Abstract

We present an optical study of elastic wave propagation inside skin phantoms consisting of agar gel as induced by an Er:YAG (wavelength of 2.94 μm) laser pulse. A laser-beam-deflection probe is used to measure ultrasonic propagation and a high-speed camera is used to record displacements in ablation-induced elastic transients. These measurements are further analyzed with a custom developed image recognition algorithm utilizing the methods of particle image velocimetry and spline interpolation to determine point trajectories, material displacement and strain during the passing of the transients. The results indicate that the ablation-induced elastic waves propagate with a velocity of 1 m/s and amplitudes of 0.1 mm. Compared to them, the measured velocities of ultrasonic waves are much higher, within the range of 1.42–1.51 km/s, while their amplitudes are three orders of magnitude smaller. This proves that the agar gel may be used as a rudimental skin and soft tissue substitute in biomedical research, since its polymeric structure reproduces adequate soft-solid properties and its transparency for visible light makes it convenient to study with optical instruments. The results presented provide an insight into the distribution of laser-induced elastic transients in soft tissue phantoms, while the experimental approach serves as a foundation for further research of laser-induced mechanical effects deeper in the tissue.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry

Chunhui Li, Zhihong Huang, and Ruikang K. Wang
Opt. Express 19(11) 10153-10163 (2011)

Pump-probe imaging of nanosecond laser-induced bubbles in agar gel

R. Evans, S. Camacho-López, F. G. Pérez-Gutiérrez, and G. Aguilar
Opt. Express 16(10) 7481-7492 (2008)

Laser induced surface acoustic wave combined with phase sensitive optical coherence tomography for superficial tissue characterization: a solution for practical application

Chunhui Li, Guangying Guan, Fan Zhang, Ghulam Nabi, Ruikang K. Wang, and Zhihong Huang
Biomed. Opt. Express 5(5) 1403-1418 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H.-P. Berlien and G. J. Müller, eds., Applied Laser Medicine (Springer-Verlag, 2003).
  2. R. W. Waynant, ed., Lasers in Medicine (CRC Press, 2001).
  3. K. Nouri, ed., Lasers in Dermatology and Medicine (Springer, 2011).
  4. V. V. Tuchin, ed., Handbook of Optical Biomedical Diagnostics, Second Edition, Volume 1: Light-Tissue Interaction (SPIE Press, 2016).
  5. V. V. Tuchin, ed., Handbook of Optical Biomedical Diagnostics, Second Edition, Volume 2: Methods (SPIE Press, 2016).
  6. S. Choudhary, M. L. Elsaie, A. Leiva, and K. Nouri, “Lasers for tattoo removal: a review,” Lasers Med. Sci. 25(5), 619–627 (2010).
    [Crossref] [PubMed]
  7. A. J. Welch and M. J. C. van Gemert, eds., Optical-Thermal Response of Laser-Irradiated Tissue, Second Edition (Springer Netherlands, 2011).
  8. B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
    [Crossref]
  9. K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
    [Crossref] [PubMed]
  10. B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects,” IEEE J. Sel. Top. Quant. 20(2), 272 (2014).
    [Crossref]
  11. S. P. Kearney, A. Khan, Z. Dai, and T. J. Royston, “Dynamic viscoelastic models of human skin using optical elastography,” Phys. Med. Biol. 60(17), 6975–6990 (2015).
    [Crossref] [PubMed]
  12. B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3(8), 1865–1879 (2012).
    [Crossref] [PubMed]
  13. B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
    [Crossref] [PubMed]
  14. M. Doi, Soft Matter Physics, 1st Edition (Oxford University Press, 2013).
  15. M. Kleman and O. D. Lavrentovich, Soft Matter Physics, An Introduction (Springer, 2003).
  16. W. G. Pitt, G. A. Husseini, and B. J. Staples, “Ultrasonic drug delivery-a general review,” Expert Opin. Drug Deliv. 1(1), 37–56 (2004).
    [Crossref] [PubMed]
  17. H. Jang, S. Yeo, and J. J. Yoh, “Synchronization of skin ablation and microjet injection for an effective transdermal drug delivery,” Appl. Phys., A Mater. Sci. Process. 122(4), 320 (2016).
    [Crossref]
  18. Y.-F. Zhou, “High intensity focused ultrasound in clinical tumor ablation,” World J. Clin. Oncol. 2(1), 8–27 (2011).
    [Crossref] [PubMed]
  19. F. Orsi, L. Zhang, P. Arnone, G. Orgera, G. Bonomo, P. D. Vigna, L. Monfardini, K. Zhou, W. Chen, Z. Wang, and U. Veronesi, “High-Intensity Focused Ultrasound Ablation: Effective and Safe Therapy for Solid Tumors in Difficult Locations,” AJR Am. J. Roentgenol. 195(3), 245 (2010).
    [Crossref] [PubMed]
  20. M. Legay, N. Gondrexon, S. Le Person, P. Boldo, and A. Bontemps, “Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances,” Int. J. Chem. Eng. 2011, 670108 (2011).
    [Crossref]
  21. M. D. Brown, D. I. Nikitichev, B. E. Treeby, and B. T. Cox, “Generating arbitrary ultrasound fields with tailored optoacoustic surface profiles,” Appl. Phys. Lett. 110(9), 094102 (2017).
    [Crossref]
  22. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
    [Crossref] [PubMed]
  23. I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin,” Appl. Phys., A Mater. Sci. Process. 81(2), 329–338 (2005).
    [Crossref]
  24. P. Gregorčič, M. Jezeršek, and J. Možina, “Optodynamic energy-conversion efficiency during an Er:YAG-laser-pulse delivery into a liquid through different fiber-tip geometries,” J. Biomed. Opt. 17(7), 075061 (2012).
    [Crossref] [PubMed]
  25. N. Lukač, J. Zadravec, P. Gregorčič, M. Lukač, and M. Jezeršek, “Wavelength dependence of photon-induced photoacoustic streaming technique for root canal irrigation,” J. Biomed. Opt. 21(7), 075007 (2016).
    [Crossref] [PubMed]
  26. B. Cencič, P. Gregorčič, J. Možina, and M. Jezeršek, “Laser tattoo removal as an ablation process monitored by acoustical and optical methods,” Appl. Phys., A Mater. Sci. Process. 112(1), 65–69 (2013).
    [Crossref]
  27. J. Mark, K. Ngai, W. Graessley, L. Mandelkern, E. Samulski, J. Koenig, and G. Wignall, Physical Properties of Polymers, 3rd Edition (Cambridge University Press, 2004).
  28. J. Mark, (Ed.), Physical Properties of Polymers Handbook, Second edition (Springer-Verlag, 2006).
  29. C. Li, S. Li, G. Guan, C. Wei, Z. Huang, and R. K. Wang, “A comparison of laser ultrasound measurements and finite element simulations for evaluating the elastic properties of tissue mimicking phantoms,” Opt. Laser Technol. 44(4), 866–871 (2012).
    [Crossref]
  30. F. G. Pérez-Gutiérrez, R. Evans, S. Camacho-López, and G. Aguilar, “Mechanical response of agar gel irradiated with Nd:YAG nanosecond laser pulses,” Proc. SPIE 7562, 756212 (2010).
    [Crossref]
  31. C. Sun, S. D. Pye, J. E. Browne, A. Janeczko, B. Ellis, M. B. Butler, V. Sboros, A. J. W. Thomson, M. P. Brewin, C. H. Earnshaw, and C. M. Moran, “The speed of sound and attenuation of an IEC agar-based tissue-mimicking material for high frequency ultrasound applications,” Ultrasound Med. Biol. 38(7), 1262–1270 (2012).
    [Crossref] [PubMed]
  32. V. T. Nayar, J. D. Weiland, C. S. Nelson, and A. M. Hodge, “Elastic and viscoelastic characterization of agar,” J. Mech. Behav. Biomed. Mater. 7, 60–68 (2012).
    [Crossref] [PubMed]
  33. K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
    [Crossref] [PubMed]
  34. H. M. Ahmed, N. M. Salem, A. F. Seddik, and M. I. El Adawy, “On shear wave speed estimation for agar-gelatine phantom,” International Journal of Advanced Computer Science and Applications 7(2), 401–409 (2016).
  35. T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE T. Ultrason. Ferr. 44(6), 1355–1365 (1997).
    [Crossref]
  36. C. M. Moran, N. L. Bush, and J. C. Bamber, “Ultrasonic propagation properties of excised human skin,” Ultrasound Med. Biol. 21(9), 1177–1190 (1995).
    [Crossref] [PubMed]
  37. M. Pawlaczyk, M. Lelonkiewicz, and M. Wieczorowski, “Age-dependent biomechanical properties of the skin,” Postepy Dermatol. Alergol. 5(5), 302–306 (2013).
    [Crossref] [PubMed]
  38. R. Petkovšek, P. Gregorčič, and J. Možina, “A beam-deflection probe as a method for optodynamic measurements of cavitation bubble oscillations,” Meas. Sci. Technol. 18(9), 2972–2978 (2007).
    [Crossref]
  39. R. Petkovšek and P. Gregorčič, “A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography,” J. Appl. Phys. 102(4), 044909 (2007).
    [Crossref]
  40. P. Gregorčič, R. Petkovšek, J. Možina, and G. Močnik, “Measurements of cavitation bubble dynamics based on a beam-deflection probe,” Appl. Phys., A Mater. Sci. Process. 93(4), 901–905 (2008).
    [Crossref]
  41. P. Gregorčič, J. Diaci, and J. Možina, “Two-dimensional measurements of laser-induced breakdown in air by high-speed two-frame shadowgraphy,” Appl. Phys., A Mater. Sci. Process. 112(1), 49–55 (2013).
    [Crossref]
  42. P. Gregorčič, N. Lukač, J. Možina, and M. Jezeršek, “Synchronized delivery of Er:YAG-laser pulses into water studied by a laser beam transmission probe for enhanced endodontic treatment,” Appl. Phys., A Mater. Sci. Process. 122(4), 459 (2016).
    [Crossref]
  43. J. Diaci, “Response Functions of the Laser-Beam Deflection Probe for Detection of Spherical Acoustic-Waves,” Rev. Sci. Instrum. 63(11), 5306–5310 (1992).
    [Crossref]
  44. D. T. Sandwell, “Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data,” Geophys. Res. Lett. 14(2), 139–142 (1987).
    [Crossref]
  45. X. Deng and Z. Tang, “Moving surface spline interpolation based on Green’s function,” Math. Geosci. 43(6), 663–680 (2011).
    [Crossref]

2017 (3)

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref] [PubMed]

M. D. Brown, D. I. Nikitichev, B. E. Treeby, and B. T. Cox, “Generating arbitrary ultrasound fields with tailored optoacoustic surface profiles,” Appl. Phys. Lett. 110(9), 094102 (2017).
[Crossref]

2016 (4)

N. Lukač, J. Zadravec, P. Gregorčič, M. Lukač, and M. Jezeršek, “Wavelength dependence of photon-induced photoacoustic streaming technique for root canal irrigation,” J. Biomed. Opt. 21(7), 075007 (2016).
[Crossref] [PubMed]

H. Jang, S. Yeo, and J. J. Yoh, “Synchronization of skin ablation and microjet injection for an effective transdermal drug delivery,” Appl. Phys., A Mater. Sci. Process. 122(4), 320 (2016).
[Crossref]

H. M. Ahmed, N. M. Salem, A. F. Seddik, and M. I. El Adawy, “On shear wave speed estimation for agar-gelatine phantom,” International Journal of Advanced Computer Science and Applications 7(2), 401–409 (2016).

P. Gregorčič, N. Lukač, J. Možina, and M. Jezeršek, “Synchronized delivery of Er:YAG-laser pulses into water studied by a laser beam transmission probe for enhanced endodontic treatment,” Appl. Phys., A Mater. Sci. Process. 122(4), 459 (2016).
[Crossref]

2015 (1)

S. P. Kearney, A. Khan, Z. Dai, and T. J. Royston, “Dynamic viscoelastic models of human skin using optical elastography,” Phys. Med. Biol. 60(17), 6975–6990 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (3)

B. Cencič, P. Gregorčič, J. Možina, and M. Jezeršek, “Laser tattoo removal as an ablation process monitored by acoustical and optical methods,” Appl. Phys., A Mater. Sci. Process. 112(1), 65–69 (2013).
[Crossref]

P. Gregorčič, J. Diaci, and J. Možina, “Two-dimensional measurements of laser-induced breakdown in air by high-speed two-frame shadowgraphy,” Appl. Phys., A Mater. Sci. Process. 112(1), 49–55 (2013).
[Crossref]

M. Pawlaczyk, M. Lelonkiewicz, and M. Wieczorowski, “Age-dependent biomechanical properties of the skin,” Postepy Dermatol. Alergol. 5(5), 302–306 (2013).
[Crossref] [PubMed]

2012 (5)

P. Gregorčič, M. Jezeršek, and J. Možina, “Optodynamic energy-conversion efficiency during an Er:YAG-laser-pulse delivery into a liquid through different fiber-tip geometries,” J. Biomed. Opt. 17(7), 075061 (2012).
[Crossref] [PubMed]

C. Sun, S. D. Pye, J. E. Browne, A. Janeczko, B. Ellis, M. B. Butler, V. Sboros, A. J. W. Thomson, M. P. Brewin, C. H. Earnshaw, and C. M. Moran, “The speed of sound and attenuation of an IEC agar-based tissue-mimicking material for high frequency ultrasound applications,” Ultrasound Med. Biol. 38(7), 1262–1270 (2012).
[Crossref] [PubMed]

V. T. Nayar, J. D. Weiland, C. S. Nelson, and A. M. Hodge, “Elastic and viscoelastic characterization of agar,” J. Mech. Behav. Biomed. Mater. 7, 60–68 (2012).
[Crossref] [PubMed]

C. Li, S. Li, G. Guan, C. Wei, Z. Huang, and R. K. Wang, “A comparison of laser ultrasound measurements and finite element simulations for evaluating the elastic properties of tissue mimicking phantoms,” Opt. Laser Technol. 44(4), 866–871 (2012).
[Crossref]

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3(8), 1865–1879 (2012).
[Crossref] [PubMed]

2011 (3)

Y.-F. Zhou, “High intensity focused ultrasound in clinical tumor ablation,” World J. Clin. Oncol. 2(1), 8–27 (2011).
[Crossref] [PubMed]

M. Legay, N. Gondrexon, S. Le Person, P. Boldo, and A. Bontemps, “Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances,” Int. J. Chem. Eng. 2011, 670108 (2011).
[Crossref]

X. Deng and Z. Tang, “Moving surface spline interpolation based on Green’s function,” Math. Geosci. 43(6), 663–680 (2011).
[Crossref]

2010 (3)

S. Choudhary, M. L. Elsaie, A. Leiva, and K. Nouri, “Lasers for tattoo removal: a review,” Lasers Med. Sci. 25(5), 619–627 (2010).
[Crossref] [PubMed]

F. G. Pérez-Gutiérrez, R. Evans, S. Camacho-López, and G. Aguilar, “Mechanical response of agar gel irradiated with Nd:YAG nanosecond laser pulses,” Proc. SPIE 7562, 756212 (2010).
[Crossref]

F. Orsi, L. Zhang, P. Arnone, G. Orgera, G. Bonomo, P. D. Vigna, L. Monfardini, K. Zhou, W. Chen, Z. Wang, and U. Veronesi, “High-Intensity Focused Ultrasound Ablation: Effective and Safe Therapy for Solid Tumors in Difficult Locations,” AJR Am. J. Roentgenol. 195(3), 245 (2010).
[Crossref] [PubMed]

2008 (1)

P. Gregorčič, R. Petkovšek, J. Možina, and G. Močnik, “Measurements of cavitation bubble dynamics based on a beam-deflection probe,” Appl. Phys., A Mater. Sci. Process. 93(4), 901–905 (2008).
[Crossref]

2007 (3)

K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref] [PubMed]

R. Petkovšek, P. Gregorčič, and J. Možina, “A beam-deflection probe as a method for optodynamic measurements of cavitation bubble oscillations,” Meas. Sci. Technol. 18(9), 2972–2978 (2007).
[Crossref]

R. Petkovšek and P. Gregorčič, “A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography,” J. Appl. Phys. 102(4), 044909 (2007).
[Crossref]

2005 (1)

I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin,” Appl. Phys., A Mater. Sci. Process. 81(2), 329–338 (2005).
[Crossref]

2004 (1)

W. G. Pitt, G. A. Husseini, and B. J. Staples, “Ultrasonic drug delivery-a general review,” Expert Opin. Drug Deliv. 1(1), 37–56 (2004).
[Crossref] [PubMed]

2003 (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

1997 (1)

T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE T. Ultrason. Ferr. 44(6), 1355–1365 (1997).
[Crossref]

1995 (1)

C. M. Moran, N. L. Bush, and J. C. Bamber, “Ultrasonic propagation properties of excised human skin,” Ultrasound Med. Biol. 21(9), 1177–1190 (1995).
[Crossref] [PubMed]

1992 (1)

J. Diaci, “Response Functions of the Laser-Beam Deflection Probe for Detection of Spherical Acoustic-Waves,” Rev. Sci. Instrum. 63(11), 5306–5310 (1992).
[Crossref]

1987 (1)

D. T. Sandwell, “Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data,” Geophys. Res. Lett. 14(2), 139–142 (1987).
[Crossref]

Aguilar, G.

F. G. Pérez-Gutiérrez, R. Evans, S. Camacho-López, and G. Aguilar, “Mechanical response of agar gel irradiated with Nd:YAG nanosecond laser pulses,” Proc. SPIE 7562, 756212 (2010).
[Crossref]

Ahmed, H. M.

H. M. Ahmed, N. M. Salem, A. F. Seddik, and M. I. El Adawy, “On shear wave speed estimation for agar-gelatine phantom,” International Journal of Advanced Computer Science and Applications 7(2), 401–409 (2016).

Apitz, I.

I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin,” Appl. Phys., A Mater. Sci. Process. 81(2), 329–338 (2005).
[Crossref]

Arnone, P.

F. Orsi, L. Zhang, P. Arnone, G. Orgera, G. Bonomo, P. D. Vigna, L. Monfardini, K. Zhou, W. Chen, Z. Wang, and U. Veronesi, “High-Intensity Focused Ultrasound Ablation: Effective and Safe Therapy for Solid Tumors in Difficult Locations,” AJR Am. J. Roentgenol. 195(3), 245 (2010).
[Crossref] [PubMed]

Bamber, J. C.

C. M. Moran, N. L. Bush, and J. C. Bamber, “Ultrasonic propagation properties of excised human skin,” Ultrasound Med. Biol. 21(9), 1177–1190 (1995).
[Crossref] [PubMed]

Bilgen, M.

T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE T. Ultrason. Ferr. 44(6), 1355–1365 (1997).
[Crossref]

Boldo, P.

M. Legay, N. Gondrexon, S. Le Person, P. Boldo, and A. Bontemps, “Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances,” Int. J. Chem. Eng. 2011, 670108 (2011).
[Crossref]

Bonomo, G.

F. Orsi, L. Zhang, P. Arnone, G. Orgera, G. Bonomo, P. D. Vigna, L. Monfardini, K. Zhou, W. Chen, Z. Wang, and U. Veronesi, “High-Intensity Focused Ultrasound Ablation: Effective and Safe Therapy for Solid Tumors in Difficult Locations,” AJR Am. J. Roentgenol. 195(3), 245 (2010).
[Crossref] [PubMed]

Bontemps, A.

M. Legay, N. Gondrexon, S. Le Person, P. Boldo, and A. Bontemps, “Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances,” Int. J. Chem. Eng. 2011, 670108 (2011).
[Crossref]

Brewin, M. P.

C. Sun, S. D. Pye, J. E. Browne, A. Janeczko, B. Ellis, M. B. Butler, V. Sboros, A. J. W. Thomson, M. P. Brewin, C. H. Earnshaw, and C. M. Moran, “The speed of sound and attenuation of an IEC agar-based tissue-mimicking material for high frequency ultrasound applications,” Ultrasound Med. Biol. 38(7), 1262–1270 (2012).
[Crossref] [PubMed]

Brown, M. D.

M. D. Brown, D. I. Nikitichev, B. E. Treeby, and B. T. Cox, “Generating arbitrary ultrasound fields with tailored optoacoustic surface profiles,” Appl. Phys. Lett. 110(9), 094102 (2017).
[Crossref]

Browne, J. E.

C. Sun, S. D. Pye, J. E. Browne, A. Janeczko, B. Ellis, M. B. Butler, V. Sboros, A. J. W. Thomson, M. P. Brewin, C. H. Earnshaw, and C. M. Moran, “The speed of sound and attenuation of an IEC agar-based tissue-mimicking material for high frequency ultrasound applications,” Ultrasound Med. Biol. 38(7), 1262–1270 (2012).
[Crossref] [PubMed]

Bush, N. L.

C. M. Moran, N. L. Bush, and J. C. Bamber, “Ultrasonic propagation properties of excised human skin,” Ultrasound Med. Biol. 21(9), 1177–1190 (1995).
[Crossref] [PubMed]

Butler, M. B.

C. Sun, S. D. Pye, J. E. Browne, A. Janeczko, B. Ellis, M. B. Butler, V. Sboros, A. J. W. Thomson, M. P. Brewin, C. H. Earnshaw, and C. M. Moran, “The speed of sound and attenuation of an IEC agar-based tissue-mimicking material for high frequency ultrasound applications,” Ultrasound Med. Biol. 38(7), 1262–1270 (2012).
[Crossref] [PubMed]

Camacho-López, S.

F. G. Pérez-Gutiérrez, R. Evans, S. Camacho-López, and G. Aguilar, “Mechanical response of agar gel irradiated with Nd:YAG nanosecond laser pulses,” Proc. SPIE 7562, 756212 (2010).
[Crossref]

Cencic, B.

B. Cencič, P. Gregorčič, J. Možina, and M. Jezeršek, “Laser tattoo removal as an ablation process monitored by acoustical and optical methods,” Appl. Phys., A Mater. Sci. Process. 112(1), 65–69 (2013).
[Crossref]

Chen, W.

F. Orsi, L. Zhang, P. Arnone, G. Orgera, G. Bonomo, P. D. Vigna, L. Monfardini, K. Zhou, W. Chen, Z. Wang, and U. Veronesi, “High-Intensity Focused Ultrasound Ablation: Effective and Safe Therapy for Solid Tumors in Difficult Locations,” AJR Am. J. Roentgenol. 195(3), 245 (2010).
[Crossref] [PubMed]

Chin, L.

Choudhary, S.

S. Choudhary, M. L. Elsaie, A. Leiva, and K. Nouri, “Lasers for tattoo removal: a review,” Lasers Med. Sci. 25(5), 619–627 (2010).
[Crossref] [PubMed]

Cox, B. T.

M. D. Brown, D. I. Nikitichev, B. E. Treeby, and B. T. Cox, “Generating arbitrary ultrasound fields with tailored optoacoustic surface profiles,” Appl. Phys. Lett. 110(9), 094102 (2017).
[Crossref]

Curatolo, A.

Dai, Z.

S. P. Kearney, A. Khan, Z. Dai, and T. J. Royston, “Dynamic viscoelastic models of human skin using optical elastography,” Phys. Med. Biol. 60(17), 6975–6990 (2015).
[Crossref] [PubMed]

Deng, X.

X. Deng and Z. Tang, “Moving surface spline interpolation based on Green’s function,” Math. Geosci. 43(6), 663–680 (2011).
[Crossref]

Diaci, J.

P. Gregorčič, J. Diaci, and J. Možina, “Two-dimensional measurements of laser-induced breakdown in air by high-speed two-frame shadowgraphy,” Appl. Phys., A Mater. Sci. Process. 112(1), 49–55 (2013).
[Crossref]

J. Diaci, “Response Functions of the Laser-Beam Deflection Probe for Detection of Spherical Acoustic-Waves,” Rev. Sci. Instrum. 63(11), 5306–5310 (1992).
[Crossref]

Earnshaw, C. H.

C. Sun, S. D. Pye, J. E. Browne, A. Janeczko, B. Ellis, M. B. Butler, V. Sboros, A. J. W. Thomson, M. P. Brewin, C. H. Earnshaw, and C. M. Moran, “The speed of sound and attenuation of an IEC agar-based tissue-mimicking material for high frequency ultrasound applications,” Ultrasound Med. Biol. 38(7), 1262–1270 (2012).
[Crossref] [PubMed]

El Adawy, M. I.

H. M. Ahmed, N. M. Salem, A. F. Seddik, and M. I. El Adawy, “On shear wave speed estimation for agar-gelatine phantom,” International Journal of Advanced Computer Science and Applications 7(2), 401–409 (2016).

Ellis, B.

C. Sun, S. D. Pye, J. E. Browne, A. Janeczko, B. Ellis, M. B. Butler, V. Sboros, A. J. W. Thomson, M. P. Brewin, C. H. Earnshaw, and C. M. Moran, “The speed of sound and attenuation of an IEC agar-based tissue-mimicking material for high frequency ultrasound applications,” Ultrasound Med. Biol. 38(7), 1262–1270 (2012).
[Crossref] [PubMed]

Elsaie, M. L.

S. Choudhary, M. L. Elsaie, A. Leiva, and K. Nouri, “Lasers for tattoo removal: a review,” Lasers Med. Sci. 25(5), 619–627 (2010).
[Crossref] [PubMed]

Evans, R.

F. G. Pérez-Gutiérrez, R. Evans, S. Camacho-López, and G. Aguilar, “Mechanical response of agar gel irradiated with Nd:YAG nanosecond laser pulses,” Proc. SPIE 7562, 756212 (2010).
[Crossref]

Gondrexon, N.

M. Legay, N. Gondrexon, S. Le Person, P. Boldo, and A. Bontemps, “Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances,” Int. J. Chem. Eng. 2011, 670108 (2011).
[Crossref]

Gregorcic, P.

N. Lukač, J. Zadravec, P. Gregorčič, M. Lukač, and M. Jezeršek, “Wavelength dependence of photon-induced photoacoustic streaming technique for root canal irrigation,” J. Biomed. Opt. 21(7), 075007 (2016).
[Crossref] [PubMed]

P. Gregorčič, N. Lukač, J. Možina, and M. Jezeršek, “Synchronized delivery of Er:YAG-laser pulses into water studied by a laser beam transmission probe for enhanced endodontic treatment,” Appl. Phys., A Mater. Sci. Process. 122(4), 459 (2016).
[Crossref]

P. Gregorčič, J. Diaci, and J. Možina, “Two-dimensional measurements of laser-induced breakdown in air by high-speed two-frame shadowgraphy,” Appl. Phys., A Mater. Sci. Process. 112(1), 49–55 (2013).
[Crossref]

B. Cencič, P. Gregorčič, J. Možina, and M. Jezeršek, “Laser tattoo removal as an ablation process monitored by acoustical and optical methods,” Appl. Phys., A Mater. Sci. Process. 112(1), 65–69 (2013).
[Crossref]

P. Gregorčič, M. Jezeršek, and J. Možina, “Optodynamic energy-conversion efficiency during an Er:YAG-laser-pulse delivery into a liquid through different fiber-tip geometries,” J. Biomed. Opt. 17(7), 075061 (2012).
[Crossref] [PubMed]

P. Gregorčič, R. Petkovšek, J. Možina, and G. Močnik, “Measurements of cavitation bubble dynamics based on a beam-deflection probe,” Appl. Phys., A Mater. Sci. Process. 93(4), 901–905 (2008).
[Crossref]

R. Petkovšek, P. Gregorčič, and J. Možina, “A beam-deflection probe as a method for optodynamic measurements of cavitation bubble oscillations,” Meas. Sci. Technol. 18(9), 2972–2978 (2007).
[Crossref]

R. Petkovšek and P. Gregorčič, “A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography,” J. Appl. Phys. 102(4), 044909 (2007).
[Crossref]

Guan, G.

C. Li, S. Li, G. Guan, C. Wei, Z. Huang, and R. K. Wang, “A comparison of laser ultrasound measurements and finite element simulations for evaluating the elastic properties of tissue mimicking phantoms,” Opt. Laser Technol. 44(4), 866–871 (2012).
[Crossref]

Haisch, C.

K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref] [PubMed]

Hall, T. J.

T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE T. Ultrason. Ferr. 44(6), 1355–1365 (1997).
[Crossref]

Hodge, A. M.

V. T. Nayar, J. D. Weiland, C. S. Nelson, and A. M. Hodge, “Elastic and viscoelastic characterization of agar,” J. Mech. Behav. Biomed. Mater. 7, 60–68 (2012).
[Crossref] [PubMed]

Huang, Z.

C. Li, S. Li, G. Guan, C. Wei, Z. Huang, and R. K. Wang, “A comparison of laser ultrasound measurements and finite element simulations for evaluating the elastic properties of tissue mimicking phantoms,” Opt. Laser Technol. 44(4), 866–871 (2012).
[Crossref]

Husseini, G. A.

W. G. Pitt, G. A. Husseini, and B. J. Staples, “Ultrasonic drug delivery-a general review,” Expert Opin. Drug Deliv. 1(1), 37–56 (2004).
[Crossref] [PubMed]

Insana, M. F.

T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE T. Ultrason. Ferr. 44(6), 1355–1365 (1997).
[Crossref]

Janeczko, A.

C. Sun, S. D. Pye, J. E. Browne, A. Janeczko, B. Ellis, M. B. Butler, V. Sboros, A. J. W. Thomson, M. P. Brewin, C. H. Earnshaw, and C. M. Moran, “The speed of sound and attenuation of an IEC agar-based tissue-mimicking material for high frequency ultrasound applications,” Ultrasound Med. Biol. 38(7), 1262–1270 (2012).
[Crossref] [PubMed]

Jang, H.

H. Jang, S. Yeo, and J. J. Yoh, “Synchronization of skin ablation and microjet injection for an effective transdermal drug delivery,” Appl. Phys., A Mater. Sci. Process. 122(4), 320 (2016).
[Crossref]

Jezeršek, M.

N. Lukač, J. Zadravec, P. Gregorčič, M. Lukač, and M. Jezeršek, “Wavelength dependence of photon-induced photoacoustic streaming technique for root canal irrigation,” J. Biomed. Opt. 21(7), 075007 (2016).
[Crossref] [PubMed]

P. Gregorčič, N. Lukač, J. Možina, and M. Jezeršek, “Synchronized delivery of Er:YAG-laser pulses into water studied by a laser beam transmission probe for enhanced endodontic treatment,” Appl. Phys., A Mater. Sci. Process. 122(4), 459 (2016).
[Crossref]

B. Cencič, P. Gregorčič, J. Možina, and M. Jezeršek, “Laser tattoo removal as an ablation process monitored by acoustical and optical methods,” Appl. Phys., A Mater. Sci. Process. 112(1), 65–69 (2013).
[Crossref]

P. Gregorčič, M. Jezeršek, and J. Možina, “Optodynamic energy-conversion efficiency during an Er:YAG-laser-pulse delivery into a liquid through different fiber-tip geometries,” J. Biomed. Opt. 17(7), 075061 (2012).
[Crossref] [PubMed]

Kearney, S. P.

S. P. Kearney, A. Khan, Z. Dai, and T. J. Royston, “Dynamic viscoelastic models of human skin using optical elastography,” Phys. Med. Biol. 60(17), 6975–6990 (2015).
[Crossref] [PubMed]

Kennedy, B. F.

Kennedy, K. M.

Khan, A.

S. P. Kearney, A. Khan, Z. Dai, and T. J. Royston, “Dynamic viscoelastic models of human skin using optical elastography,” Phys. Med. Biol. 60(17), 6975–6990 (2015).
[Crossref] [PubMed]

Koh, S. H.

Krouskop, T. A.

T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE T. Ultrason. Ferr. 44(6), 1355–1365 (1997).
[Crossref]

Larin, K. V.

Latham, B.

Le Person, S.

M. Legay, N. Gondrexon, S. Le Person, P. Boldo, and A. Bontemps, “Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances,” Int. J. Chem. Eng. 2011, 670108 (2011).
[Crossref]

Legay, M.

M. Legay, N. Gondrexon, S. Le Person, P. Boldo, and A. Bontemps, “Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances,” Int. J. Chem. Eng. 2011, 670108 (2011).
[Crossref]

Leiva, A.

S. Choudhary, M. L. Elsaie, A. Leiva, and K. Nouri, “Lasers for tattoo removal: a review,” Lasers Med. Sci. 25(5), 619–627 (2010).
[Crossref] [PubMed]

Lelonkiewicz, M.

M. Pawlaczyk, M. Lelonkiewicz, and M. Wieczorowski, “Age-dependent biomechanical properties of the skin,” Postepy Dermatol. Alergol. 5(5), 302–306 (2013).
[Crossref] [PubMed]

Li, C.

C. Li, S. Li, G. Guan, C. Wei, Z. Huang, and R. K. Wang, “A comparison of laser ultrasound measurements and finite element simulations for evaluating the elastic properties of tissue mimicking phantoms,” Opt. Laser Technol. 44(4), 866–871 (2012).
[Crossref]

Li, S.

C. Li, S. Li, G. Guan, C. Wei, Z. Huang, and R. K. Wang, “A comparison of laser ultrasound measurements and finite element simulations for evaluating the elastic properties of tissue mimicking phantoms,” Opt. Laser Technol. 44(4), 866–871 (2012).
[Crossref]

Lukac, M.

N. Lukač, J. Zadravec, P. Gregorčič, M. Lukač, and M. Jezeršek, “Wavelength dependence of photon-induced photoacoustic streaming technique for root canal irrigation,” J. Biomed. Opt. 21(7), 075007 (2016).
[Crossref] [PubMed]

Lukac, N.

N. Lukač, J. Zadravec, P. Gregorčič, M. Lukač, and M. Jezeršek, “Wavelength dependence of photon-induced photoacoustic streaming technique for root canal irrigation,” J. Biomed. Opt. 21(7), 075007 (2016).
[Crossref] [PubMed]

P. Gregorčič, N. Lukač, J. Možina, and M. Jezeršek, “Synchronized delivery of Er:YAG-laser pulses into water studied by a laser beam transmission probe for enhanced endodontic treatment,” Appl. Phys., A Mater. Sci. Process. 122(4), 459 (2016).
[Crossref]

McLaughlin, R. A.

Mocnik, G.

P. Gregorčič, R. Petkovšek, J. Možina, and G. Močnik, “Measurements of cavitation bubble dynamics based on a beam-deflection probe,” Appl. Phys., A Mater. Sci. Process. 93(4), 901–905 (2008).
[Crossref]

Monfardini, L.

F. Orsi, L. Zhang, P. Arnone, G. Orgera, G. Bonomo, P. D. Vigna, L. Monfardini, K. Zhou, W. Chen, Z. Wang, and U. Veronesi, “High-Intensity Focused Ultrasound Ablation: Effective and Safe Therapy for Solid Tumors in Difficult Locations,” AJR Am. J. Roentgenol. 195(3), 245 (2010).
[Crossref] [PubMed]

Moran, C. M.

C. Sun, S. D. Pye, J. E. Browne, A. Janeczko, B. Ellis, M. B. Butler, V. Sboros, A. J. W. Thomson, M. P. Brewin, C. H. Earnshaw, and C. M. Moran, “The speed of sound and attenuation of an IEC agar-based tissue-mimicking material for high frequency ultrasound applications,” Ultrasound Med. Biol. 38(7), 1262–1270 (2012).
[Crossref] [PubMed]

C. M. Moran, N. L. Bush, and J. C. Bamber, “Ultrasonic propagation properties of excised human skin,” Ultrasound Med. Biol. 21(9), 1177–1190 (1995).
[Crossref] [PubMed]

Možina, J.

P. Gregorčič, N. Lukač, J. Možina, and M. Jezeršek, “Synchronized delivery of Er:YAG-laser pulses into water studied by a laser beam transmission probe for enhanced endodontic treatment,” Appl. Phys., A Mater. Sci. Process. 122(4), 459 (2016).
[Crossref]

P. Gregorčič, J. Diaci, and J. Možina, “Two-dimensional measurements of laser-induced breakdown in air by high-speed two-frame shadowgraphy,” Appl. Phys., A Mater. Sci. Process. 112(1), 49–55 (2013).
[Crossref]

B. Cencič, P. Gregorčič, J. Možina, and M. Jezeršek, “Laser tattoo removal as an ablation process monitored by acoustical and optical methods,” Appl. Phys., A Mater. Sci. Process. 112(1), 65–69 (2013).
[Crossref]

P. Gregorčič, M. Jezeršek, and J. Možina, “Optodynamic energy-conversion efficiency during an Er:YAG-laser-pulse delivery into a liquid through different fiber-tip geometries,” J. Biomed. Opt. 17(7), 075061 (2012).
[Crossref] [PubMed]

P. Gregorčič, R. Petkovšek, J. Možina, and G. Močnik, “Measurements of cavitation bubble dynamics based on a beam-deflection probe,” Appl. Phys., A Mater. Sci. Process. 93(4), 901–905 (2008).
[Crossref]

R. Petkovšek, P. Gregorčič, and J. Možina, “A beam-deflection probe as a method for optodynamic measurements of cavitation bubble oscillations,” Meas. Sci. Technol. 18(9), 2972–2978 (2007).
[Crossref]

Munro, P. R. T.

Nayar, V. T.

V. T. Nayar, J. D. Weiland, C. S. Nelson, and A. M. Hodge, “Elastic and viscoelastic characterization of agar,” J. Mech. Behav. Biomed. Mater. 7, 60–68 (2012).
[Crossref] [PubMed]

Nelson, C. S.

V. T. Nayar, J. D. Weiland, C. S. Nelson, and A. M. Hodge, “Elastic and viscoelastic characterization of agar,” J. Mech. Behav. Biomed. Mater. 7, 60–68 (2012).
[Crossref] [PubMed]

Niessner, R.

K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref] [PubMed]

Nikitichev, D. I.

M. D. Brown, D. I. Nikitichev, B. E. Treeby, and B. T. Cox, “Generating arbitrary ultrasound fields with tailored optoacoustic surface profiles,” Appl. Phys. Lett. 110(9), 094102 (2017).
[Crossref]

Nouri, K.

S. Choudhary, M. L. Elsaie, A. Leiva, and K. Nouri, “Lasers for tattoo removal: a review,” Lasers Med. Sci. 25(5), 619–627 (2010).
[Crossref] [PubMed]

Orgera, G.

F. Orsi, L. Zhang, P. Arnone, G. Orgera, G. Bonomo, P. D. Vigna, L. Monfardini, K. Zhou, W. Chen, Z. Wang, and U. Veronesi, “High-Intensity Focused Ultrasound Ablation: Effective and Safe Therapy for Solid Tumors in Difficult Locations,” AJR Am. J. Roentgenol. 195(3), 245 (2010).
[Crossref] [PubMed]

Orsi, F.

F. Orsi, L. Zhang, P. Arnone, G. Orgera, G. Bonomo, P. D. Vigna, L. Monfardini, K. Zhou, W. Chen, Z. Wang, and U. Veronesi, “High-Intensity Focused Ultrasound Ablation: Effective and Safe Therapy for Solid Tumors in Difficult Locations,” AJR Am. J. Roentgenol. 195(3), 245 (2010).
[Crossref] [PubMed]

Pawlaczyk, M.

M. Pawlaczyk, M. Lelonkiewicz, and M. Wieczorowski, “Age-dependent biomechanical properties of the skin,” Postepy Dermatol. Alergol. 5(5), 302–306 (2013).
[Crossref] [PubMed]

Pérez-Gutiérrez, F. G.

F. G. Pérez-Gutiérrez, R. Evans, S. Camacho-López, and G. Aguilar, “Mechanical response of agar gel irradiated with Nd:YAG nanosecond laser pulses,” Proc. SPIE 7562, 756212 (2010).
[Crossref]

Petkovšek, R.

P. Gregorčič, R. Petkovšek, J. Možina, and G. Močnik, “Measurements of cavitation bubble dynamics based on a beam-deflection probe,” Appl. Phys., A Mater. Sci. Process. 93(4), 901–905 (2008).
[Crossref]

R. Petkovšek and P. Gregorčič, “A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography,” J. Appl. Phys. 102(4), 044909 (2007).
[Crossref]

R. Petkovšek, P. Gregorčič, and J. Možina, “A beam-deflection probe as a method for optodynamic measurements of cavitation bubble oscillations,” Meas. Sci. Technol. 18(9), 2972–2978 (2007).
[Crossref]

Pitt, W. G.

W. G. Pitt, G. A. Husseini, and B. J. Staples, “Ultrasonic drug delivery-a general review,” Expert Opin. Drug Deliv. 1(1), 37–56 (2004).
[Crossref] [PubMed]

Pye, S. D.

C. Sun, S. D. Pye, J. E. Browne, A. Janeczko, B. Ellis, M. B. Butler, V. Sboros, A. J. W. Thomson, M. P. Brewin, C. H. Earnshaw, and C. M. Moran, “The speed of sound and attenuation of an IEC agar-based tissue-mimicking material for high frequency ultrasound applications,” Ultrasound Med. Biol. 38(7), 1262–1270 (2012).
[Crossref] [PubMed]

Royston, T. J.

S. P. Kearney, A. Khan, Z. Dai, and T. J. Royston, “Dynamic viscoelastic models of human skin using optical elastography,” Phys. Med. Biol. 60(17), 6975–6990 (2015).
[Crossref] [PubMed]

Salem, N. M.

H. M. Ahmed, N. M. Salem, A. F. Seddik, and M. I. El Adawy, “On shear wave speed estimation for agar-gelatine phantom,” International Journal of Advanced Computer Science and Applications 7(2), 401–409 (2016).

Sampson, D. D.

Sandwell, D. T.

D. T. Sandwell, “Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data,” Geophys. Res. Lett. 14(2), 139–142 (1987).
[Crossref]

Saunders, C. M.

Sboros, V.

C. Sun, S. D. Pye, J. E. Browne, A. Janeczko, B. Ellis, M. B. Butler, V. Sboros, A. J. W. Thomson, M. P. Brewin, C. H. Earnshaw, and C. M. Moran, “The speed of sound and attenuation of an IEC agar-based tissue-mimicking material for high frequency ultrasound applications,” Ultrasound Med. Biol. 38(7), 1262–1270 (2012).
[Crossref] [PubMed]

Seddik, A. F.

H. M. Ahmed, N. M. Salem, A. F. Seddik, and M. I. El Adawy, “On shear wave speed estimation for agar-gelatine phantom,” International Journal of Advanced Computer Science and Applications 7(2), 401–409 (2016).

Sperl, J. I.

K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref] [PubMed]

Staples, B. J.

W. G. Pitt, G. A. Husseini, and B. J. Staples, “Ultrasonic drug delivery-a general review,” Expert Opin. Drug Deliv. 1(1), 37–56 (2004).
[Crossref] [PubMed]

Sun, C.

C. Sun, S. D. Pye, J. E. Browne, A. Janeczko, B. Ellis, M. B. Butler, V. Sboros, A. J. W. Thomson, M. P. Brewin, C. H. Earnshaw, and C. M. Moran, “The speed of sound and attenuation of an IEC agar-based tissue-mimicking material for high frequency ultrasound applications,” Ultrasound Med. Biol. 38(7), 1262–1270 (2012).
[Crossref] [PubMed]

Tang, Z.

X. Deng and Z. Tang, “Moving surface spline interpolation based on Green’s function,” Math. Geosci. 43(6), 663–680 (2011).
[Crossref]

Thomson, A. J. W.

C. Sun, S. D. Pye, J. E. Browne, A. Janeczko, B. Ellis, M. B. Butler, V. Sboros, A. J. W. Thomson, M. P. Brewin, C. H. Earnshaw, and C. M. Moran, “The speed of sound and attenuation of an IEC agar-based tissue-mimicking material for high frequency ultrasound applications,” Ultrasound Med. Biol. 38(7), 1262–1270 (2012).
[Crossref] [PubMed]

Tien, A.

Treeby, B. E.

M. D. Brown, D. I. Nikitichev, B. E. Treeby, and B. T. Cox, “Generating arbitrary ultrasound fields with tailored optoacoustic surface profiles,” Appl. Phys. Lett. 110(9), 094102 (2017).
[Crossref]

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

Veronesi, U.

F. Orsi, L. Zhang, P. Arnone, G. Orgera, G. Bonomo, P. D. Vigna, L. Monfardini, K. Zhou, W. Chen, Z. Wang, and U. Veronesi, “High-Intensity Focused Ultrasound Ablation: Effective and Safe Therapy for Solid Tumors in Difficult Locations,” AJR Am. J. Roentgenol. 195(3), 245 (2010).
[Crossref] [PubMed]

Vigna, P. D.

F. Orsi, L. Zhang, P. Arnone, G. Orgera, G. Bonomo, P. D. Vigna, L. Monfardini, K. Zhou, W. Chen, Z. Wang, and U. Veronesi, “High-Intensity Focused Ultrasound Ablation: Effective and Safe Therapy for Solid Tumors in Difficult Locations,” AJR Am. J. Roentgenol. 195(3), 245 (2010).
[Crossref] [PubMed]

Vogel, A.

I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin,” Appl. Phys., A Mater. Sci. Process. 81(2), 329–338 (2005).
[Crossref]

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

Vogel, M. W.

K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref] [PubMed]

Wang, R. K.

C. Li, S. Li, G. Guan, C. Wei, Z. Huang, and R. K. Wang, “A comparison of laser ultrasound measurements and finite element simulations for evaluating the elastic properties of tissue mimicking phantoms,” Opt. Laser Technol. 44(4), 866–871 (2012).
[Crossref]

Wang, Z.

F. Orsi, L. Zhang, P. Arnone, G. Orgera, G. Bonomo, P. D. Vigna, L. Monfardini, K. Zhou, W. Chen, Z. Wang, and U. Veronesi, “High-Intensity Focused Ultrasound Ablation: Effective and Safe Therapy for Solid Tumors in Difficult Locations,” AJR Am. J. Roentgenol. 195(3), 245 (2010).
[Crossref] [PubMed]

Wei, C.

C. Li, S. Li, G. Guan, C. Wei, Z. Huang, and R. K. Wang, “A comparison of laser ultrasound measurements and finite element simulations for evaluating the elastic properties of tissue mimicking phantoms,” Opt. Laser Technol. 44(4), 866–871 (2012).
[Crossref]

Weiland, J. D.

V. T. Nayar, J. D. Weiland, C. S. Nelson, and A. M. Hodge, “Elastic and viscoelastic characterization of agar,” J. Mech. Behav. Biomed. Mater. 7, 60–68 (2012).
[Crossref] [PubMed]

Wieczorowski, M.

M. Pawlaczyk, M. Lelonkiewicz, and M. Wieczorowski, “Age-dependent biomechanical properties of the skin,” Postepy Dermatol. Alergol. 5(5), 302–306 (2013).
[Crossref] [PubMed]

Wijesinghe, P.

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

Yeo, S.

H. Jang, S. Yeo, and J. J. Yoh, “Synchronization of skin ablation and microjet injection for an effective transdermal drug delivery,” Appl. Phys., A Mater. Sci. Process. 122(4), 320 (2016).
[Crossref]

Yoh, J. J.

H. Jang, S. Yeo, and J. J. Yoh, “Synchronization of skin ablation and microjet injection for an effective transdermal drug delivery,” Appl. Phys., A Mater. Sci. Process. 122(4), 320 (2016).
[Crossref]

Zadravec, J.

N. Lukač, J. Zadravec, P. Gregorčič, M. Lukač, and M. Jezeršek, “Wavelength dependence of photon-induced photoacoustic streaming technique for root canal irrigation,” J. Biomed. Opt. 21(7), 075007 (2016).
[Crossref] [PubMed]

Zell, K.

K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref] [PubMed]

Zhang, L.

F. Orsi, L. Zhang, P. Arnone, G. Orgera, G. Bonomo, P. D. Vigna, L. Monfardini, K. Zhou, W. Chen, Z. Wang, and U. Veronesi, “High-Intensity Focused Ultrasound Ablation: Effective and Safe Therapy for Solid Tumors in Difficult Locations,” AJR Am. J. Roentgenol. 195(3), 245 (2010).
[Crossref] [PubMed]

Zhou, K.

F. Orsi, L. Zhang, P. Arnone, G. Orgera, G. Bonomo, P. D. Vigna, L. Monfardini, K. Zhou, W. Chen, Z. Wang, and U. Veronesi, “High-Intensity Focused Ultrasound Ablation: Effective and Safe Therapy for Solid Tumors in Difficult Locations,” AJR Am. J. Roentgenol. 195(3), 245 (2010).
[Crossref] [PubMed]

Zhou, Y.-F.

Y.-F. Zhou, “High intensity focused ultrasound in clinical tumor ablation,” World J. Clin. Oncol. 2(1), 8–27 (2011).
[Crossref] [PubMed]

AJR Am. J. Roentgenol. (1)

F. Orsi, L. Zhang, P. Arnone, G. Orgera, G. Bonomo, P. D. Vigna, L. Monfardini, K. Zhou, W. Chen, Z. Wang, and U. Veronesi, “High-Intensity Focused Ultrasound Ablation: Effective and Safe Therapy for Solid Tumors in Difficult Locations,” AJR Am. J. Roentgenol. 195(3), 245 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. D. Brown, D. I. Nikitichev, B. E. Treeby, and B. T. Cox, “Generating arbitrary ultrasound fields with tailored optoacoustic surface profiles,” Appl. Phys. Lett. 110(9), 094102 (2017).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (6)

I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin,” Appl. Phys., A Mater. Sci. Process. 81(2), 329–338 (2005).
[Crossref]

B. Cencič, P. Gregorčič, J. Možina, and M. Jezeršek, “Laser tattoo removal as an ablation process monitored by acoustical and optical methods,” Appl. Phys., A Mater. Sci. Process. 112(1), 65–69 (2013).
[Crossref]

H. Jang, S. Yeo, and J. J. Yoh, “Synchronization of skin ablation and microjet injection for an effective transdermal drug delivery,” Appl. Phys., A Mater. Sci. Process. 122(4), 320 (2016).
[Crossref]

P. Gregorčič, R. Petkovšek, J. Možina, and G. Močnik, “Measurements of cavitation bubble dynamics based on a beam-deflection probe,” Appl. Phys., A Mater. Sci. Process. 93(4), 901–905 (2008).
[Crossref]

P. Gregorčič, J. Diaci, and J. Možina, “Two-dimensional measurements of laser-induced breakdown in air by high-speed two-frame shadowgraphy,” Appl. Phys., A Mater. Sci. Process. 112(1), 49–55 (2013).
[Crossref]

P. Gregorčič, N. Lukač, J. Možina, and M. Jezeršek, “Synchronized delivery of Er:YAG-laser pulses into water studied by a laser beam transmission probe for enhanced endodontic treatment,” Appl. Phys., A Mater. Sci. Process. 122(4), 459 (2016).
[Crossref]

Biomed. Opt. Express (3)

Chem. Rev. (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

Expert Opin. Drug Deliv. (1)

W. G. Pitt, G. A. Husseini, and B. J. Staples, “Ultrasonic drug delivery-a general review,” Expert Opin. Drug Deliv. 1(1), 37–56 (2004).
[Crossref] [PubMed]

Geophys. Res. Lett. (1)

D. T. Sandwell, “Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data,” Geophys. Res. Lett. 14(2), 139–142 (1987).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects,” IEEE J. Sel. Top. Quant. 20(2), 272 (2014).
[Crossref]

IEEE T. Ultrason. Ferr. (1)

T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE T. Ultrason. Ferr. 44(6), 1355–1365 (1997).
[Crossref]

Int. J. Chem. Eng. (1)

M. Legay, N. Gondrexon, S. Le Person, P. Boldo, and A. Bontemps, “Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances,” Int. J. Chem. Eng. 2011, 670108 (2011).
[Crossref]

International Journal of Advanced Computer Science and Applications (1)

H. M. Ahmed, N. M. Salem, A. F. Seddik, and M. I. El Adawy, “On shear wave speed estimation for agar-gelatine phantom,” International Journal of Advanced Computer Science and Applications 7(2), 401–409 (2016).

J. Appl. Phys. (1)

R. Petkovšek and P. Gregorčič, “A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography,” J. Appl. Phys. 102(4), 044909 (2007).
[Crossref]

J. Biomed. Opt. (2)

P. Gregorčič, M. Jezeršek, and J. Možina, “Optodynamic energy-conversion efficiency during an Er:YAG-laser-pulse delivery into a liquid through different fiber-tip geometries,” J. Biomed. Opt. 17(7), 075061 (2012).
[Crossref] [PubMed]

N. Lukač, J. Zadravec, P. Gregorčič, M. Lukač, and M. Jezeršek, “Wavelength dependence of photon-induced photoacoustic streaming technique for root canal irrigation,” J. Biomed. Opt. 21(7), 075007 (2016).
[Crossref] [PubMed]

J. Mech. Behav. Biomed. Mater. (1)

V. T. Nayar, J. D. Weiland, C. S. Nelson, and A. M. Hodge, “Elastic and viscoelastic characterization of agar,” J. Mech. Behav. Biomed. Mater. 7, 60–68 (2012).
[Crossref] [PubMed]

Lasers Med. Sci. (1)

S. Choudhary, M. L. Elsaie, A. Leiva, and K. Nouri, “Lasers for tattoo removal: a review,” Lasers Med. Sci. 25(5), 619–627 (2010).
[Crossref] [PubMed]

Math. Geosci. (1)

X. Deng and Z. Tang, “Moving surface spline interpolation based on Green’s function,” Math. Geosci. 43(6), 663–680 (2011).
[Crossref]

Meas. Sci. Technol. (1)

R. Petkovšek, P. Gregorčič, and J. Možina, “A beam-deflection probe as a method for optodynamic measurements of cavitation bubble oscillations,” Meas. Sci. Technol. 18(9), 2972–2978 (2007).
[Crossref]

Nat. Photonics (1)

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

Opt. Laser Technol. (1)

C. Li, S. Li, G. Guan, C. Wei, Z. Huang, and R. K. Wang, “A comparison of laser ultrasound measurements and finite element simulations for evaluating the elastic properties of tissue mimicking phantoms,” Opt. Laser Technol. 44(4), 866–871 (2012).
[Crossref]

Phys. Med. Biol. (2)

K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref] [PubMed]

S. P. Kearney, A. Khan, Z. Dai, and T. J. Royston, “Dynamic viscoelastic models of human skin using optical elastography,” Phys. Med. Biol. 60(17), 6975–6990 (2015).
[Crossref] [PubMed]

Postepy Dermatol. Alergol. (1)

M. Pawlaczyk, M. Lelonkiewicz, and M. Wieczorowski, “Age-dependent biomechanical properties of the skin,” Postepy Dermatol. Alergol. 5(5), 302–306 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

F. G. Pérez-Gutiérrez, R. Evans, S. Camacho-López, and G. Aguilar, “Mechanical response of agar gel irradiated with Nd:YAG nanosecond laser pulses,” Proc. SPIE 7562, 756212 (2010).
[Crossref]

Rev. Sci. Instrum. (1)

J. Diaci, “Response Functions of the Laser-Beam Deflection Probe for Detection of Spherical Acoustic-Waves,” Rev. Sci. Instrum. 63(11), 5306–5310 (1992).
[Crossref]

Ultrasound Med. Biol. (2)

C. Sun, S. D. Pye, J. E. Browne, A. Janeczko, B. Ellis, M. B. Butler, V. Sboros, A. J. W. Thomson, M. P. Brewin, C. H. Earnshaw, and C. M. Moran, “The speed of sound and attenuation of an IEC agar-based tissue-mimicking material for high frequency ultrasound applications,” Ultrasound Med. Biol. 38(7), 1262–1270 (2012).
[Crossref] [PubMed]

C. M. Moran, N. L. Bush, and J. C. Bamber, “Ultrasonic propagation properties of excised human skin,” Ultrasound Med. Biol. 21(9), 1177–1190 (1995).
[Crossref] [PubMed]

World J. Clin. Oncol. (1)

Y.-F. Zhou, “High intensity focused ultrasound in clinical tumor ablation,” World J. Clin. Oncol. 2(1), 8–27 (2011).
[Crossref] [PubMed]

Other (10)

M. Doi, Soft Matter Physics, 1st Edition (Oxford University Press, 2013).

M. Kleman and O. D. Lavrentovich, Soft Matter Physics, An Introduction (Springer, 2003).

A. J. Welch and M. J. C. van Gemert, eds., Optical-Thermal Response of Laser-Irradiated Tissue, Second Edition (Springer Netherlands, 2011).

H.-P. Berlien and G. J. Müller, eds., Applied Laser Medicine (Springer-Verlag, 2003).

R. W. Waynant, ed., Lasers in Medicine (CRC Press, 2001).

K. Nouri, ed., Lasers in Dermatology and Medicine (Springer, 2011).

V. V. Tuchin, ed., Handbook of Optical Biomedical Diagnostics, Second Edition, Volume 1: Light-Tissue Interaction (SPIE Press, 2016).

V. V. Tuchin, ed., Handbook of Optical Biomedical Diagnostics, Second Edition, Volume 2: Methods (SPIE Press, 2016).

J. Mark, K. Ngai, W. Graessley, L. Mandelkern, E. Samulski, J. Koenig, and G. Wignall, Physical Properties of Polymers, 3rd Edition (Cambridge University Press, 2004).

J. Mark, (Ed.), Physical Properties of Polymers Handbook, Second edition (Springer-Verlag, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematics of the LBDP setup for measuring the propagation velocity of the ultrasonic pressure waves in agar blocks at two probing depths: (a) z1 and (b) z2. Representative signals (unfiltered and low-pass-filtered) from InAs (green) and quadrant (red) photodiodes, measuring the intensities of the stimulating pulse and the LBDP beam, respectively, at both probing depths: (c) z1 and (d) z2. From them, the temporal delays tz1 and tz2 between the stimulation and detection of the first ultrasonic transient are measured.
Fig. 2
Fig. 2 Schematics of the high-speed-camera setup for recording the laser-stimulated mechanical wave propagation (a) inside the agar blocks and (b) on their surface.
Fig. 3
Fig. 3 Typical image sequences of (a) laser-induced bubble formation and collapse inside the agar blocks at pulse energy of 400 mJ; and (b) propagation of laser-induced elastic waves on agar surface and laser-incurred surface material damage at pulse energy of 150 mJ. (c) Selected cutouts of shadowgraphic images of glass spheres used for their movement tracking during elastic wave transitions as induced by a 200 mJ laser pulse.
Fig. 4
Fig. 4 (a) A mesh of point trajectories was acquired by the image recognition algorithm utilizing the PIV methods and spline interpolation from a single particle displacement recording during elastic wave transitions as induced by a 200 mJ laser pulse in duration of 25 ms (501 frames). Enlarged are (b)–(e) four typical trajectories (ux(t), uz(t)), with marked time points in milliseconds, on the right-hand side of the graphs showing their time-dependent orthogonal displacement components uz(t) (longitudinal) and ux(t) (lateral) in four distinct positions relative to the laser-illuminated area.
Fig. 5
Fig. 5 Transition of ablation-induced elastic waves after irradiation by a 200 mJ laser pulse shown (a) in absolute material displacement fields and (b) as temporal material deformations in fields of relative strain. Results are shown for longitudinal ↕ (left) and lateral ↔ (right) directions at five time points, separately.
Fig. 6
Fig. 6 Linearly interpolated color-coded local displacement amplitude fields showing longitudinal ↕ (left) and lateral ↔ (right) displacement amplitudes separately at four stimulating pulse energies EN with different corresponding amplitude suprema uSUP. They indicate the overall distribution of the elastic energy pertaining to each displacement direction.
Fig. 7
Fig. 7 Plot of longitudinal ↕ (red) and lateral ↔ (green) displacement amplitude suprema uSUP corresponding to four stimulating pulse energies EN with a linear function fitted to each of them.

Tables (1)

Tables Icon

Table 1 Propagation velocities of ultrasonic pressure waves in agar gel skin phantoms.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

c P = z 2 z 1 t z2 t z1 .
e i REL ( t j )= u i+1 ( t j+1 ) u i ( t j+1 ) u i+1 ( t j ) u i ( t j ) .

Metrics