50, 891–894 (2003).
[Crossref] [PubMed]

Denobile, J.

N. J. Crane, B. McHone, J. Hawksworth, J. P. Pearl, J. Denobile, D. Tadaki, P. A. Pinto, I. W. Levin, and E. A. Elster, “Enhanced surgical imaging: laparoscopic vessel identification and assessment of tissue oxygenation,” J. Am. Coll. Surg. 206(3), 1159–1166 (2008).
[Crossref] [PubMed]

Ehrlich, R.

I. S. Gill, L. R. Kavoussi, R. V. Clayman, R. Ehrlich, R. Evans, G. Fuchs, A. Gersham, J. C. Hulbert, E. M. McDougall, T. Rosenthal, W. W. Schuessler, and T. Shepard, “Complications of laparoscopic nephrectomy in 185 patients: a multi-institutional review,” J. Urol. 154, 479–483 (1995).
[Crossref] [PubMed]

Elster, E. A.

N. J. Crane, B. McHone, J. Hawksworth, J. P. Pearl, J. Denobile, D. Tadaki, P. A. Pinto, I. W. Levin, and E. A. Elster, “Enhanced surgical imaging: laparoscopic vessel identification and assessment of tissue oxygenation,” J. Am. Coll. Surg. 206(3), 1159–1166 (2008).
[Crossref] [PubMed]

Evans, R.

I. S. Gill, L. R. Kavoussi, R. V. Clayman, R. Ehrlich, R. Evans, G. Fuchs, A. Gersham, J. C. Hulbert, E. M. McDougall, T. Rosenthal, W. W. Schuessler, and T. Shepard, “Complications of laparoscopic nephrectomy in 185 patients: a multi-institutional review,” J. Urol. 154, 479–483 (1995).
[Crossref] [PubMed]

Fernandez, E. D.

R. L. Prosst, E. D. Fernandez, W. Neff, C. Braun, T. Neufang, and S. Post, “Evaluation of MR-angiography for preoperative assessment of living kidney donors,” Clin. Transplant 19, 522–526 (2005).
[Crossref] [PubMed]

Freund, P. R.

K. Martay, G. Dembo, Y. Vater, K. Charpentier, A. Levy, R. Bakthavatsalam, and P. R. Freund, “Unexpected surgical difficulties leading to hemorrhage and gas embolus during laparoscopic donor nephrectomy: a case report,” Can. J. Anesth,  50, 891–894 (2003).
[Crossref] [PubMed]

Fuchs, G.

I. S. Gill, L. R. Kavoussi, R. V. Clayman, R. Ehrlich, R. Evans, G. Fuchs, A. Gersham, J. C. Hulbert, E. M. McDougall, T. Rosenthal, W. W. Schuessler, and T. Shepard, “Complications of laparoscopic nephrectomy in 185 patients: a multi-institutional review,” J. Urol. 154, 479–483 (1995).
[Crossref] [PubMed]

Gantert, W.

I. Opitz, W. Gantert, U. Giger, T. Kocher, and L. Krahenbuhl, “Bleeding remains a major complication during laparoscopic surgery: analysis of the SALTS database,” Langenbeck’s Archives of Surgery 390(2) 128–133 (2005).
[Crossref]

Gee, J. R.

G. Pareek, S. P. Hedican, J. R. Gee, R. C. Bruskewitz, and S. Y. Nakada, “Meta-analysis of the complications of laparoscopic renal surgery: Comparison of procedures and techniques,” J. Urol. 175, 1208–1213 (2006).
[Crossref] [PubMed]

Gersham, A.

I. S. Gill, L. R. Kavoussi, R. V. Clayman, R. Ehrlich, R. Evans, G. Fuchs, A. Gersham, J. C. Hulbert, E. M. McDougall, T. Rosenthal, W. W. Schuessler, and T. Shepard, “Complications of laparoscopic nephrectomy in 185 patients: a multi-institutional review,” J. Urol. 154, 479–483 (1995).
[Crossref] [PubMed]

Giger, U.

I. Opitz, W. Gantert, U. Giger, T. Kocher, and L. Krahenbuhl, “Bleeding remains a major complication during laparoscopic surgery: analysis of the SALTS database,” Langenbeck’s Archives of Surgery 390(2) 128–133 (2005).
[Crossref]

Gill, I. S.

I. S. Gill, L. R. Kavoussi, R. V. Clayman, R. Ehrlich, R. Evans, G. Fuchs, A. Gersham, J. C. Hulbert, E. M. McDougall, T. Rosenthal, W. W. Schuessler, and T. Shepard, “Complications of laparoscopic nephrectomy in 185 patients: a multi-institutional review,” J. Urol. 154, 479–483 (1995).
[Crossref] [PubMed]

Guevara, G.

J. F. Magrina, R. Cetta, Y. Chang, G. Guevara, and P. M. Magtibay, “Analysis of secondary cytoreduction for recurrent ovarian cancer by robotics, laparoscopy and laparotomy,” Gynecologic Oncology 129, 336–340 (2013).
[Crossref] [PubMed]

Hawksworth, J.

N. J. Crane, B. McHone, J. Hawksworth, J. P. Pearl, J. Denobile, D. Tadaki, P. A. Pinto, I. W. Levin, and E. A. Elster, “Enhanced surgical imaging: laparoscopic vessel identification and assessment of tissue oxygenation,” J. Am. Coll. Surg. 206(3), 1159–1166 (2008).
[Crossref] [PubMed]

Hedican, S. P.

G. Pareek, S. P. Hedican, J. R. Gee, R. C. Bruskewitz, and S. Y. Nakada, “Meta-analysis of the complications of laparoscopic renal surgery: Comparison of procedures and techniques,” J. Urol. 175, 1208–1213 (2006).
[Crossref] [PubMed]

Hulbert, J. C.

I. S. Gill, L. R. Kavoussi, R. V. Clayman, R. Ehrlich, R. Evans, G. Fuchs, A. Gersham, J. C. Hulbert, E. M. McDougall, T. Rosenthal, W. W. Schuessler, and T. Shepard, “Complications of laparoscopic nephrectomy in 185 patients: a multi-institutional review,” J. Urol. 154, 479–483 (1995).
[Crossref] [PubMed]

Iqbal, H.

H. Iqbal and Q. Pan, “Image guided surgery in the management of head and neck cancer,” Oral Oncol,  57, 32–39 (2016).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Physics in Medicine & Biology 11(58), R37 (2013).
[Crossref]

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Computer Methods and Programs in Biomedicine 47(2), 131–146 (1995).
[Crossref] [PubMed]

Johnson, J. M.

J. L. Saumet, D. L. Kellogg, W. F. Taylor, and J. M. Johnson, “Cutaneous laser-Doppler flowmetry: influence of underlying muscle blood flow,” Journal of Applied Physiology 65.1, 478–481 (1988).
[Crossref] [PubMed]

Kavoussi, L. R.

I. S. Gill, L. R. Kavoussi, R. V. Clayman, R. Ehrlich, R. Evans, G. Fuchs, A. Gersham, J. C. Hulbert, E. M. McDougall, T. Rosenthal, W. W. Schuessler, and T. Shepard, “Complications of laparoscopic nephrectomy in 185 patients: a multi-institutional review,” J. Urol. 154, 479–483 (1995).
[Crossref] [PubMed]

Kellogg, D. L.

J. L. Saumet, D. L. Kellogg, W. F. Taylor, and J. M. Johnson, “Cutaneous laser-Doppler flowmetry: influence of underlying muscle blood flow,” Journal of Applied Physiology 65.1, 478–481 (1988).
[Crossref] [PubMed]

Kocher, T.

I. Opitz, W. Gantert, U. Giger, T. Kocher, and L. Krahenbuhl, “Bleeding remains a major complication during laparoscopic surgery: analysis of the SALTS database,” Langenbeck’s Archives of Surgery 390(2) 128–133 (2005).
[Crossref]

Krahenbuhl, L.

I. Opitz, W. Gantert, U. Giger, T. Kocher, and L. Krahenbuhl, “Bleeding remains a major complication during laparoscopic surgery: analysis of the SALTS database,” Langenbeck’s Archives of Surgery 390(2) 128–133 (2005).
[Crossref]

Larach, S.

S. Atallah, G. Nassif, and S. Larach, “Stereotactic navigation for TAMIS-TME: opening the gateway to frameless, image-guided abdominal and pelvic surgery,” Surg. Endosc. 29(1), 207–211 (2015).
[Crossref]

Lecuru, F.

A. Rafii, S. Camatte, L. Lelievre, E. Darai, and F. Lecuru, “Previous abdominal surgery and closed entry for gynaecological laparoscopy: a prospective study,” BJOG: an Int. J. of Obstetrics and Gynaecology 112, 100–102 (2005).
[Crossref]

Lelievre, L.

A. Rafii, S. Camatte, L. Lelievre, E. Darai, and F. Lecuru, “Previous abdominal surgery and closed entry for gynaecological laparoscopy: a prospective study,” BJOG: an Int. J. of Obstetrics and Gynaecology 112, 100–102 (2005).
[Crossref]

Levin, I. W.

N. J. Crane, B. McHone, J. Hawksworth, J. P. Pearl, J. Denobile, D. Tadaki, P. A. Pinto, I. W. Levin, and E. A. Elster, “Enhanced surgical imaging: laparoscopic vessel identification and assessment of tissue oxygenation,” J. Am. Coll. Surg. 206(3), 1159–1166 (2008).
[Crossref] [PubMed]

Levy, A.

K. Martay, G. Dembo, Y. Vater, K. Charpentier, A. Levy, R. Bakthavatsalam, and P. R. Freund, “Unexpected surgical difficulties leading to hemorrhage and gas embolus during laparoscopic donor nephrectomy: a case report,” Can. J. Anesth,  50, 891–894 (2003).
[Crossref] [PubMed]

Magrina, J. F.

J. F. Magrina, R. Cetta, Y. Chang, G. Guevara, and P. M. Magtibay, “Analysis of secondary cytoreduction for recurrent ovarian cancer by robotics, laparoscopy and laparotomy,” Gynecologic Oncology 129, 336–340 (2013).
[Crossref] [PubMed]

Magtibay, P. M.

J. F. Magrina, R. Cetta, Y. Chang, G. Guevara, and P. M. Magtibay, “Analysis of secondary cytoreduction for recurrent ovarian cancer by robotics, laparoscopy and laparotomy,” Gynecologic Oncology 129, 336–340 (2013).
[Crossref] [PubMed]

Martay, K.

K. Martay, G. Dembo, Y. Vater, K. Charpentier, A. Levy, R. Bakthavatsalam, and P. R. Freund, “Unexpected surgical difficulties leading to hemorrhage and gas embolus during laparoscopic donor nephrectomy: a case report,” Can. J. Anesth,  50, 891–894 (2003).
[Crossref] [PubMed]

McDougall, E. M.

I. S. Gill, L. R. Kavoussi, R. V. Clayman, R. Ehrlich, R. Evans, G. Fuchs, A. Gersham, J. C. Hulbert, E. M. McDougall, T. Rosenthal, W. W. Schuessler, and T. Shepard, “Complications of laparoscopic nephrectomy in 185 patients: a multi-institutional review,” J. Urol. 154, 479–483 (1995).
[Crossref] [PubMed]

McHone, B.

N. J. Crane, B. McHone, J. Hawksworth, J. P. Pearl, J. Denobile, D. Tadaki, P. A. Pinto, I. W. Levin, and E. A. Elster, “Enhanced surgical imaging: laparoscopic vessel identification and assessment of tissue oxygenation,” J. Am. Coll. Surg. 206(3), 1159–1166 (2008).
[Crossref] [PubMed]

Nakada, S. Y.

G. Pareek, S. P. Hedican, J. R. Gee, R. C. Bruskewitz, and S. Y. Nakada, “Meta-analysis of the complications of laparoscopic renal surgery: Comparison of procedures and techniques,” J. Urol. 175, 1208–1213 (2006).
[Crossref] [PubMed]

Nassif, G.

S. Atallah, G. Nassif, and S. Larach, “Stereotactic navigation for TAMIS-TME: opening the gateway to frameless, image-guided abdominal and pelvic surgery,” Surg. Endosc. 29(1), 207–211 (2015).
[Crossref]

Neff, W.

R. L. Prosst, E. D. Fernandez, W. Neff, C. Braun, T. Neufang, and S. Post, “Evaluation of MR-angiography for preoperative assessment of living kidney donors,” Clin. Transplant 19, 522–526 (2005).
[Crossref] [PubMed]

Neufang, T.

R. L. Prosst, E. D. Fernandez, W. Neff, C. Braun, T. Neufang, and S. Post, “Evaluation of MR-angiography for preoperative assessment of living kidney donors,” Clin. Transplant 19, 522–526 (2005).
[Crossref] [PubMed]

Newman, P.

P. Newman and G. Rozycki, “The history of ultrasound,” Surgical Clinics of North America 78(2), 179–195 (1998).
[Crossref] [PubMed]

Opitz, I.

I. Opitz, W. Gantert, U. Giger, T. Kocher, and L. Krahenbuhl, “Bleeding remains a major complication during laparoscopic surgery: analysis of the SALTS database,” Langenbeck’s Archives of Surgery 390(2) 128–133 (2005).
[Crossref]

Pan, Q.

H. Iqbal and Q. Pan, “Image guided surgery in the management of head and neck cancer,” Oral Oncol,  57, 32–39 (2016).
[Crossref] [PubMed]

Pareek, G.

G. Pareek, S. P. Hedican, J. R. Gee, R. C. Bruskewitz, and S. Y. Nakada, “Meta-analysis of the complications of laparoscopic renal surgery: Comparison of procedures and techniques,” J. Urol. 175, 1208–1213 (2006).
[Crossref] [PubMed]

Pearl, J. P.

N. J. Crane, B. McHone, J. Hawksworth, J. P. Pearl, J. Denobile, D. Tadaki, P. A. Pinto, I. W. Levin, and E. A. Elster, “Enhanced surgical imaging: laparoscopic vessel identification and assessment of tissue oxygenation,” J. Am. Coll. Surg. 206(3), 1159–1166 (2008).
[Crossref] [PubMed]

Pinto, P. A.

N. J. Crane, B. McHone, J. Hawksworth, J. P. Pearl, J. Denobile, D. Tadaki, P. A. Pinto, I. W. Levin, and E. A. Elster, “Enhanced surgical imaging: laparoscopic vessel identification and assessment of tissue oxygenation,” J. Am. Coll. Surg. 206(3), 1159–1166 (2008).
[Crossref] [PubMed]

Post, S.

R. L. Prosst, E. D. Fernandez, W. Neff, C. Braun, T. Neufang, and S. Post, “Evaluation of MR-angiography for preoperative assessment of living kidney donors,” Clin. Transplant 19, 522–526 (2005).
[Crossref] [PubMed]

Prosst, R. L.

R. L. Prosst, E. D. Fernandez, W. Neff, C. Braun, T. Neufang, and S. Post, “Evaluation of MR-angiography for preoperative assessment of living kidney donors,” Clin. Transplant 19, 522–526 (2005).
[Crossref] [PubMed]

Rafii, A.

A. Rafii, S. Camatte, L. Lelievre, E. Darai, and F. Lecuru, “Previous abdominal surgery and closed entry for gynaecological laparoscopy: a prospective study,” BJOG: an Int. J. of Obstetrics and Gynaecology 112, 100–102 (2005).
[Crossref]

Regan, S. M.

A. S. Sethi, S. M. Regan, and C. P. Sundaram, “The use of a Doppler ultrasound probe during vascular dissection in laparoscopic renal surgery,” J Endourology 23(9), 1377–1382 (2009).
[Crossref]

Rosenthal, T.

I. S. Gill, L. R. Kavoussi, R. V. Clayman, R. Ehrlich, R. Evans, G. Fuchs, A. Gersham, J. C. Hulbert, E. M. McDougall, T. Rosenthal, W. W. Schuessler, and T. Shepard, “Complications of laparoscopic nephrectomy in 185 patients: a multi-institutional review,” J. Urol. 154, 479–483 (1995).
[Crossref] [PubMed]

Rouzier, R.

E. David-Montefiori, R. Rouzier, C. Chapron, and E. Darai, “Surgical routes and complications of hysterectomy for benign disorders: a prospective observational study in French university hospitals,” Human Reproduction 22(1), 260–265 (2007).
[Crossref]

Rozycki, G.

P. Newman and G. Rozycki, “The history of ultrasound,” Surgical Clinics of North America 78(2), 179–195 (1998).
[Crossref] [PubMed]

Satcher, R. L.

R. L. Satcher, “How intraoperative navigation is changing musculoskeletal tumor surgery,” Orthop. Clin. North Am. 44(4), 645–656 (2013).
[Crossref] [PubMed]

Saumet, J. L.

J. L. Saumet, D. L. Kellogg, W. F. Taylor, and J. M. Johnson, “Cutaneous laser-Doppler flowmetry: influence of underlying muscle blood flow,” Journal of Applied Physiology 65.1, 478–481 (1988).
[Crossref] [PubMed]

Schuessler, W. W.

I. S. Gill, L. R. Kavoussi, R. V. Clayman, R. Ehrlich, R. Evans, G. Fuchs, A. Gersham, J. C. Hulbert, E. M. McDougall, T. Rosenthal, W. W. Schuessler, and T. Shepard, “Complications of laparoscopic nephrectomy in 185 patients: a multi-institutional review,” J. Urol. 154, 479–483 (1995).
[Crossref] [PubMed]

Sethi, A. S.

A. S. Sethi, S. M. Regan, and C. P. Sundaram, “The use of a Doppler ultrasound probe during vascular dissection in laparoscopic renal surgery,” J Endourology 23(9), 1377–1382 (2009).
[Crossref]

Shepard, T.

I. S. Gill, L. R. Kavoussi, R. V. Clayman, R. Ehrlich, R. Evans, G. Fuchs, A. Gersham, J. C. Hulbert, E. M. McDougall, T. Rosenthal, W. W. Schuessler, and T. Shepard, “Complications of laparoscopic nephrectomy in 185 patients: a multi-institutional review,” J. Urol. 154, 479–483 (1995).
[Crossref] [PubMed]

Sundaram, C. P.

A. S. Sethi, S. M. Regan, and C. P. Sundaram, “The use of a Doppler ultrasound probe during vascular dissection in laparoscopic renal surgery,” J Endourology 23(9), 1377–1382 (2009).
[Crossref]

Tadaki, D.

N. J. Crane, B. McHone, J. Hawksworth, J. P. Pearl, J. Denobile, D. Tadaki, P. A. Pinto, I. W. Levin, and E. A. Elster, “Enhanced surgical imaging: laparoscopic vessel identification and assessment of tissue oxygenation,” J. Am. Coll. Surg. 206(3), 1159–1166 (2008).
[Crossref] [PubMed]

Taylor, W. F.

J. L. Saumet, D. L. Kellogg, W. F. Taylor, and J. M. Johnson, “Cutaneous laser-Doppler flowmetry: influence of underlying muscle blood flow,” Journal of Applied Physiology 65.1, 478–481 (1988).
[Crossref] [PubMed]

Vater, Y.

K. Martay, G. Dembo, Y. Vater, K. Charpentier, A. Levy, R. Bakthavatsalam, and P. R. Freund, “Unexpected surgical difficulties leading to hemorrhage and gas embolus during laparoscopic donor nephrectomy: a case report,” Can. J. Anesth,  50, 891–894 (2003).
[Crossref] [PubMed]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Computer Methods and Programs in Biomedicine 47(2), 131–146 (1995).
[Crossref] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Computer Methods and Programs in Biomedicine 47(2), 131–146 (1995).
[Crossref] [PubMed]

BJOG: an Int. J. of Obstetrics and Gynaecology (1)

A. Rafii, S. Camatte, L. Lelievre, E. Darai, and F. Lecuru, “Previous abdominal surgery and closed entry for gynaecological laparoscopy: a prospective study,” BJOG: an Int. J. of Obstetrics and Gynaecology 112, 100–102 (2005).
[Crossref]

Can. J. Anesth (1)

K. Martay, G. Dembo, Y. Vater, K. Charpentier, A. Levy, R. Bakthavatsalam, and P. R. Freund, “Unexpected surgical difficulties leading to hemorrhage and gas embolus during laparoscopic donor nephrectomy: a case report,” Can. J. Anesth,  50, 891–894 (2003).
[Crossref] [PubMed]

Clin. Transplant (1)

R. L. Prosst, E. D. Fernandez, W. Neff, C. Braun, T. Neufang, and S. Post, “Evaluation of MR-angiography for preoperative assessment of living kidney donors,” Clin. Transplant 19, 522–526 (2005).
[Crossref] [PubMed]

Computer Methods and Programs in Biomedicine (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Computer Methods and Programs in Biomedicine 47(2), 131–146 (1995).
[Crossref] [PubMed]

Gynecologic Oncology (1)

J. F. Magrina, R. Cetta, Y. Chang, G. Guevara, and P. M. Magtibay, “Analysis of secondary cytoreduction for recurrent ovarian cancer by robotics, laparoscopy and laparotomy,” Gynecologic Oncology 129, 336–340 (2013).
[Crossref] [PubMed]

Human Reproduction (1)

E. David-Montefiori, R. Rouzier, C. Chapron, and E. Darai, “Surgical routes and complications of hysterectomy for benign disorders: a prospective observational study in French university hospitals,” Human Reproduction 22(1), 260–265 (2007).
[Crossref]

J Endourology (1)

A. S. Sethi, S. M. Regan, and C. P. Sundaram, “The use of a Doppler ultrasound probe during vascular dissection in laparoscopic renal surgery,” J Endourology 23(9), 1377–1382 (2009).
[Crossref]

J. Am. Coll. Surg. (1)

N. J. Crane, B. McHone, J. Hawksworth, J. P. Pearl, J. Denobile, D. Tadaki, P. A. Pinto, I. W. Levin, and E. A. Elster, “Enhanced surgical imaging: laparoscopic vessel identification and assessment of tissue oxygenation,” J. Am. Coll. Surg. 206(3), 1159–1166 (2008).
[Crossref] [PubMed]

J. Urol. (2)

I. S. Gill, L. R. Kavoussi, R. V. Clayman, R. Ehrlich, R. Evans, G. Fuchs, A. Gersham, J. C. Hulbert, E. M. McDougall, T. Rosenthal, W. W. Schuessler, and T. Shepard, “Complications of laparoscopic nephrectomy in 185 patients: a multi-institutional review,” J. Urol. 154, 479–483 (1995).
[Crossref] [PubMed]

G. Pareek, S. P. Hedican, J. R. Gee, R. C. Bruskewitz, and S. Y. Nakada, “Meta-analysis of the complications of laparoscopic renal surgery: Comparison of procedures and techniques,” J. Urol. 175, 1208–1213 (2006).
[Crossref] [PubMed]

Journal of Applied Physiology (1)

J. L. Saumet, D. L. Kellogg, W. F. Taylor, and J. M. Johnson, “Cutaneous laser-Doppler flowmetry: influence of underlying muscle blood flow,” Journal of Applied Physiology 65.1, 478–481 (1988).
[Crossref] [PubMed]

Langenbeck’s Archives of Surgery (1)

I. Opitz, W. Gantert, U. Giger, T. Kocher, and L. Krahenbuhl, “Bleeding remains a major complication during laparoscopic surgery: analysis of the SALTS database,” Langenbeck’s Archives of Surgery 390(2) 128–133 (2005).
[Crossref]

Oral Oncol (1)

H. Iqbal and Q. Pan, “Image guided surgery in the management of head and neck cancer,” Oral Oncol,  57, 32–39 (2016).
[Crossref] [PubMed]

Orthop. Clin. North Am. (1)

R. L. Satcher, “How intraoperative navigation is changing musculoskeletal tumor surgery,” Orthop. Clin. North Am. 44(4), 645–656 (2013).
[Crossref] [PubMed]

Physics in Medicine & Biology (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Physics in Medicine & Biology 11(58), R37 (2013).
[Crossref]

Surg. Endosc. (1)

S. Atallah, G. Nassif, and S. Larach, “Stereotactic navigation for TAMIS-TME: opening the gateway to frameless, image-guided abdominal and pelvic surgery,” Surg. Endosc. 29(1), 207–211 (2015).
[Crossref]

Surgical Clinics of North America (1)

P. Newman and G. Rozycki, “The history of ultrasound,” Surgical Clinics of North America 78(2), 179–195 (1998).
[Crossref] [PubMed]

Other (1)

Assuming a 1% incidence rate (see Opitz, et. al.) and $210K cost per incidence based upon review of Northwestern Memorial Surgical Outcome Data for 2011 analyzing surgeries coded with excessive hemorrhaging.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 The absorbance spectra of oxygenated and deoxygenated hemoglobin. 810nm is known as the isosbestic point where oxy- and deoxy-hemoglobin exhibit the same absorption. These spectra are the foundation of pulse oximetry.
Fig. 2
Fig. 2 The handheld prototype has a parallel jaw configuration, with an LED array and a sensor array on opposing jaws. The mechanical trigger is used to open or close the jaws, thereby adjusting the offset between the light source and detector. This prototype was designed for ex vivo feasibility testing of the vessel detection and localization algorithms.
Fig. 3
Fig. 3 Left: DC profile. The sensors underneath the blood vessel experience a dramatic reduction in the light intensity caused by the high absorption characteristics of blood. The Right: AC-RMS profile. The absorption capacity of a given tissue stays constant over time, but the pulsatile nature of blood flow within a vessel causes the sensors beneath the blood vessel experience a sinusoidal signal over time.
Fig. 4
Fig. 4 The flowchart describing the LED intensity adapt algorithm. Keeping the intensity in an optimal range is a critical factor for the size estimation methods to work well.
Fig. 5
Fig. 5 A 3-D tissue block of size 19 × 19 × 10mm3 was modeled. An array of 5 LEDs with inter-element spacing of 3.2mm was at center of the top surface of the block (A). The light from all the LEDs undergoes some attenuation that is dependent on the optical characteristics of the tissue(s) and size of the blood vessel traversed by the photons. The attenuated light that reaches the other side is recorded by the sensors in the linear array under the tissue block (B). The block is inverted upside down (B) to show the placement of the sensor array under the tissue block.
Fig. 6
Fig. 6 Flowchart for the Monte Carlo simulations.
Fig. 7
Fig. 7 Left: The spatial absorption profiles (DC) of blood vessels ranging in diameter from 2mm to 6mm. There is a clear relation between the size of the blood vessel and the widths/depths of DC profiles. The width of these dips can be used as a marker for the size of the corresponding blood vessels. Right: The spatial absorption profiles (DC) of blood vessels ranging in diameter from 2mm to 6mm embedded in an adipose tissue block. The light attenuation caused by tissue is clearly visible as the DC profile loses its flatness on the sides.
Fig. 8
Fig. 8 The AC-RMS (red) and DC (blue) profiles together can be used as a marker to detect and localize skeletonized blood vessels. The peaks in the AC-RMS profile denote the region of the arterial compliance. The modeled compliance is higher in the 6mm blood vessel (right) than in the 3mm vessel (left), resulting in bigger AC-RMS peaks for the larger blood vessel.
Fig. 9
Fig. 9 The AC-RMS (red) and DC (blue) profiles together can be used as a marker to detect and localize native blood vessels. The peaks in the AC-RMS profile denote the region of the arterial compliance. The modeled compliance decreases due to the tissue, however retains a higher magnitude in the 6mm blood vessel (right) than in the 3mm vessel (left), resulting in bigger AC-RMS peaks for the larger blood vessel.
Fig. 10
Fig. 10 (Left) The DC (blue) and AC-RMS (red) profiles from ex vivo experiments. The profiles match the ones acquired in the Monte Carlo simulations. (Right) The signal from the sensors next to the blood vessel have an almost constant signal (blue and red lines). One of the sensors below the blood vessel records a PPG signal (yellow).
Fig. 11
Fig. 11 The results obtained from ex vivo studies. The size estimated using a combination of the DC and the AC-RMS profiles showed a strong correlation between the actual and the estimated sizes of the blood vessels. Our method was able to quantify the skeletonized and native blood vessels with an average error of 0.19mm in the ex vivo settings.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

s [ k ] = 1 10 i = 1 10 x [ 10 ( k 1 ) + i ] k [ 1 , 250 ]

Metrics