Abstract

A home-made near-infrared laser tweezers Raman spectroscopy (LTRS) system was applied to detect hemoglobin variation in red blood cells (RBCs) from diabetes without exogenous labeling. Results showed significant spectral differences existed between the diabetic and normal RBCs, including the peaks dominated by protein components (e.g. 1003 cm−1) and heme groups (e.g. 753 cm−1) in RBCs, and accurate classification results for diabetes detection were obtained by linear discriminant analysis with 100% sensitivity (i.e. no false negatives in the study). This work indicated the great promise of LTRS as a label-free RBC analytical tool for improving the accurate detection of type II diabetes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Label-free optical sensor based on red blood cells laser tweezers Raman spectroscopy analysis for ABO blood typing

Duo Lin, Zuci Zheng, Qiwen Wang, Hao Huang, Zufang Huang, Yun Yu, Sufang Qiu, Cuncheng Wen, Min Cheng, and Shangyuan Feng
Opt. Express 24(21) 24750-24759 (2016)

Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman Tweezers

Anna Chiara De Luca, Giulia Rusciano, Rosanna Ciancia, Vincenzo Martinelli, Giuseppe Pesce, Bruno Rotoli, Lara Selvaggi, and Antonio Sasso
Opt. Express 16(11) 7943-7957 (2008)

Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis

Duo Lin, Shangyuan Feng, Jianji Pan, Yanping Chen, Juqiang Lin, Guannan Chen, Shusen Xie, Haishan Zeng, and Rong Chen
Opt. Express 19(14) 13565-13577 (2011)

References

  • View by:
  • |
  • |
  • |

  1. W. H. Organization, “Global report on diabetes,” Working Papers (2016).
  2. T. Scully, “Diabetes in numbers,” Nature 485(7398), S2–S3 (2012).
    [Crossref] [PubMed]
  3. J. M. Forbes and M. E. Cooper, “Mechanisms of diabetic complications,” Physiol. Rev. 93(1), 137–188 (2013).
    [Crossref] [PubMed]
  4. J. C. Bazo-Alvarez, R. Quispe, T. D. Pillay, A. Bernabé-Ortiz, L. Smeeth, W. Checkley, R. H. Gilman, G. Málaga, and J. J. Miranda, “Glycated haemoglobin (HbA1c ) and fasting plasma glucose relationships in sea-level and high-altitude settings,” Diabet. Med. 34(6), 804–812 (2017).
    [Crossref] [PubMed]
  5. D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care 34(6), e61–e99 (2011).
    [Crossref] [PubMed]
  6. K. J. Welsh, M. S. Kirkman, and D. B. Sacks, “Role of Glycated Proteins in the Diagnosis and Management of Diabetes: Research Gaps and Future Directions,” Diabetes Care 39(8), 1299–1306 (2016).
    [Crossref] [PubMed]
  7. I. Barman, N. C. Dingari, J. W. Kang, G. L. Horowitz, R. R. Dasari, and M. S. Feld, “Raman spectroscopy-based sensitive and specific detection of glycated hemoglobin,” Anal. Chem. 84(5), 2474–2482 (2012).
    [Crossref] [PubMed]
  8. D. M. Kim and Y. B. Shim, “Disposable amperometric glycated hemoglobin sensor for the finger prick blood test,” Anal. Chem. 85(13), 6536–6543 (2013).
    [Crossref] [PubMed]
  9. K. Chen, Y. Qin, F. Zheng, M. Sun, and D. Shi, “Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells,” Opt. Lett. 31(13), 2015–2017 (2006).
    [Crossref] [PubMed]
  10. R. Liu, Z. Mao, D. L. Matthews, C. S. Li, J. W. Chan, and N. Satake, “Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease,” Exp. Hematol. 41(7), 656–661 (2013).
    [Crossref] [PubMed]
  11. D. Lin, Z. Zheng, Q. Wang, H. Huang, Z. Huang, Y. Yu, S. Qiu, C. Wen, M. Cheng, and S. Feng, “Label-free optical sensor based on red blood cells laser tweezers Raman spectroscopy analysis for ABO blood typing,” Opt. Express 24(21), 24750–24759 (2016).
    [Crossref] [PubMed]
  12. G. Rusciano, A. C. De Luca, G. Pesce, and A. Sasso, “Raman Tweezers as a Diagnostic Tool of Hemoglobin-Related Blood Disorders,” Sensors (Basel) 8(12), 7818–7832 (2008).
    [Crossref] [PubMed]
  13. J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near‐infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
    [Crossref]
  14. A. J. Berger, T. W. Koo, I. Itzkan, G. Horowitz, and M. S. Feld, “Multicomponent blood analysis by near-infrared Raman spectroscopy,” Appl. Opt. 38(13), 2916–2926 (1999).
    [Crossref] [PubMed]
  15. B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
    [Crossref] [PubMed]
  16. J. Zhao, H. Lui, D. I. McLean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Appl. Spectrosc. 61(11), 1225–1232 (2007).
    [Crossref] [PubMed]
  17. Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
    [Crossref] [PubMed]
  18. J. Lin, Z. Huang, S. Feng, J. Lin, N. Liu, J. Wang, L. Li, Y. Zeng, B. Li, H. Zeng, and R. Chen, “Label‐free optical detection of type II diabetes based on surface‐enhanced Raman spectroscopy and multivariate analysis,” J. Raman Spectrosc. 45(10), 884–889 (2015).
    [Crossref]
  19. B. R. Wood and D. Mcnaughton, “Raman excitation wavelength investigation of single red blood cells in vivo,” J. Raman Spectrosc. 33(7), 517–523 (2002).
    [Crossref]
  20. A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
    [Crossref] [PubMed]
  21. J. Lin, J. Lin, Z. Huang, P. Lu, J. Wang, X. Wang, and R. Chen, “Raman spectroscopy of human hemoglobin for diabetes detection,” Journal of Innovation in Optical Health Science 7, 697 (2014).
  22. J. Lin, G. Cao, J. Lin, N. Liu, F. Liao, Q. Ruan, S. Wu, Z. Huang, L. Li, and R. Chen, “Serum albumin analysis for type II diabetes detection using surface-enhanced Raman spectroscopy,” Proc. SPIE 9230, 92301Z (2014).
    [Crossref]
  23. J. Wang, S. Feng, J. Lin, Y. Zeng, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Serum albumin and globulin analysis for hepatocellular carcinoma detection avoiding false-negative results from alpha-fetoprotein test negative subjects,” Appl. Phys. Lett. 103, 837–866 (2013).
  24. S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Near-infrared Raman spectroscopy for gastric precancer diagnosis,” J. Raman Spectrosc. 40(8), 908–914 (2010).
    [Crossref]
  25. S. Li, Y. Zhang, J. Xu, L. Li, Q. Zeng, L. Lin, Z. Guo, Z. Liu, H. Xiong, and S. Liu, “Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine,” Appl. Phys. Lett. 105, 57–136 (2014).
  26. J. W. Baynes, “Role of oxidative stress in development of complications in diabetes,” Diabetes 40(4), 405–412 (1991).
    [Crossref] [PubMed]
  27. L. Razzouk, V. Mathew, R. J. Lennon, A. Aneja, J. I. Mozes, H. J. Wiste, P. Muntner, J. H. Chesebro, and M. E. Farkouh, “Power dependent oxygenation state transition of red blood cells in a single beam optical trap,” Appl. Phys. Lett. 99, 671 (2011).
  28. J. Lin, Y. Zeng, J. Lin, J. Wang, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Erythrocyte membrane analysis for type II diabetes detection using Raman spectroscopy in high-wavenumber region,” Appl. Phys. Lett. 104(10), 104102 (2014).
    [Crossref]
  29. D. Lin, G. Chen, S. Feng, J. Pan, J. Lin, Z. Huang, and R. Chen, “Development of a rapid macro-Raman spectroscopy system for nasopharyngeal cancer detection based on surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 106(1), 013701 (2015).
    [Crossref]
  30. G. Del Mistro, S. Cervo, E. Mansutti, R. Spizzo, A. Colombatti, P. Belmonte, R. Zucconelli, A. Steffan, V. Sergo, and A. Bonifacio, “Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study,” Anal. Bioanal. Chem. 407(12), 3271–3275 (2015).
    [Crossref] [PubMed]
  31. K. Lin, D. L. P. Cheng, and Z. Huang, “Optical diagnosis of laryngeal cancer using high wavenumber Raman spectroscopy,” Biosens. Bioelectron. 35(1), 213–217 (2012).
    [Crossref] [PubMed]
  32. G. R. Lloyd, L. M. Almond, N. Stone, N. Shepherd, S. Sanders, J. Hutchings, H. Barr, and C. Kendall, “Utilising non-consensus pathology measurements to improve the diagnosis of oesophageal cancer using a Raman spectroscopic probe,” Analyst (Lond.) 139(2), 381–388 (2014).
    [Crossref] [PubMed]
  33. R. Bro and A. K. Smilde, “Principal component analysis,” Anal. Methods 6(9), 2812–2831 (2014).
    [Crossref]
  34. K. Lin, D. L. Cheng, and Z. Huang, “Optical diagnosis of laryngeal cancer using high wavenumber Raman spectroscopy,” Biosens. Bioelectron. 35(1), 213–217 (2012).
    [Crossref] [PubMed]
  35. S. Feng, J. Lin, Z. Huang, G. Chen, W. Chen, Y. Wang, R. Chen, and H. Zeng, “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Appl. Phys. Lett. 102(4), 043702 (2013).
    [Crossref]
  36. N. A. Obuchowski, “Receiver Operating Characteristic Curves and Their Use in Radiology,” Radiology 229(1), 3–8 (2003).
    [Crossref] [PubMed]

2017 (1)

J. C. Bazo-Alvarez, R. Quispe, T. D. Pillay, A. Bernabé-Ortiz, L. Smeeth, W. Checkley, R. H. Gilman, G. Málaga, and J. J. Miranda, “Glycated haemoglobin (HbA1c ) and fasting plasma glucose relationships in sea-level and high-altitude settings,” Diabet. Med. 34(6), 804–812 (2017).
[Crossref] [PubMed]

2016 (2)

K. J. Welsh, M. S. Kirkman, and D. B. Sacks, “Role of Glycated Proteins in the Diagnosis and Management of Diabetes: Research Gaps and Future Directions,” Diabetes Care 39(8), 1299–1306 (2016).
[Crossref] [PubMed]

D. Lin, Z. Zheng, Q. Wang, H. Huang, Z. Huang, Y. Yu, S. Qiu, C. Wen, M. Cheng, and S. Feng, “Label-free optical sensor based on red blood cells laser tweezers Raman spectroscopy analysis for ABO blood typing,” Opt. Express 24(21), 24750–24759 (2016).
[Crossref] [PubMed]

2015 (3)

J. Lin, Z. Huang, S. Feng, J. Lin, N. Liu, J. Wang, L. Li, Y. Zeng, B. Li, H. Zeng, and R. Chen, “Label‐free optical detection of type II diabetes based on surface‐enhanced Raman spectroscopy and multivariate analysis,” J. Raman Spectrosc. 45(10), 884–889 (2015).
[Crossref]

D. Lin, G. Chen, S. Feng, J. Pan, J. Lin, Z. Huang, and R. Chen, “Development of a rapid macro-Raman spectroscopy system for nasopharyngeal cancer detection based on surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 106(1), 013701 (2015).
[Crossref]

G. Del Mistro, S. Cervo, E. Mansutti, R. Spizzo, A. Colombatti, P. Belmonte, R. Zucconelli, A. Steffan, V. Sergo, and A. Bonifacio, “Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study,” Anal. Bioanal. Chem. 407(12), 3271–3275 (2015).
[Crossref] [PubMed]

2014 (6)

J. Lin, Y. Zeng, J. Lin, J. Wang, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Erythrocyte membrane analysis for type II diabetes detection using Raman spectroscopy in high-wavenumber region,” Appl. Phys. Lett. 104(10), 104102 (2014).
[Crossref]

G. R. Lloyd, L. M. Almond, N. Stone, N. Shepherd, S. Sanders, J. Hutchings, H. Barr, and C. Kendall, “Utilising non-consensus pathology measurements to improve the diagnosis of oesophageal cancer using a Raman spectroscopic probe,” Analyst (Lond.) 139(2), 381–388 (2014).
[Crossref] [PubMed]

R. Bro and A. K. Smilde, “Principal component analysis,” Anal. Methods 6(9), 2812–2831 (2014).
[Crossref]

J. Lin, J. Lin, Z. Huang, P. Lu, J. Wang, X. Wang, and R. Chen, “Raman spectroscopy of human hemoglobin for diabetes detection,” Journal of Innovation in Optical Health Science 7, 697 (2014).

J. Lin, G. Cao, J. Lin, N. Liu, F. Liao, Q. Ruan, S. Wu, Z. Huang, L. Li, and R. Chen, “Serum albumin analysis for type II diabetes detection using surface-enhanced Raman spectroscopy,” Proc. SPIE 9230, 92301Z (2014).
[Crossref]

S. Li, Y. Zhang, J. Xu, L. Li, Q. Zeng, L. Lin, Z. Guo, Z. Liu, H. Xiong, and S. Liu, “Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine,” Appl. Phys. Lett. 105, 57–136 (2014).

2013 (5)

R. Liu, Z. Mao, D. L. Matthews, C. S. Li, J. W. Chan, and N. Satake, “Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease,” Exp. Hematol. 41(7), 656–661 (2013).
[Crossref] [PubMed]

J. Wang, S. Feng, J. Lin, Y. Zeng, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Serum albumin and globulin analysis for hepatocellular carcinoma detection avoiding false-negative results from alpha-fetoprotein test negative subjects,” Appl. Phys. Lett. 103, 837–866 (2013).

S. Feng, J. Lin, Z. Huang, G. Chen, W. Chen, Y. Wang, R. Chen, and H. Zeng, “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Appl. Phys. Lett. 102(4), 043702 (2013).
[Crossref]

D. M. Kim and Y. B. Shim, “Disposable amperometric glycated hemoglobin sensor for the finger prick blood test,” Anal. Chem. 85(13), 6536–6543 (2013).
[Crossref] [PubMed]

J. M. Forbes and M. E. Cooper, “Mechanisms of diabetic complications,” Physiol. Rev. 93(1), 137–188 (2013).
[Crossref] [PubMed]

2012 (4)

T. Scully, “Diabetes in numbers,” Nature 485(7398), S2–S3 (2012).
[Crossref] [PubMed]

I. Barman, N. C. Dingari, J. W. Kang, G. L. Horowitz, R. R. Dasari, and M. S. Feld, “Raman spectroscopy-based sensitive and specific detection of glycated hemoglobin,” Anal. Chem. 84(5), 2474–2482 (2012).
[Crossref] [PubMed]

K. Lin, D. L. Cheng, and Z. Huang, “Optical diagnosis of laryngeal cancer using high wavenumber Raman spectroscopy,” Biosens. Bioelectron. 35(1), 213–217 (2012).
[Crossref] [PubMed]

K. Lin, D. L. P. Cheng, and Z. Huang, “Optical diagnosis of laryngeal cancer using high wavenumber Raman spectroscopy,” Biosens. Bioelectron. 35(1), 213–217 (2012).
[Crossref] [PubMed]

2011 (2)

L. Razzouk, V. Mathew, R. J. Lennon, A. Aneja, J. I. Mozes, H. J. Wiste, P. Muntner, J. H. Chesebro, and M. E. Farkouh, “Power dependent oxygenation state transition of red blood cells in a single beam optical trap,” Appl. Phys. Lett. 99, 671 (2011).

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care 34(6), e61–e99 (2011).
[Crossref] [PubMed]

2010 (2)

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Near-infrared Raman spectroscopy for gastric precancer diagnosis,” J. Raman Spectrosc. 40(8), 908–914 (2010).
[Crossref]

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
[Crossref] [PubMed]

2008 (1)

G. Rusciano, A. C. De Luca, G. Pesce, and A. Sasso, “Raman Tweezers as a Diagnostic Tool of Hemoglobin-Related Blood Disorders,” Sensors (Basel) 8(12), 7818–7832 (2008).
[Crossref] [PubMed]

2007 (2)

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
[Crossref] [PubMed]

J. Zhao, H. Lui, D. I. McLean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Appl. Spectrosc. 61(11), 1225–1232 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near‐infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
[Crossref]

2003 (2)

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

N. A. Obuchowski, “Receiver Operating Characteristic Curves and Their Use in Radiology,” Radiology 229(1), 3–8 (2003).
[Crossref] [PubMed]

2002 (1)

B. R. Wood and D. Mcnaughton, “Raman excitation wavelength investigation of single red blood cells in vivo,” J. Raman Spectrosc. 33(7), 517–523 (2002).
[Crossref]

1999 (1)

1991 (1)

J. W. Baynes, “Role of oxidative stress in development of complications in diabetes,” Diabetes 40(4), 405–412 (1991).
[Crossref] [PubMed]

Almond, L. M.

G. R. Lloyd, L. M. Almond, N. Stone, N. Shepherd, S. Sanders, J. Hutchings, H. Barr, and C. Kendall, “Utilising non-consensus pathology measurements to improve the diagnosis of oesophageal cancer using a Raman spectroscopic probe,” Analyst (Lond.) 139(2), 381–388 (2014).
[Crossref] [PubMed]

Aneja, A.

L. Razzouk, V. Mathew, R. J. Lennon, A. Aneja, J. I. Mozes, H. J. Wiste, P. Muntner, J. H. Chesebro, and M. E. Farkouh, “Power dependent oxygenation state transition of red blood cells in a single beam optical trap,” Appl. Phys. Lett. 99, 671 (2011).

Arnold, M.

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care 34(6), e61–e99 (2011).
[Crossref] [PubMed]

Bakris, G. L.

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care 34(6), e61–e99 (2011).
[Crossref] [PubMed]

Bankapur, A.

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
[Crossref] [PubMed]

Barman, I.

I. Barman, N. C. Dingari, J. W. Kang, G. L. Horowitz, R. R. Dasari, and M. S. Feld, “Raman spectroscopy-based sensitive and specific detection of glycated hemoglobin,” Anal. Chem. 84(5), 2474–2482 (2012).
[Crossref] [PubMed]

Barr, H.

G. R. Lloyd, L. M. Almond, N. Stone, N. Shepherd, S. Sanders, J. Hutchings, H. Barr, and C. Kendall, “Utilising non-consensus pathology measurements to improve the diagnosis of oesophageal cancer using a Raman spectroscopic probe,” Analyst (Lond.) 139(2), 381–388 (2014).
[Crossref] [PubMed]

Baynes, J. W.

J. W. Baynes, “Role of oxidative stress in development of complications in diabetes,” Diabetes 40(4), 405–412 (1991).
[Crossref] [PubMed]

Bazo-Alvarez, J. C.

J. C. Bazo-Alvarez, R. Quispe, T. D. Pillay, A. Bernabé-Ortiz, L. Smeeth, W. Checkley, R. H. Gilman, G. Málaga, and J. J. Miranda, “Glycated haemoglobin (HbA1c ) and fasting plasma glucose relationships in sea-level and high-altitude settings,” Diabet. Med. 34(6), 804–812 (2017).
[Crossref] [PubMed]

Belmonte, P.

G. Del Mistro, S. Cervo, E. Mansutti, R. Spizzo, A. Colombatti, P. Belmonte, R. Zucconelli, A. Steffan, V. Sergo, and A. Bonifacio, “Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study,” Anal. Bioanal. Chem. 407(12), 3271–3275 (2015).
[Crossref] [PubMed]

Berger, A. J.

Bernabé-Ortiz, A.

J. C. Bazo-Alvarez, R. Quispe, T. D. Pillay, A. Bernabé-Ortiz, L. Smeeth, W. Checkley, R. H. Gilman, G. Málaga, and J. J. Miranda, “Glycated haemoglobin (HbA1c ) and fasting plasma glucose relationships in sea-level and high-altitude settings,” Diabet. Med. 34(6), 804–812 (2017).
[Crossref] [PubMed]

Bonifacio, A.

G. Del Mistro, S. Cervo, E. Mansutti, R. Spizzo, A. Colombatti, P. Belmonte, R. Zucconelli, A. Steffan, V. Sergo, and A. Bonifacio, “Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study,” Anal. Bioanal. Chem. 407(12), 3271–3275 (2015).
[Crossref] [PubMed]

Bro, R.

R. Bro and A. K. Smilde, “Principal component analysis,” Anal. Methods 6(9), 2812–2831 (2014).
[Crossref]

Bruns, D. E.

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care 34(6), e61–e99 (2011).
[Crossref] [PubMed]

Cao, G.

J. Lin, G. Cao, J. Lin, N. Liu, F. Liao, Q. Ruan, S. Wu, Z. Huang, L. Li, and R. Chen, “Serum albumin analysis for type II diabetes detection using surface-enhanced Raman spectroscopy,” Proc. SPIE 9230, 92301Z (2014).
[Crossref]

Caspers, P.

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
[Crossref] [PubMed]

Cervo, S.

G. Del Mistro, S. Cervo, E. Mansutti, R. Spizzo, A. Colombatti, P. Belmonte, R. Zucconelli, A. Steffan, V. Sergo, and A. Bonifacio, “Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study,” Anal. Bioanal. Chem. 407(12), 3271–3275 (2015).
[Crossref] [PubMed]

Chan, J. W.

R. Liu, Z. Mao, D. L. Matthews, C. S. Li, J. W. Chan, and N. Satake, “Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease,” Exp. Hematol. 41(7), 656–661 (2013).
[Crossref] [PubMed]

Checkley, W.

J. C. Bazo-Alvarez, R. Quispe, T. D. Pillay, A. Bernabé-Ortiz, L. Smeeth, W. Checkley, R. H. Gilman, G. Málaga, and J. J. Miranda, “Glycated haemoglobin (HbA1c ) and fasting plasma glucose relationships in sea-level and high-altitude settings,” Diabet. Med. 34(6), 804–812 (2017).
[Crossref] [PubMed]

Chen, G.

D. Lin, G. Chen, S. Feng, J. Pan, J. Lin, Z. Huang, and R. Chen, “Development of a rapid macro-Raman spectroscopy system for nasopharyngeal cancer detection based on surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 106(1), 013701 (2015).
[Crossref]

S. Feng, J. Lin, Z. Huang, G. Chen, W. Chen, Y. Wang, R. Chen, and H. Zeng, “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Appl. Phys. Lett. 102(4), 043702 (2013).
[Crossref]

Chen, K.

Chen, R.

D. Lin, G. Chen, S. Feng, J. Pan, J. Lin, Z. Huang, and R. Chen, “Development of a rapid macro-Raman spectroscopy system for nasopharyngeal cancer detection based on surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 106(1), 013701 (2015).
[Crossref]

J. Lin, Z. Huang, S. Feng, J. Lin, N. Liu, J. Wang, L. Li, Y. Zeng, B. Li, H. Zeng, and R. Chen, “Label‐free optical detection of type II diabetes based on surface‐enhanced Raman spectroscopy and multivariate analysis,” J. Raman Spectrosc. 45(10), 884–889 (2015).
[Crossref]

J. Lin, Y. Zeng, J. Lin, J. Wang, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Erythrocyte membrane analysis for type II diabetes detection using Raman spectroscopy in high-wavenumber region,” Appl. Phys. Lett. 104(10), 104102 (2014).
[Crossref]

J. Lin, J. Lin, Z. Huang, P. Lu, J. Wang, X. Wang, and R. Chen, “Raman spectroscopy of human hemoglobin for diabetes detection,” Journal of Innovation in Optical Health Science 7, 697 (2014).

J. Lin, G. Cao, J. Lin, N. Liu, F. Liao, Q. Ruan, S. Wu, Z. Huang, L. Li, and R. Chen, “Serum albumin analysis for type II diabetes detection using surface-enhanced Raman spectroscopy,” Proc. SPIE 9230, 92301Z (2014).
[Crossref]

J. Wang, S. Feng, J. Lin, Y. Zeng, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Serum albumin and globulin analysis for hepatocellular carcinoma detection avoiding false-negative results from alpha-fetoprotein test negative subjects,” Appl. Phys. Lett. 103, 837–866 (2013).

S. Feng, J. Lin, Z. Huang, G. Chen, W. Chen, Y. Wang, R. Chen, and H. Zeng, “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Appl. Phys. Lett. 102(4), 043702 (2013).
[Crossref]

Chen, W.

S. Feng, J. Lin, Z. Huang, G. Chen, W. Chen, Y. Wang, R. Chen, and H. Zeng, “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Appl. Phys. Lett. 102(4), 043702 (2013).
[Crossref]

Cheng, D. L.

K. Lin, D. L. Cheng, and Z. Huang, “Optical diagnosis of laryngeal cancer using high wavenumber Raman spectroscopy,” Biosens. Bioelectron. 35(1), 213–217 (2012).
[Crossref] [PubMed]

Cheng, D. L. P.

K. Lin, D. L. P. Cheng, and Z. Huang, “Optical diagnosis of laryngeal cancer using high wavenumber Raman spectroscopy,” Biosens. Bioelectron. 35(1), 213–217 (2012).
[Crossref] [PubMed]

Cheng, M.

Chesebro, J. H.

L. Razzouk, V. Mathew, R. J. Lennon, A. Aneja, J. I. Mozes, H. J. Wiste, P. Muntner, J. H. Chesebro, and M. E. Farkouh, “Power dependent oxygenation state transition of red blood cells in a single beam optical trap,” Appl. Phys. Lett. 99, 671 (2011).

Chidangil, S.

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
[Crossref] [PubMed]

Colombatti, A.

G. Del Mistro, S. Cervo, E. Mansutti, R. Spizzo, A. Colombatti, P. Belmonte, R. Zucconelli, A. Steffan, V. Sergo, and A. Bonifacio, “Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study,” Anal. Bioanal. Chem. 407(12), 3271–3275 (2015).
[Crossref] [PubMed]

Cooper, M. E.

J. M. Forbes and M. E. Cooper, “Mechanisms of diabetic complications,” Physiol. Rev. 93(1), 137–188 (2013).
[Crossref] [PubMed]

Dasari, R. R.

I. Barman, N. C. Dingari, J. W. Kang, G. L. Horowitz, R. R. Dasari, and M. S. Feld, “Raman spectroscopy-based sensitive and specific detection of glycated hemoglobin,” Anal. Chem. 84(5), 2474–2482 (2012).
[Crossref] [PubMed]

De Luca, A. C.

G. Rusciano, A. C. De Luca, G. Pesce, and A. Sasso, “Raman Tweezers as a Diagnostic Tool of Hemoglobin-Related Blood Disorders,” Sensors (Basel) 8(12), 7818–7832 (2008).
[Crossref] [PubMed]

Del Mistro, G.

G. Del Mistro, S. Cervo, E. Mansutti, R. Spizzo, A. Colombatti, P. Belmonte, R. Zucconelli, A. Steffan, V. Sergo, and A. Bonifacio, “Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study,” Anal. Bioanal. Chem. 407(12), 3271–3275 (2015).
[Crossref] [PubMed]

Deng, J. L.

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near‐infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
[Crossref]

Dingari, N. C.

I. Barman, N. C. Dingari, J. W. Kang, G. L. Horowitz, R. R. Dasari, and M. S. Feld, “Raman spectroscopy-based sensitive and specific detection of glycated hemoglobin,” Anal. Chem. 84(5), 2474–2482 (2012).
[Crossref] [PubMed]

Farkouh, M. E.

L. Razzouk, V. Mathew, R. J. Lennon, A. Aneja, J. I. Mozes, H. J. Wiste, P. Muntner, J. H. Chesebro, and M. E. Farkouh, “Power dependent oxygenation state transition of red blood cells in a single beam optical trap,” Appl. Phys. Lett. 99, 671 (2011).

Feld, M. S.

I. Barman, N. C. Dingari, J. W. Kang, G. L. Horowitz, R. R. Dasari, and M. S. Feld, “Raman spectroscopy-based sensitive and specific detection of glycated hemoglobin,” Anal. Chem. 84(5), 2474–2482 (2012).
[Crossref] [PubMed]

A. J. Berger, T. W. Koo, I. Itzkan, G. Horowitz, and M. S. Feld, “Multicomponent blood analysis by near-infrared Raman spectroscopy,” Appl. Opt. 38(13), 2916–2926 (1999).
[Crossref] [PubMed]

Feng, S.

D. Lin, Z. Zheng, Q. Wang, H. Huang, Z. Huang, Y. Yu, S. Qiu, C. Wen, M. Cheng, and S. Feng, “Label-free optical sensor based on red blood cells laser tweezers Raman spectroscopy analysis for ABO blood typing,” Opt. Express 24(21), 24750–24759 (2016).
[Crossref] [PubMed]

J. Lin, Z. Huang, S. Feng, J. Lin, N. Liu, J. Wang, L. Li, Y. Zeng, B. Li, H. Zeng, and R. Chen, “Label‐free optical detection of type II diabetes based on surface‐enhanced Raman spectroscopy and multivariate analysis,” J. Raman Spectrosc. 45(10), 884–889 (2015).
[Crossref]

D. Lin, G. Chen, S. Feng, J. Pan, J. Lin, Z. Huang, and R. Chen, “Development of a rapid macro-Raman spectroscopy system for nasopharyngeal cancer detection based on surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 106(1), 013701 (2015).
[Crossref]

J. Wang, S. Feng, J. Lin, Y. Zeng, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Serum albumin and globulin analysis for hepatocellular carcinoma detection avoiding false-negative results from alpha-fetoprotein test negative subjects,” Appl. Phys. Lett. 103, 837–866 (2013).

S. Feng, J. Lin, Z. Huang, G. Chen, W. Chen, Y. Wang, R. Chen, and H. Zeng, “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Appl. Phys. Lett. 102(4), 043702 (2013).
[Crossref]

Forbes, J. M.

J. M. Forbes and M. E. Cooper, “Mechanisms of diabetic complications,” Physiol. Rev. 93(1), 137–188 (2013).
[Crossref] [PubMed]

Gilman, R. H.

J. C. Bazo-Alvarez, R. Quispe, T. D. Pillay, A. Bernabé-Ortiz, L. Smeeth, W. Checkley, R. H. Gilman, G. Málaga, and J. J. Miranda, “Glycated haemoglobin (HbA1c ) and fasting plasma glucose relationships in sea-level and high-altitude settings,” Diabet. Med. 34(6), 804–812 (2017).
[Crossref] [PubMed]

Guo, Z.

S. Li, Y. Zhang, J. Xu, L. Li, Q. Zeng, L. Lin, Z. Guo, Z. Liu, H. Xiong, and S. Liu, “Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine,” Appl. Phys. Lett. 105, 57–136 (2014).

Ho, K. Y.

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Near-infrared Raman spectroscopy for gastric precancer diagnosis,” J. Raman Spectrosc. 40(8), 908–914 (2010).
[Crossref]

Horowitz, G.

Horowitz, G. L.

I. Barman, N. C. Dingari, J. W. Kang, G. L. Horowitz, R. R. Dasari, and M. S. Feld, “Raman spectroscopy-based sensitive and specific detection of glycated hemoglobin,” Anal. Chem. 84(5), 2474–2482 (2012).
[Crossref] [PubMed]

Horvath, A. R.

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care 34(6), e61–e99 (2011).
[Crossref] [PubMed]

Huang, H.

Huang, Z.

D. Lin, Z. Zheng, Q. Wang, H. Huang, Z. Huang, Y. Yu, S. Qiu, C. Wen, M. Cheng, and S. Feng, “Label-free optical sensor based on red blood cells laser tweezers Raman spectroscopy analysis for ABO blood typing,” Opt. Express 24(21), 24750–24759 (2016).
[Crossref] [PubMed]

J. Lin, Z. Huang, S. Feng, J. Lin, N. Liu, J. Wang, L. Li, Y. Zeng, B. Li, H. Zeng, and R. Chen, “Label‐free optical detection of type II diabetes based on surface‐enhanced Raman spectroscopy and multivariate analysis,” J. Raman Spectrosc. 45(10), 884–889 (2015).
[Crossref]

D. Lin, G. Chen, S. Feng, J. Pan, J. Lin, Z. Huang, and R. Chen, “Development of a rapid macro-Raman spectroscopy system for nasopharyngeal cancer detection based on surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 106(1), 013701 (2015).
[Crossref]

J. Lin, Y. Zeng, J. Lin, J. Wang, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Erythrocyte membrane analysis for type II diabetes detection using Raman spectroscopy in high-wavenumber region,” Appl. Phys. Lett. 104(10), 104102 (2014).
[Crossref]

J. Lin, G. Cao, J. Lin, N. Liu, F. Liao, Q. Ruan, S. Wu, Z. Huang, L. Li, and R. Chen, “Serum albumin analysis for type II diabetes detection using surface-enhanced Raman spectroscopy,” Proc. SPIE 9230, 92301Z (2014).
[Crossref]

J. Lin, J. Lin, Z. Huang, P. Lu, J. Wang, X. Wang, and R. Chen, “Raman spectroscopy of human hemoglobin for diabetes detection,” Journal of Innovation in Optical Health Science 7, 697 (2014).

J. Wang, S. Feng, J. Lin, Y. Zeng, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Serum albumin and globulin analysis for hepatocellular carcinoma detection avoiding false-negative results from alpha-fetoprotein test negative subjects,” Appl. Phys. Lett. 103, 837–866 (2013).

S. Feng, J. Lin, Z. Huang, G. Chen, W. Chen, Y. Wang, R. Chen, and H. Zeng, “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Appl. Phys. Lett. 102(4), 043702 (2013).
[Crossref]

K. Lin, D. L. Cheng, and Z. Huang, “Optical diagnosis of laryngeal cancer using high wavenumber Raman spectroscopy,” Biosens. Bioelectron. 35(1), 213–217 (2012).
[Crossref] [PubMed]

K. Lin, D. L. P. Cheng, and Z. Huang, “Optical diagnosis of laryngeal cancer using high wavenumber Raman spectroscopy,” Biosens. Bioelectron. 35(1), 213–217 (2012).
[Crossref] [PubMed]

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Near-infrared Raman spectroscopy for gastric precancer diagnosis,” J. Raman Spectrosc. 40(8), 908–914 (2010).
[Crossref]

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

Hutchings, J.

G. R. Lloyd, L. M. Almond, N. Stone, N. Shepherd, S. Sanders, J. Hutchings, H. Barr, and C. Kendall, “Utilising non-consensus pathology measurements to improve the diagnosis of oesophageal cancer using a Raman spectroscopic probe,” Analyst (Lond.) 139(2), 381–388 (2014).
[Crossref] [PubMed]

Itzkan, I.

Kang, J. W.

I. Barman, N. C. Dingari, J. W. Kang, G. L. Horowitz, R. R. Dasari, and M. S. Feld, “Raman spectroscopy-based sensitive and specific detection of glycated hemoglobin,” Anal. Chem. 84(5), 2474–2482 (2012).
[Crossref] [PubMed]

Kendall, C.

G. R. Lloyd, L. M. Almond, N. Stone, N. Shepherd, S. Sanders, J. Hutchings, H. Barr, and C. Kendall, “Utilising non-consensus pathology measurements to improve the diagnosis of oesophageal cancer using a Raman spectroscopic probe,” Analyst (Lond.) 139(2), 381–388 (2014).
[Crossref] [PubMed]

Kim, D. M.

D. M. Kim and Y. B. Shim, “Disposable amperometric glycated hemoglobin sensor for the finger prick blood test,” Anal. Chem. 85(13), 6536–6543 (2013).
[Crossref] [PubMed]

Kirkman, M. S.

K. J. Welsh, M. S. Kirkman, and D. B. Sacks, “Role of Glycated Proteins in the Diagnosis and Management of Diabetes: Research Gaps and Future Directions,” Diabetes Care 39(8), 1299–1306 (2016).
[Crossref] [PubMed]

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care 34(6), e61–e99 (2011).
[Crossref] [PubMed]

Koo, T. W.

Lam, S.

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

Lennon, R. J.

L. Razzouk, V. Mathew, R. J. Lennon, A. Aneja, J. I. Mozes, H. J. Wiste, P. Muntner, J. H. Chesebro, and M. E. Farkouh, “Power dependent oxygenation state transition of red blood cells in a single beam optical trap,” Appl. Phys. Lett. 99, 671 (2011).

Lernmark, A.

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care 34(6), e61–e99 (2011).
[Crossref] [PubMed]

Li, B.

J. Lin, Z. Huang, S. Feng, J. Lin, N. Liu, J. Wang, L. Li, Y. Zeng, B. Li, H. Zeng, and R. Chen, “Label‐free optical detection of type II diabetes based on surface‐enhanced Raman spectroscopy and multivariate analysis,” J. Raman Spectrosc. 45(10), 884–889 (2015).
[Crossref]

J. Lin, Y. Zeng, J. Lin, J. Wang, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Erythrocyte membrane analysis for type II diabetes detection using Raman spectroscopy in high-wavenumber region,” Appl. Phys. Lett. 104(10), 104102 (2014).
[Crossref]

J. Wang, S. Feng, J. Lin, Y. Zeng, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Serum albumin and globulin analysis for hepatocellular carcinoma detection avoiding false-negative results from alpha-fetoprotein test negative subjects,” Appl. Phys. Lett. 103, 837–866 (2013).

Li, C. S.

R. Liu, Z. Mao, D. L. Matthews, C. S. Li, J. W. Chan, and N. Satake, “Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease,” Exp. Hematol. 41(7), 656–661 (2013).
[Crossref] [PubMed]

Li, L.

J. Lin, Z. Huang, S. Feng, J. Lin, N. Liu, J. Wang, L. Li, Y. Zeng, B. Li, H. Zeng, and R. Chen, “Label‐free optical detection of type II diabetes based on surface‐enhanced Raman spectroscopy and multivariate analysis,” J. Raman Spectrosc. 45(10), 884–889 (2015).
[Crossref]

J. Lin, G. Cao, J. Lin, N. Liu, F. Liao, Q. Ruan, S. Wu, Z. Huang, L. Li, and R. Chen, “Serum albumin analysis for type II diabetes detection using surface-enhanced Raman spectroscopy,” Proc. SPIE 9230, 92301Z (2014).
[Crossref]

J. Lin, Y. Zeng, J. Lin, J. Wang, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Erythrocyte membrane analysis for type II diabetes detection using Raman spectroscopy in high-wavenumber region,” Appl. Phys. Lett. 104(10), 104102 (2014).
[Crossref]

S. Li, Y. Zhang, J. Xu, L. Li, Q. Zeng, L. Lin, Z. Guo, Z. Liu, H. Xiong, and S. Liu, “Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine,” Appl. Phys. Lett. 105, 57–136 (2014).

J. Wang, S. Feng, J. Lin, Y. Zeng, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Serum albumin and globulin analysis for hepatocellular carcinoma detection avoiding false-negative results from alpha-fetoprotein test negative subjects,” Appl. Phys. Lett. 103, 837–866 (2013).

Li, S.

S. Li, Y. Zhang, J. Xu, L. Li, Q. Zeng, L. Lin, Z. Guo, Z. Liu, H. Xiong, and S. Liu, “Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine,” Appl. Phys. Lett. 105, 57–136 (2014).

Li, Y. Q.

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near‐infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
[Crossref]

Liao, F.

J. Lin, G. Cao, J. Lin, N. Liu, F. Liao, Q. Ruan, S. Wu, Z. Huang, L. Li, and R. Chen, “Serum albumin analysis for type II diabetes detection using surface-enhanced Raman spectroscopy,” Proc. SPIE 9230, 92301Z (2014).
[Crossref]

Lin, D.

D. Lin, Z. Zheng, Q. Wang, H. Huang, Z. Huang, Y. Yu, S. Qiu, C. Wen, M. Cheng, and S. Feng, “Label-free optical sensor based on red blood cells laser tweezers Raman spectroscopy analysis for ABO blood typing,” Opt. Express 24(21), 24750–24759 (2016).
[Crossref] [PubMed]

D. Lin, G. Chen, S. Feng, J. Pan, J. Lin, Z. Huang, and R. Chen, “Development of a rapid macro-Raman spectroscopy system for nasopharyngeal cancer detection based on surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 106(1), 013701 (2015).
[Crossref]

Lin, J.

D. Lin, G. Chen, S. Feng, J. Pan, J. Lin, Z. Huang, and R. Chen, “Development of a rapid macro-Raman spectroscopy system for nasopharyngeal cancer detection based on surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 106(1), 013701 (2015).
[Crossref]

J. Lin, Z. Huang, S. Feng, J. Lin, N. Liu, J. Wang, L. Li, Y. Zeng, B. Li, H. Zeng, and R. Chen, “Label‐free optical detection of type II diabetes based on surface‐enhanced Raman spectroscopy and multivariate analysis,” J. Raman Spectrosc. 45(10), 884–889 (2015).
[Crossref]

J. Lin, Z. Huang, S. Feng, J. Lin, N. Liu, J. Wang, L. Li, Y. Zeng, B. Li, H. Zeng, and R. Chen, “Label‐free optical detection of type II diabetes based on surface‐enhanced Raman spectroscopy and multivariate analysis,” J. Raman Spectrosc. 45(10), 884–889 (2015).
[Crossref]

J. Lin, Y. Zeng, J. Lin, J. Wang, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Erythrocyte membrane analysis for type II diabetes detection using Raman spectroscopy in high-wavenumber region,” Appl. Phys. Lett. 104(10), 104102 (2014).
[Crossref]

J. Lin, Y. Zeng, J. Lin, J. Wang, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Erythrocyte membrane analysis for type II diabetes detection using Raman spectroscopy in high-wavenumber region,” Appl. Phys. Lett. 104(10), 104102 (2014).
[Crossref]

J. Lin, G. Cao, J. Lin, N. Liu, F. Liao, Q. Ruan, S. Wu, Z. Huang, L. Li, and R. Chen, “Serum albumin analysis for type II diabetes detection using surface-enhanced Raman spectroscopy,” Proc. SPIE 9230, 92301Z (2014).
[Crossref]

J. Lin, G. Cao, J. Lin, N. Liu, F. Liao, Q. Ruan, S. Wu, Z. Huang, L. Li, and R. Chen, “Serum albumin analysis for type II diabetes detection using surface-enhanced Raman spectroscopy,” Proc. SPIE 9230, 92301Z (2014).
[Crossref]

J. Lin, J. Lin, Z. Huang, P. Lu, J. Wang, X. Wang, and R. Chen, “Raman spectroscopy of human hemoglobin for diabetes detection,” Journal of Innovation in Optical Health Science 7, 697 (2014).

J. Lin, J. Lin, Z. Huang, P. Lu, J. Wang, X. Wang, and R. Chen, “Raman spectroscopy of human hemoglobin for diabetes detection,” Journal of Innovation in Optical Health Science 7, 697 (2014).

J. Wang, S. Feng, J. Lin, Y. Zeng, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Serum albumin and globulin analysis for hepatocellular carcinoma detection avoiding false-negative results from alpha-fetoprotein test negative subjects,” Appl. Phys. Lett. 103, 837–866 (2013).

S. Feng, J. Lin, Z. Huang, G. Chen, W. Chen, Y. Wang, R. Chen, and H. Zeng, “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Appl. Phys. Lett. 102(4), 043702 (2013).
[Crossref]

Lin, K.

K. Lin, D. L. Cheng, and Z. Huang, “Optical diagnosis of laryngeal cancer using high wavenumber Raman spectroscopy,” Biosens. Bioelectron. 35(1), 213–217 (2012).
[Crossref] [PubMed]

K. Lin, D. L. P. Cheng, and Z. Huang, “Optical diagnosis of laryngeal cancer using high wavenumber Raman spectroscopy,” Biosens. Bioelectron. 35(1), 213–217 (2012).
[Crossref] [PubMed]

Lin, L.

S. Li, Y. Zhang, J. Xu, L. Li, Q. Zeng, L. Lin, Z. Guo, Z. Liu, H. Xiong, and S. Liu, “Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine,” Appl. Phys. Lett. 105, 57–136 (2014).

Liu, N.

J. Lin, Z. Huang, S. Feng, J. Lin, N. Liu, J. Wang, L. Li, Y. Zeng, B. Li, H. Zeng, and R. Chen, “Label‐free optical detection of type II diabetes based on surface‐enhanced Raman spectroscopy and multivariate analysis,” J. Raman Spectrosc. 45(10), 884–889 (2015).
[Crossref]

J. Lin, G. Cao, J. Lin, N. Liu, F. Liao, Q. Ruan, S. Wu, Z. Huang, L. Li, and R. Chen, “Serum albumin analysis for type II diabetes detection using surface-enhanced Raman spectroscopy,” Proc. SPIE 9230, 92301Z (2014).
[Crossref]

Liu, R.

R. Liu, Z. Mao, D. L. Matthews, C. S. Li, J. W. Chan, and N. Satake, “Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease,” Exp. Hematol. 41(7), 656–661 (2013).
[Crossref] [PubMed]

Liu, S.

S. Li, Y. Zhang, J. Xu, L. Li, Q. Zeng, L. Lin, Z. Guo, Z. Liu, H. Xiong, and S. Liu, “Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine,” Appl. Phys. Lett. 105, 57–136 (2014).

Liu, Z.

S. Li, Y. Zhang, J. Xu, L. Li, Q. Zeng, L. Lin, Z. Guo, Z. Liu, H. Xiong, and S. Liu, “Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine,” Appl. Phys. Lett. 105, 57–136 (2014).

Lloyd, G. R.

G. R. Lloyd, L. M. Almond, N. Stone, N. Shepherd, S. Sanders, J. Hutchings, H. Barr, and C. Kendall, “Utilising non-consensus pathology measurements to improve the diagnosis of oesophageal cancer using a Raman spectroscopic probe,” Analyst (Lond.) 139(2), 381–388 (2014).
[Crossref] [PubMed]

Lu, P.

J. Lin, J. Lin, Z. Huang, P. Lu, J. Wang, X. Wang, and R. Chen, “Raman spectroscopy of human hemoglobin for diabetes detection,” Journal of Innovation in Optical Health Science 7, 697 (2014).

Lui, H.

J. Zhao, H. Lui, D. I. McLean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Appl. Spectrosc. 61(11), 1225–1232 (2007).
[Crossref] [PubMed]

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

Málaga, G.

J. C. Bazo-Alvarez, R. Quispe, T. D. Pillay, A. Bernabé-Ortiz, L. Smeeth, W. Checkley, R. H. Gilman, G. Málaga, and J. J. Miranda, “Glycated haemoglobin (HbA1c ) and fasting plasma glucose relationships in sea-level and high-altitude settings,” Diabet. Med. 34(6), 804–812 (2017).
[Crossref] [PubMed]

Mansutti, E.

G. Del Mistro, S. Cervo, E. Mansutti, R. Spizzo, A. Colombatti, P. Belmonte, R. Zucconelli, A. Steffan, V. Sergo, and A. Bonifacio, “Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study,” Anal. Bioanal. Chem. 407(12), 3271–3275 (2015).
[Crossref] [PubMed]

Mao, Z.

R. Liu, Z. Mao, D. L. Matthews, C. S. Li, J. W. Chan, and N. Satake, “Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease,” Exp. Hematol. 41(7), 656–661 (2013).
[Crossref] [PubMed]

Mathew, V.

L. Razzouk, V. Mathew, R. J. Lennon, A. Aneja, J. I. Mozes, H. J. Wiste, P. Muntner, J. H. Chesebro, and M. E. Farkouh, “Power dependent oxygenation state transition of red blood cells in a single beam optical trap,” Appl. Phys. Lett. 99, 671 (2011).

Mathur, D.

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
[Crossref] [PubMed]

Matthews, D. L.

R. Liu, Z. Mao, D. L. Matthews, C. S. Li, J. W. Chan, and N. Satake, “Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease,” Exp. Hematol. 41(7), 656–661 (2013).
[Crossref] [PubMed]

McLean, D. I.

J. Zhao, H. Lui, D. I. McLean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Appl. Spectrosc. 61(11), 1225–1232 (2007).
[Crossref] [PubMed]

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

McNaughton, D.

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
[Crossref] [PubMed]

B. R. Wood and D. Mcnaughton, “Raman excitation wavelength investigation of single red blood cells in vivo,” J. Raman Spectrosc. 33(7), 517–523 (2002).
[Crossref]

McWilliams, A.

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

Metzger, B. E.

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care 34(6), e61–e99 (2011).
[Crossref] [PubMed]

Miranda, J. J.

J. C. Bazo-Alvarez, R. Quispe, T. D. Pillay, A. Bernabé-Ortiz, L. Smeeth, W. Checkley, R. H. Gilman, G. Málaga, and J. J. Miranda, “Glycated haemoglobin (HbA1c ) and fasting plasma glucose relationships in sea-level and high-altitude settings,” Diabet. Med. 34(6), 804–812 (2017).
[Crossref] [PubMed]

Mozes, J. I.

L. Razzouk, V. Mathew, R. J. Lennon, A. Aneja, J. I. Mozes, H. J. Wiste, P. Muntner, J. H. Chesebro, and M. E. Farkouh, “Power dependent oxygenation state transition of red blood cells in a single beam optical trap,” Appl. Phys. Lett. 99, 671 (2011).

Muntner, P.

L. Razzouk, V. Mathew, R. J. Lennon, A. Aneja, J. I. Mozes, H. J. Wiste, P. Muntner, J. H. Chesebro, and M. E. Farkouh, “Power dependent oxygenation state transition of red blood cells in a single beam optical trap,” Appl. Phys. Lett. 99, 671 (2011).

Nathan, D. M.

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care 34(6), e61–e99 (2011).
[Crossref] [PubMed]

Obuchowski, N. A.

N. A. Obuchowski, “Receiver Operating Characteristic Curves and Their Use in Radiology,” Radiology 229(1), 3–8 (2003).
[Crossref] [PubMed]

Pan, J.

D. Lin, G. Chen, S. Feng, J. Pan, J. Lin, Z. Huang, and R. Chen, “Development of a rapid macro-Raman spectroscopy system for nasopharyngeal cancer detection based on surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 106(1), 013701 (2015).
[Crossref]

Pandiancherri, S.

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
[Crossref] [PubMed]

Pesce, G.

G. Rusciano, A. C. De Luca, G. Pesce, and A. Sasso, “Raman Tweezers as a Diagnostic Tool of Hemoglobin-Related Blood Disorders,” Sensors (Basel) 8(12), 7818–7832 (2008).
[Crossref] [PubMed]

Pillay, T. D.

J. C. Bazo-Alvarez, R. Quispe, T. D. Pillay, A. Bernabé-Ortiz, L. Smeeth, W. Checkley, R. H. Gilman, G. Málaga, and J. J. Miranda, “Glycated haemoglobin (HbA1c ) and fasting plasma glucose relationships in sea-level and high-altitude settings,” Diabet. Med. 34(6), 804–812 (2017).
[Crossref] [PubMed]

Puppels, G. J.

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
[Crossref] [PubMed]

Qin, Y.

Qiu, S.

Quispe, R.

J. C. Bazo-Alvarez, R. Quispe, T. D. Pillay, A. Bernabé-Ortiz, L. Smeeth, W. Checkley, R. H. Gilman, G. Málaga, and J. J. Miranda, “Glycated haemoglobin (HbA1c ) and fasting plasma glucose relationships in sea-level and high-altitude settings,” Diabet. Med. 34(6), 804–812 (2017).
[Crossref] [PubMed]

Razzouk, L.

L. Razzouk, V. Mathew, R. J. Lennon, A. Aneja, J. I. Mozes, H. J. Wiste, P. Muntner, J. H. Chesebro, and M. E. Farkouh, “Power dependent oxygenation state transition of red blood cells in a single beam optical trap,” Appl. Phys. Lett. 99, 671 (2011).

Ruan, Q.

J. Lin, G. Cao, J. Lin, N. Liu, F. Liao, Q. Ruan, S. Wu, Z. Huang, L. Li, and R. Chen, “Serum albumin analysis for type II diabetes detection using surface-enhanced Raman spectroscopy,” Proc. SPIE 9230, 92301Z (2014).
[Crossref]

Rusciano, G.

G. Rusciano, A. C. De Luca, G. Pesce, and A. Sasso, “Raman Tweezers as a Diagnostic Tool of Hemoglobin-Related Blood Disorders,” Sensors (Basel) 8(12), 7818–7832 (2008).
[Crossref] [PubMed]

Sacks, D. B.

K. J. Welsh, M. S. Kirkman, and D. B. Sacks, “Role of Glycated Proteins in the Diagnosis and Management of Diabetes: Research Gaps and Future Directions,” Diabetes Care 39(8), 1299–1306 (2016).
[Crossref] [PubMed]

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care 34(6), e61–e99 (2011).
[Crossref] [PubMed]

Sanders, S.

G. R. Lloyd, L. M. Almond, N. Stone, N. Shepherd, S. Sanders, J. Hutchings, H. Barr, and C. Kendall, “Utilising non-consensus pathology measurements to improve the diagnosis of oesophageal cancer using a Raman spectroscopic probe,” Analyst (Lond.) 139(2), 381–388 (2014).
[Crossref] [PubMed]

Sasso, A.

G. Rusciano, A. C. De Luca, G. Pesce, and A. Sasso, “Raman Tweezers as a Diagnostic Tool of Hemoglobin-Related Blood Disorders,” Sensors (Basel) 8(12), 7818–7832 (2008).
[Crossref] [PubMed]

Satake, N.

R. Liu, Z. Mao, D. L. Matthews, C. S. Li, J. W. Chan, and N. Satake, “Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease,” Exp. Hematol. 41(7), 656–661 (2013).
[Crossref] [PubMed]

Scully, T.

T. Scully, “Diabetes in numbers,” Nature 485(7398), S2–S3 (2012).
[Crossref] [PubMed]

Sergo, V.

G. Del Mistro, S. Cervo, E. Mansutti, R. Spizzo, A. Colombatti, P. Belmonte, R. Zucconelli, A. Steffan, V. Sergo, and A. Bonifacio, “Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study,” Anal. Bioanal. Chem. 407(12), 3271–3275 (2015).
[Crossref] [PubMed]

Shepherd, N.

G. R. Lloyd, L. M. Almond, N. Stone, N. Shepherd, S. Sanders, J. Hutchings, H. Barr, and C. Kendall, “Utilising non-consensus pathology measurements to improve the diagnosis of oesophageal cancer using a Raman spectroscopic probe,” Analyst (Lond.) 139(2), 381–388 (2014).
[Crossref] [PubMed]

Shi, D.

Shim, Y. B.

D. M. Kim and Y. B. Shim, “Disposable amperometric glycated hemoglobin sensor for the finger prick blood test,” Anal. Chem. 85(13), 6536–6543 (2013).
[Crossref] [PubMed]

Smeeth, L.

J. C. Bazo-Alvarez, R. Quispe, T. D. Pillay, A. Bernabé-Ortiz, L. Smeeth, W. Checkley, R. H. Gilman, G. Málaga, and J. J. Miranda, “Glycated haemoglobin (HbA1c ) and fasting plasma glucose relationships in sea-level and high-altitude settings,” Diabet. Med. 34(6), 804–812 (2017).
[Crossref] [PubMed]

Smilde, A. K.

R. Bro and A. K. Smilde, “Principal component analysis,” Anal. Methods 6(9), 2812–2831 (2014).
[Crossref]

Spizzo, R.

G. Del Mistro, S. Cervo, E. Mansutti, R. Spizzo, A. Colombatti, P. Belmonte, R. Zucconelli, A. Steffan, V. Sergo, and A. Bonifacio, “Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study,” Anal. Bioanal. Chem. 407(12), 3271–3275 (2015).
[Crossref] [PubMed]

Steffan, A.

G. Del Mistro, S. Cervo, E. Mansutti, R. Spizzo, A. Colombatti, P. Belmonte, R. Zucconelli, A. Steffan, V. Sergo, and A. Bonifacio, “Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study,” Anal. Bioanal. Chem. 407(12), 3271–3275 (2015).
[Crossref] [PubMed]

Stone, N.

G. R. Lloyd, L. M. Almond, N. Stone, N. Shepherd, S. Sanders, J. Hutchings, H. Barr, and C. Kendall, “Utilising non-consensus pathology measurements to improve the diagnosis of oesophageal cancer using a Raman spectroscopic probe,” Analyst (Lond.) 139(2), 381–388 (2014).
[Crossref] [PubMed]

Sun, M.

Teh, M.

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Near-infrared Raman spectroscopy for gastric precancer diagnosis,” J. Raman Spectrosc. 40(8), 908–914 (2010).
[Crossref]

Teh, S. K.

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Near-infrared Raman spectroscopy for gastric precancer diagnosis,” J. Raman Spectrosc. 40(8), 908–914 (2010).
[Crossref]

Valiathan, M.

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
[Crossref] [PubMed]

Wang, J.

J. Lin, Z. Huang, S. Feng, J. Lin, N. Liu, J. Wang, L. Li, Y. Zeng, B. Li, H. Zeng, and R. Chen, “Label‐free optical detection of type II diabetes based on surface‐enhanced Raman spectroscopy and multivariate analysis,” J. Raman Spectrosc. 45(10), 884–889 (2015).
[Crossref]

J. Lin, J. Lin, Z. Huang, P. Lu, J. Wang, X. Wang, and R. Chen, “Raman spectroscopy of human hemoglobin for diabetes detection,” Journal of Innovation in Optical Health Science 7, 697 (2014).

J. Lin, Y. Zeng, J. Lin, J. Wang, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Erythrocyte membrane analysis for type II diabetes detection using Raman spectroscopy in high-wavenumber region,” Appl. Phys. Lett. 104(10), 104102 (2014).
[Crossref]

J. Wang, S. Feng, J. Lin, Y. Zeng, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Serum albumin and globulin analysis for hepatocellular carcinoma detection avoiding false-negative results from alpha-fetoprotein test negative subjects,” Appl. Phys. Lett. 103, 837–866 (2013).

Wang, Q.

Wang, X.

J. Lin, J. Lin, Z. Huang, P. Lu, J. Wang, X. Wang, and R. Chen, “Raman spectroscopy of human hemoglobin for diabetes detection,” Journal of Innovation in Optical Health Science 7, 697 (2014).

Wang, Y.

S. Feng, J. Lin, Z. Huang, G. Chen, W. Chen, Y. Wang, R. Chen, and H. Zeng, “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Appl. Phys. Lett. 102(4), 043702 (2013).
[Crossref]

Wang, Y. Z.

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near‐infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
[Crossref]

Wei, Q.

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near‐infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
[Crossref]

Welsh, K. J.

K. J. Welsh, M. S. Kirkman, and D. B. Sacks, “Role of Glycated Proteins in the Diagnosis and Management of Diabetes: Research Gaps and Future Directions,” Diabetes Care 39(8), 1299–1306 (2016).
[Crossref] [PubMed]

Wen, C.

Wiste, H. J.

L. Razzouk, V. Mathew, R. J. Lennon, A. Aneja, J. I. Mozes, H. J. Wiste, P. Muntner, J. H. Chesebro, and M. E. Farkouh, “Power dependent oxygenation state transition of red blood cells in a single beam optical trap,” Appl. Phys. Lett. 99, 671 (2011).

Wood, B. R.

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
[Crossref] [PubMed]

B. R. Wood and D. Mcnaughton, “Raman excitation wavelength investigation of single red blood cells in vivo,” J. Raman Spectrosc. 33(7), 517–523 (2002).
[Crossref]

Wu, S.

J. Lin, G. Cao, J. Lin, N. Liu, F. Liao, Q. Ruan, S. Wu, Z. Huang, L. Li, and R. Chen, “Serum albumin analysis for type II diabetes detection using surface-enhanced Raman spectroscopy,” Proc. SPIE 9230, 92301Z (2014).
[Crossref]

Xiong, H.

S. Li, Y. Zhang, J. Xu, L. Li, Q. Zeng, L. Lin, Z. Guo, Z. Liu, H. Xiong, and S. Liu, “Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine,” Appl. Phys. Lett. 105, 57–136 (2014).

Xu, J.

S. Li, Y. Zhang, J. Xu, L. Li, Q. Zeng, L. Lin, Z. Guo, Z. Liu, H. Xiong, and S. Liu, “Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine,” Appl. Phys. Lett. 105, 57–136 (2014).

Yeoh, K. G.

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Near-infrared Raman spectroscopy for gastric precancer diagnosis,” J. Raman Spectrosc. 40(8), 908–914 (2010).
[Crossref]

Yu, Y.

Zachariah, E.

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
[Crossref] [PubMed]

Zeng, H.

J. Lin, Z. Huang, S. Feng, J. Lin, N. Liu, J. Wang, L. Li, Y. Zeng, B. Li, H. Zeng, and R. Chen, “Label‐free optical detection of type II diabetes based on surface‐enhanced Raman spectroscopy and multivariate analysis,” J. Raman Spectrosc. 45(10), 884–889 (2015).
[Crossref]

J. Lin, Y. Zeng, J. Lin, J. Wang, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Erythrocyte membrane analysis for type II diabetes detection using Raman spectroscopy in high-wavenumber region,” Appl. Phys. Lett. 104(10), 104102 (2014).
[Crossref]

J. Wang, S. Feng, J. Lin, Y. Zeng, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Serum albumin and globulin analysis for hepatocellular carcinoma detection avoiding false-negative results from alpha-fetoprotein test negative subjects,” Appl. Phys. Lett. 103, 837–866 (2013).

S. Feng, J. Lin, Z. Huang, G. Chen, W. Chen, Y. Wang, R. Chen, and H. Zeng, “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Appl. Phys. Lett. 102(4), 043702 (2013).
[Crossref]

J. Zhao, H. Lui, D. I. McLean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Appl. Spectrosc. 61(11), 1225–1232 (2007).
[Crossref] [PubMed]

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

Zeng, Q.

S. Li, Y. Zhang, J. Xu, L. Li, Q. Zeng, L. Lin, Z. Guo, Z. Liu, H. Xiong, and S. Liu, “Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine,” Appl. Phys. Lett. 105, 57–136 (2014).

Zeng, Y.

J. Lin, Z. Huang, S. Feng, J. Lin, N. Liu, J. Wang, L. Li, Y. Zeng, B. Li, H. Zeng, and R. Chen, “Label‐free optical detection of type II diabetes based on surface‐enhanced Raman spectroscopy and multivariate analysis,” J. Raman Spectrosc. 45(10), 884–889 (2015).
[Crossref]

J. Lin, Y. Zeng, J. Lin, J. Wang, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Erythrocyte membrane analysis for type II diabetes detection using Raman spectroscopy in high-wavenumber region,” Appl. Phys. Lett. 104(10), 104102 (2014).
[Crossref]

J. Wang, S. Feng, J. Lin, Y. Zeng, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Serum albumin and globulin analysis for hepatocellular carcinoma detection avoiding false-negative results from alpha-fetoprotein test negative subjects,” Appl. Phys. Lett. 103, 837–866 (2013).

Zhang, M. H.

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near‐infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
[Crossref]

Zhang, Y.

S. Li, Y. Zhang, J. Xu, L. Li, Q. Zeng, L. Lin, Z. Guo, Z. Liu, H. Xiong, and S. Liu, “Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine,” Appl. Phys. Lett. 105, 57–136 (2014).

Zhao, J.

Zheng, F.

Zheng, W.

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Near-infrared Raman spectroscopy for gastric precancer diagnosis,” J. Raman Spectrosc. 40(8), 908–914 (2010).
[Crossref]

Zheng, Z.

Zucconelli, R.

G. Del Mistro, S. Cervo, E. Mansutti, R. Spizzo, A. Colombatti, P. Belmonte, R. Zucconelli, A. Steffan, V. Sergo, and A. Bonifacio, “Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study,” Anal. Bioanal. Chem. 407(12), 3271–3275 (2015).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (2)

G. Del Mistro, S. Cervo, E. Mansutti, R. Spizzo, A. Colombatti, P. Belmonte, R. Zucconelli, A. Steffan, V. Sergo, and A. Bonifacio, “Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study,” Anal. Bioanal. Chem. 407(12), 3271–3275 (2015).
[Crossref] [PubMed]

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
[Crossref] [PubMed]

Anal. Chem. (2)

I. Barman, N. C. Dingari, J. W. Kang, G. L. Horowitz, R. R. Dasari, and M. S. Feld, “Raman spectroscopy-based sensitive and specific detection of glycated hemoglobin,” Anal. Chem. 84(5), 2474–2482 (2012).
[Crossref] [PubMed]

D. M. Kim and Y. B. Shim, “Disposable amperometric glycated hemoglobin sensor for the finger prick blood test,” Anal. Chem. 85(13), 6536–6543 (2013).
[Crossref] [PubMed]

Anal. Methods (1)

R. Bro and A. K. Smilde, “Principal component analysis,” Anal. Methods 6(9), 2812–2831 (2014).
[Crossref]

Analyst (Lond.) (1)

G. R. Lloyd, L. M. Almond, N. Stone, N. Shepherd, S. Sanders, J. Hutchings, H. Barr, and C. Kendall, “Utilising non-consensus pathology measurements to improve the diagnosis of oesophageal cancer using a Raman spectroscopic probe,” Analyst (Lond.) 139(2), 381–388 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

S. Feng, J. Lin, Z. Huang, G. Chen, W. Chen, Y. Wang, R. Chen, and H. Zeng, “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Appl. Phys. Lett. 102(4), 043702 (2013).
[Crossref]

S. Li, Y. Zhang, J. Xu, L. Li, Q. Zeng, L. Lin, Z. Guo, Z. Liu, H. Xiong, and S. Liu, “Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine,” Appl. Phys. Lett. 105, 57–136 (2014).

L. Razzouk, V. Mathew, R. J. Lennon, A. Aneja, J. I. Mozes, H. J. Wiste, P. Muntner, J. H. Chesebro, and M. E. Farkouh, “Power dependent oxygenation state transition of red blood cells in a single beam optical trap,” Appl. Phys. Lett. 99, 671 (2011).

J. Lin, Y. Zeng, J. Lin, J. Wang, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Erythrocyte membrane analysis for type II diabetes detection using Raman spectroscopy in high-wavenumber region,” Appl. Phys. Lett. 104(10), 104102 (2014).
[Crossref]

D. Lin, G. Chen, S. Feng, J. Pan, J. Lin, Z. Huang, and R. Chen, “Development of a rapid macro-Raman spectroscopy system for nasopharyngeal cancer detection based on surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 106(1), 013701 (2015).
[Crossref]

J. Wang, S. Feng, J. Lin, Y. Zeng, L. Li, Z. Huang, B. Li, H. Zeng, and R. Chen, “Serum albumin and globulin analysis for hepatocellular carcinoma detection avoiding false-negative results from alpha-fetoprotein test negative subjects,” Appl. Phys. Lett. 103, 837–866 (2013).

Appl. Spectrosc. (1)

Biosens. Bioelectron. (2)

K. Lin, D. L. Cheng, and Z. Huang, “Optical diagnosis of laryngeal cancer using high wavenumber Raman spectroscopy,” Biosens. Bioelectron. 35(1), 213–217 (2012).
[Crossref] [PubMed]

K. Lin, D. L. P. Cheng, and Z. Huang, “Optical diagnosis of laryngeal cancer using high wavenumber Raman spectroscopy,” Biosens. Bioelectron. 35(1), 213–217 (2012).
[Crossref] [PubMed]

Diabet. Med. (1)

J. C. Bazo-Alvarez, R. Quispe, T. D. Pillay, A. Bernabé-Ortiz, L. Smeeth, W. Checkley, R. H. Gilman, G. Málaga, and J. J. Miranda, “Glycated haemoglobin (HbA1c ) and fasting plasma glucose relationships in sea-level and high-altitude settings,” Diabet. Med. 34(6), 804–812 (2017).
[Crossref] [PubMed]

Diabetes (1)

J. W. Baynes, “Role of oxidative stress in development of complications in diabetes,” Diabetes 40(4), 405–412 (1991).
[Crossref] [PubMed]

Diabetes Care (2)

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care 34(6), e61–e99 (2011).
[Crossref] [PubMed]

K. J. Welsh, M. S. Kirkman, and D. B. Sacks, “Role of Glycated Proteins in the Diagnosis and Management of Diabetes: Research Gaps and Future Directions,” Diabetes Care 39(8), 1299–1306 (2016).
[Crossref] [PubMed]

Exp. Hematol. (1)

R. Liu, Z. Mao, D. L. Matthews, C. S. Li, J. W. Chan, and N. Satake, “Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease,” Exp. Hematol. 41(7), 656–661 (2013).
[Crossref] [PubMed]

Int. J. Cancer (1)

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

J. Raman Spectrosc. (4)

J. Lin, Z. Huang, S. Feng, J. Lin, N. Liu, J. Wang, L. Li, Y. Zeng, B. Li, H. Zeng, and R. Chen, “Label‐free optical detection of type II diabetes based on surface‐enhanced Raman spectroscopy and multivariate analysis,” J. Raman Spectrosc. 45(10), 884–889 (2015).
[Crossref]

B. R. Wood and D. Mcnaughton, “Raman excitation wavelength investigation of single red blood cells in vivo,” J. Raman Spectrosc. 33(7), 517–523 (2002).
[Crossref]

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Near-infrared Raman spectroscopy for gastric precancer diagnosis,” J. Raman Spectrosc. 40(8), 908–914 (2010).
[Crossref]

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near‐infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
[Crossref]

Journal of Innovation in Optical Health Science (1)

J. Lin, J. Lin, Z. Huang, P. Lu, J. Wang, X. Wang, and R. Chen, “Raman spectroscopy of human hemoglobin for diabetes detection,” Journal of Innovation in Optical Health Science 7, 697 (2014).

Nature (1)

T. Scully, “Diabetes in numbers,” Nature 485(7398), S2–S3 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Physiol. Rev. (1)

J. M. Forbes and M. E. Cooper, “Mechanisms of diabetic complications,” Physiol. Rev. 93(1), 137–188 (2013).
[Crossref] [PubMed]

PLoS One (1)

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
[Crossref] [PubMed]

Proc. SPIE (1)

J. Lin, G. Cao, J. Lin, N. Liu, F. Liao, Q. Ruan, S. Wu, Z. Huang, L. Li, and R. Chen, “Serum albumin analysis for type II diabetes detection using surface-enhanced Raman spectroscopy,” Proc. SPIE 9230, 92301Z (2014).
[Crossref]

Radiology (1)

N. A. Obuchowski, “Receiver Operating Characteristic Curves and Their Use in Radiology,” Radiology 229(1), 3–8 (2003).
[Crossref] [PubMed]

Sensors (Basel) (1)

G. Rusciano, A. C. De Luca, G. Pesce, and A. Sasso, “Raman Tweezers as a Diagnostic Tool of Hemoglobin-Related Blood Disorders,” Sensors (Basel) 8(12), 7818–7832 (2008).
[Crossref] [PubMed]

Other (1)

W. H. Organization, “Global report on diabetes,” Working Papers (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Principle of our home-made near-infrared LTRS system, in which a 785 nm laser beam is focusd into an optically trap for capturing cell and is simultaneously used to obtain Raman spectrum of the trapped cell. Abbreviation: M-mirror; L-lens; PH-pinhole; DM-dichroic mirror; NF-notch filter; OIO-oil immersion objective; RBC-red blood cell; Hb-hemoglobin.

Fig. 2
Fig. 2

(a) Red and blue curves: the average Raman spectra of type II diabetic (red curve) and normal (blue curve) RBCs; Green curve: the difference spectrum (diabetic minus normal). Black curves: the 1st and 2nd principal components (PC1 and PC2), respectively, which are most diagnostically significant for diabetes detection (scaled by a factor 0.1). (b) Structural schematic of the hemoglobin in the red blood cell. RBC-red blood cell; Hb-hemoglobin.

Fig. 3
Fig. 3

The mean intensities and standard deviations of the RBC Raman bands with major variations (p<0.05) from normal to diabetic.

Fig. 4
Fig. 4

Statistical analysis for the calibration data set (35 diabetic and 35 healthy samples): (a) PCA plots of the RBCs Raman data belonging to the type II diabetic group (red circle) and the healthy group (blue circle). (b) Scatter plots of the LDA scores, drawing the sensitivity of 100% (35/35) and specificity of 97.1% (34/35) for diabetes detection. (c) The derived receiver operating characteristic (ROC) curve, yielding the integrated area of 0.999. Statistical results for the validation data set (10 diabetic and 10 healthy samples): (d) PCA plots of the RBCs Raman data belonging to the type II diabetic group (red circle) and the healthy group (blue circle). (e) Scatter plots of the LDA scores, drawing the sensitivity of 100% (10/10) and specificity of 90% (9/10) for diabetes detection. (f) The integrated area under the ROC curves is 1.00.

Tables (3)

Tables Icon

Table 1 Clinical Information on Type II Diabetes and Healthy Volunteers

Tables Icon

Table 2 The spectral assignments for RBC.

Tables Icon

Table 3 Discrimination results of the calibration and validation data set for diabetes detection using RBCs LTRS combined with PCA-LDA

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1.135PC10.661PC20.045=0