Abstract

Near-infrared diffuse optical tomography (NIR-DOT) is an emerging technology that offers hemoglobin based, functional imaging tumor biomarkers for breast cancer management. The most promising clinical translation opportunities are in the differential diagnosis of malignant vs. benign lesions, and in early response assessment and guidance for neoadjuvant chemotherapy. Accurate quantification of the tissue oxy- and deoxy-hemoglobin concentration across the field of view, as well as repeatability during longitudinal imaging in the context of therapy guidance, are essential for the successful translation of NIR-DOT to clinical practice. The ill-posed and ill-condition nature of the DOT inverse problem makes this technique particularly susceptible to model errors that may occur, for example, when the experimental conditions do not fully match the assumptions built into the image reconstruction process. To evaluate the susceptibility of DOT images to experimental errors that might be encountered in practice for a parallel-plate NIR-DOT system, we simulated 7 different types of errors, each with a range of magnitudes. We generated simulated data by using digital breast phantoms derived from five actual mammograms of healthy female volunteers, to which we added a 1-cm tumor. After applying each of the experimental error types and magnitudes to the simulated measurements, we reconstructed optical images with and without structural prior guidance and assessed the overall error in the total hemoglobin concentrations (HbT) and in the HbT contrast between the lesion and surrounding area vs. the best-case scenarios. It is found that slight in-plane probe misalignment and plate rotation did not result in large quantification errors. However, any out-of-plane probe tilting could result in significant deterioration in lesion contrast. Among the error types investigated in this work, optical images were the least likely to be impacted by breast shape inaccuracies but suffered the largest deterioration due to cross-talk between signal channels. However, errors in optical images could be effectively controlled when experimental parameters were properly estimated during data acquisition and accounted for in the image processing procedure. Finally, optical images recovered using structural priors were, in general, less susceptible to experimental errors; however, lesion contrasts were more sensitive to errors when tumor locations were used as a priori info. Findings in this simulation study can provide guidelines for system design and operation in optical breast imaging studies.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of structural-prior guided optical tomography using realistic breast models derived from dual-energy x-ray mammography

Bin Deng, Dana H. Brooks, David A. Boas, Mats Lundqvist, and Qianqian Fang
Biomed. Opt. Express 6(7) 2366-2379 (2015)

Hemodynamic signature of breast cancer under fractional mammographic compression using a dynamic diffuse optical tomography system

Stefan A. Carp, Amir Y. Sajjadi, Christy M. Wanyo, Qianqian Fang, Michelle C. Specht, Lidia Schapira, Beverly Moy, Aditya Bardia, David A. Boas, and Steven J. Isakoff
Biomed. Opt. Express 4(12) 2911-2924 (2013)

Automated data selection method to improve robustness of diffuse optical tomography for breast cancer imaging

Hamed Vavadi and Quing Zhu
Biomed. Opt. Express 7(10) 4007-4020 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos and B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3(1), 41–46 (2000).
    [Crossref] [PubMed]
  2. B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).
    [Crossref] [PubMed]
  3. R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14(2), 024020 (2009).
    [Crossref] [PubMed]
  4. J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37(7), 3715–3724 (2010).
    [Crossref] [PubMed]
  5. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
    [Crossref] [PubMed]
  6. S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng. 40(2), 398–407 (2012).
    [Crossref] [PubMed]
  7. A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
    [Crossref] [PubMed]
  8. A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos Trans A Math Phys Eng Sci 369(1955), 4512–4530 (2011).
    [Crossref] [PubMed]
  9. M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
    [Crossref] [PubMed]
  10. R. Choe and T. Durduran, “Diffuse optical monitoring of the neoadjuvant breast cancer therapy,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1367–1386 (2012).
    [Crossref] [PubMed]
  11. Q. Zhu, P. A. DeFusco, A. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266(2), 433–442 (2013).
    [Crossref] [PubMed]
  12. B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
    [Crossref] [PubMed]
  13. W. T. Tran, C. Childs, L. Chin, E. Slodkowska, L. Sannachi, H. Tadayyon, E. Watkins, S. L. Wong, B. Curpen, A. El Kaffas, A. Al-Mahrouki, A. Sadeghi-Naini, and G. J. Czarnota, “Multiparametric monitoring of chemotherapy treatment response in locally advanced breast cancer using quantitative ultrasound and diffuse optical spectroscopy,” Oncotarget 7(15), 19762–19780 (2016).
    [Crossref] [PubMed]
  14. A. Y. Sajjadi, S. J. Isakoff, B. Deng, B. Singh, C. M. Wanyo, Q. Fang, M. C. Specht, L. Schapira, B. Moy, A. Bardia, D. A. Boas, and S. A. Carp, “Normalization of compression-induced hemodynamics in patients responding to neoadjuvant chemotherapy monitored by dynamic tomographic optical breast imaging (DTOBI),” Biomed. Opt. Express 8(2), 555–569 (2017).
    [Crossref] [PubMed]
  15. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
    [Crossref]
  16. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
    [Crossref] [PubMed]
  17. A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
    [Crossref]
  18. B. B. Zimmermann, B. Deng, B. Singh, M. Martino, J. Selb, Q. Fang, A. Y. Sajjadi, J. Cormier, R. H. Moore, D. B. Kopans, D. A. Boas, M. A. Saksena, and S. A. Carp, “Multimodal breast cancer imaging using coregistered dynamic diffuse optical tomography and digital breast tomosynthesis,” J. Biomed. Opt. 22(4), 046008 (2017).
    [Crossref] [PubMed]
  19. Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
    [Crossref] [PubMed]
  20. B. Deng and Q. Fang, “Open-source DigiBreast – a complex digital breast phantom with 3D tissue compositions,” (2015) URL: http://openjd.sf.net/digibreast
  21. B. Deng, D. H. Brooks, D. A. Boas, M. Lundqvist, and Q. Fang, “Characterization of structural-prior guided optical tomography using realistic breast models derived from dual-energy x-ray mammography,” Biomed. Opt. Express 6(7), 2366–2379 (2015).
    [Crossref] [PubMed]
  22. E. Fredenberg, M. Lundqvist, B. Cederström, M. Åslund, and M. Danielsson, “Energy resolution of a photon-counting silicon strip detector,” Nucl. Instrum. Methods 613(1), 156–162 (2010).
    [Crossref]
  23. H. Ding and S. Molloi, “Quantification of breast density with spectral mammography based on a scanned multi-slit photon-counting detector: a feasibility study,” Phys. Med. Biol. 57(15), 4719–4738 (2012).
    [Crossref] [PubMed]
  24. H. Johansson, M. von Tiedemann, K. Erhard, H. Heese, H. Ding, S. Molloi, and E. Fredenberg, “Breast-density measurement using photon-counting spectral mammography,” Med. Phys. 44(7), 3579–3593 (2017).
    [Crossref] [PubMed]
  25. Q. Fang and D. Boas, “Tetrahedral mesh generation from volumetric binary and gray-scale images,” Proc. of IEEE Int. Symp on Biomed. Imaging (ISBI’09), 1142–5 (2009) URL: http://iso2mesh.sf.net
  26. X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12), N155–N163 (2004).
    [Crossref] [PubMed]
  27. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).
    [Crossref] [PubMed]
  28. Q. Fang, R. H. Moore, D. B. Kopans, and D. A. Boas, “Compositional-prior-guided image reconstruction algorithm for multi-modality imaging,” Biomed. Opt. Express 1(1), 223–235 (2010).
    [Crossref] [PubMed]
  29. B. Deng, M. Fradkin, J. M. Rouet, R. H. Moore, D. B. Kopans, D. A. Boas, M. Lundqvist, and Q. Fang, “Characterizing breast lesions through robust multimodal data fusion using independent diffuse optical and x-ray breast imaging,” J. Biomed. Opt. 20(8), 080502 (2015).
    [Crossref] [PubMed]
  30. L. Zhang, Y. Zhao, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Direct regularization from co-registered anatomical images for MRI-guided near-infrared spectral tomographic image reconstruction,” Biomed. Opt. Express 6(9), 3618–3630 (2015).
    [Crossref] [PubMed]
  31. M. Althobaiti, H. Vavadi, and Q. Zhu, “Diffuse optical tomography reconstruction method using ultrasound images as prior for regularization matrix,” J. Biomed. Opt. 22(2), 026002 (2017).
    [Crossref] [PubMed]
  32. Y. Zhao, M. A. Mastanduno, S. Jiang, F. Ei-Ghussein, J. Gui, B. W. Pogue, and K. D. Paulsen, “Optimization of image reconstruction for magnetic resonance imaging-guided near-infrared diffuse optical spectroscopy in breast,” J. Biomed. Opt. 20(5), 056009 (2015).
    [Crossref] [PubMed]
  33. G. Niculescu, J. L. Nosher, M. D. Schneider, and D. J. Foran, “A deformable model for tracking tumors across consecutive imaging studies,” Int. J. CARS 4(4), 337–347 (2009).
    [Crossref] [PubMed]
  34. G. Krell, N. Saeid Nezhad, M. Walke, A. Al-Hamadi, and G. Gademann, “Assessment of iterative closest point registration accuracy for different phantom surfaces captured by an optical 3D sensor in radiotherapy,” Comput. Math. Methods Med. 2017, 2938504 (2017).
    [Crossref] [PubMed]
  35. S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. 17(1), 72 (2015).
    [Crossref] [PubMed]
  36. H. Y. Ban, M. Schweiger, V. C. Kavuri, J. M. Cochran, L. Xie, D. R. Busch, J. Katrašnik, S. Pathak, S. H. Chung, K. Lee, R. Choe, B. J. Czerniecki, S. R. Arridge, and A. G. Yodh, “Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry,” Med. Phys. 43(7), 4383–4395 (2016).
    [Crossref] [PubMed]
  37. S. A. Carp, A. Y. Sajjadi, C. M. Wanyo, Q. Fang, M. C. Specht, L. Schapira, B. Moy, A. Bardia, D. A. Boas, and S. J. Isakoff, “Hemodynamic signature of breast cancer under fractional mammographic compression using a dynamic diffuse optical tomography system,” Biomed. Opt. Express 4(12), 2911–2924 (2013).
    [Crossref] [PubMed]
  38. D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
    [Crossref] [PubMed]
  39. M. Meinke, G. Müller, J. Helfmann, and M. Friebel, “Empirical model functions to calculate hematocrit-dependent optical properties of human blood,” Appl. Opt. 46(10), 1742–1753 (2007).
    [Crossref] [PubMed]
  40. R. Yerushalmi, H. Kennecke, R. Woods, I. A. Olivotto, C. Speers, and K. A. Gelmon, “Does multicentric/multifocal breast cancer differ from unifocal breast cancer? An analysis of survival and contralateral breast cancer incidence,” Breast Cancer Res. Treat. 117(2), 365–370 (2009).
    [Crossref] [PubMed]

2017 (6)

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]

B. B. Zimmermann, B. Deng, B. Singh, M. Martino, J. Selb, Q. Fang, A. Y. Sajjadi, J. Cormier, R. H. Moore, D. B. Kopans, D. A. Boas, M. A. Saksena, and S. A. Carp, “Multimodal breast cancer imaging using coregistered dynamic diffuse optical tomography and digital breast tomosynthesis,” J. Biomed. Opt. 22(4), 046008 (2017).
[Crossref] [PubMed]

H. Johansson, M. von Tiedemann, K. Erhard, H. Heese, H. Ding, S. Molloi, and E. Fredenberg, “Breast-density measurement using photon-counting spectral mammography,” Med. Phys. 44(7), 3579–3593 (2017).
[Crossref] [PubMed]

M. Althobaiti, H. Vavadi, and Q. Zhu, “Diffuse optical tomography reconstruction method using ultrasound images as prior for regularization matrix,” J. Biomed. Opt. 22(2), 026002 (2017).
[Crossref] [PubMed]

G. Krell, N. Saeid Nezhad, M. Walke, A. Al-Hamadi, and G. Gademann, “Assessment of iterative closest point registration accuracy for different phantom surfaces captured by an optical 3D sensor in radiotherapy,” Comput. Math. Methods Med. 2017, 2938504 (2017).
[Crossref] [PubMed]

A. Y. Sajjadi, S. J. Isakoff, B. Deng, B. Singh, C. M. Wanyo, Q. Fang, M. C. Specht, L. Schapira, B. Moy, A. Bardia, D. A. Boas, and S. A. Carp, “Normalization of compression-induced hemodynamics in patients responding to neoadjuvant chemotherapy monitored by dynamic tomographic optical breast imaging (DTOBI),” Biomed. Opt. Express 8(2), 555–569 (2017).
[Crossref] [PubMed]

2016 (4)

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref] [PubMed]

H. Y. Ban, M. Schweiger, V. C. Kavuri, J. M. Cochran, L. Xie, D. R. Busch, J. Katrašnik, S. Pathak, S. H. Chung, K. Lee, R. Choe, B. J. Czerniecki, S. R. Arridge, and A. G. Yodh, “Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry,” Med. Phys. 43(7), 4383–4395 (2016).
[Crossref] [PubMed]

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

W. T. Tran, C. Childs, L. Chin, E. Slodkowska, L. Sannachi, H. Tadayyon, E. Watkins, S. L. Wong, B. Curpen, A. El Kaffas, A. Al-Mahrouki, A. Sadeghi-Naini, and G. J. Czarnota, “Multiparametric monitoring of chemotherapy treatment response in locally advanced breast cancer using quantitative ultrasound and diffuse optical spectroscopy,” Oncotarget 7(15), 19762–19780 (2016).
[Crossref] [PubMed]

2015 (5)

B. Deng, M. Fradkin, J. M. Rouet, R. H. Moore, D. B. Kopans, D. A. Boas, M. Lundqvist, and Q. Fang, “Characterizing breast lesions through robust multimodal data fusion using independent diffuse optical and x-ray breast imaging,” J. Biomed. Opt. 20(8), 080502 (2015).
[Crossref] [PubMed]

S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. 17(1), 72 (2015).
[Crossref] [PubMed]

Y. Zhao, M. A. Mastanduno, S. Jiang, F. Ei-Ghussein, J. Gui, B. W. Pogue, and K. D. Paulsen, “Optimization of image reconstruction for magnetic resonance imaging-guided near-infrared diffuse optical spectroscopy in breast,” J. Biomed. Opt. 20(5), 056009 (2015).
[Crossref] [PubMed]

B. Deng, D. H. Brooks, D. A. Boas, M. Lundqvist, and Q. Fang, “Characterization of structural-prior guided optical tomography using realistic breast models derived from dual-energy x-ray mammography,” Biomed. Opt. Express 6(7), 2366–2379 (2015).
[Crossref] [PubMed]

L. Zhang, Y. Zhao, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Direct regularization from co-registered anatomical images for MRI-guided near-infrared spectral tomographic image reconstruction,” Biomed. Opt. Express 6(9), 3618–3630 (2015).
[Crossref] [PubMed]

2013 (2)

S. A. Carp, A. Y. Sajjadi, C. M. Wanyo, Q. Fang, M. C. Specht, L. Schapira, B. Moy, A. Bardia, D. A. Boas, and S. J. Isakoff, “Hemodynamic signature of breast cancer under fractional mammographic compression using a dynamic diffuse optical tomography system,” Biomed. Opt. Express 4(12), 2911–2924 (2013).
[Crossref] [PubMed]

Q. Zhu, P. A. DeFusco, A. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266(2), 433–442 (2013).
[Crossref] [PubMed]

2012 (3)

H. Ding and S. Molloi, “Quantification of breast density with spectral mammography based on a scanned multi-slit photon-counting detector: a feasibility study,” Phys. Med. Biol. 57(15), 4719–4738 (2012).
[Crossref] [PubMed]

R. Choe and T. Durduran, “Diffuse optical monitoring of the neoadjuvant breast cancer therapy,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1367–1386 (2012).
[Crossref] [PubMed]

S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng. 40(2), 398–407 (2012).
[Crossref] [PubMed]

2011 (3)

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos Trans A Math Phys Eng Sci 369(1955), 4512–4530 (2011).
[Crossref] [PubMed]

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref] [PubMed]

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

2010 (3)

J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37(7), 3715–3724 (2010).
[Crossref] [PubMed]

Q. Fang, R. H. Moore, D. B. Kopans, and D. A. Boas, “Compositional-prior-guided image reconstruction algorithm for multi-modality imaging,” Biomed. Opt. Express 1(1), 223–235 (2010).
[Crossref] [PubMed]

E. Fredenberg, M. Lundqvist, B. Cederström, M. Åslund, and M. Danielsson, “Energy resolution of a photon-counting silicon strip detector,” Nucl. Instrum. Methods 613(1), 156–162 (2010).
[Crossref]

2009 (4)

G. Niculescu, J. L. Nosher, M. D. Schneider, and D. J. Foran, “A deformable model for tracking tumors across consecutive imaging studies,” Int. J. CARS 4(4), 337–347 (2009).
[Crossref] [PubMed]

R. Yerushalmi, H. Kennecke, R. Woods, I. A. Olivotto, C. Speers, and K. A. Gelmon, “Does multicentric/multifocal breast cancer differ from unifocal breast cancer? An analysis of survival and contralateral breast cancer incidence,” Breast Cancer Res. Treat. 117(2), 365–370 (2009).
[Crossref] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14(2), 024020 (2009).
[Crossref] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

2008 (1)

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).
[Crossref] [PubMed]

2007 (3)

2004 (1)

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12), N155–N163 (2004).
[Crossref] [PubMed]

2000 (1)

V. Ntziachristos and B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3(1), 41–46 (2000).
[Crossref] [PubMed]

1999 (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

1997 (1)

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
[Crossref] [PubMed]

Al-Hamadi, A.

G. Krell, N. Saeid Nezhad, M. Walke, A. Al-Hamadi, and G. Gademann, “Assessment of iterative closest point registration accuracy for different phantom surfaces captured by an optical 3D sensor in radiotherapy,” Comput. Math. Methods Med. 2017, 2938504 (2017).
[Crossref] [PubMed]

Al-Mahrouki, A.

W. T. Tran, C. Childs, L. Chin, E. Slodkowska, L. Sannachi, H. Tadayyon, E. Watkins, S. L. Wong, B. Curpen, A. El Kaffas, A. Al-Mahrouki, A. Sadeghi-Naini, and G. J. Czarnota, “Multiparametric monitoring of chemotherapy treatment response in locally advanced breast cancer using quantitative ultrasound and diffuse optical spectroscopy,” Oncotarget 7(15), 19762–19780 (2016).
[Crossref] [PubMed]

Althobaiti, M.

M. Althobaiti, H. Vavadi, and Q. Zhu, “Diffuse optical tomography reconstruction method using ultrasound images as prior for regularization matrix,” J. Biomed. Opt. 22(2), 026002 (2017).
[Crossref] [PubMed]

Arridge, S. R.

H. Y. Ban, M. Schweiger, V. C. Kavuri, J. M. Cochran, L. Xie, D. R. Busch, J. Katrašnik, S. Pathak, S. H. Chung, K. Lee, R. Choe, B. J. Czerniecki, S. R. Arridge, and A. G. Yodh, “Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry,” Med. Phys. 43(7), 4383–4395 (2016).
[Crossref] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14(2), 024020 (2009).
[Crossref] [PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
[Crossref] [PubMed]

Åslund, M.

E. Fredenberg, M. Lundqvist, B. Cederström, M. Åslund, and M. Danielsson, “Energy resolution of a photon-counting silicon strip detector,” Nucl. Instrum. Methods 613(1), 156–162 (2010).
[Crossref]

Ban, H. Y.

H. Y. Ban, M. Schweiger, V. C. Kavuri, J. M. Cochran, L. Xie, D. R. Busch, J. Katrašnik, S. Pathak, S. H. Chung, K. Lee, R. Choe, B. J. Czerniecki, S. R. Arridge, and A. G. Yodh, “Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry,” Med. Phys. 43(7), 4383–4395 (2016).
[Crossref] [PubMed]

Bardia, A.

Barth, R. J.

J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37(7), 3715–3724 (2010).
[Crossref] [PubMed]

Boas, D.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]

Boas, D. A.

B. B. Zimmermann, B. Deng, B. Singh, M. Martino, J. Selb, Q. Fang, A. Y. Sajjadi, J. Cormier, R. H. Moore, D. B. Kopans, D. A. Boas, M. A. Saksena, and S. A. Carp, “Multimodal breast cancer imaging using coregistered dynamic diffuse optical tomography and digital breast tomosynthesis,” J. Biomed. Opt. 22(4), 046008 (2017).
[Crossref] [PubMed]

A. Y. Sajjadi, S. J. Isakoff, B. Deng, B. Singh, C. M. Wanyo, Q. Fang, M. C. Specht, L. Schapira, B. Moy, A. Bardia, D. A. Boas, and S. A. Carp, “Normalization of compression-induced hemodynamics in patients responding to neoadjuvant chemotherapy monitored by dynamic tomographic optical breast imaging (DTOBI),” Biomed. Opt. Express 8(2), 555–569 (2017).
[Crossref] [PubMed]

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

B. Deng, D. H. Brooks, D. A. Boas, M. Lundqvist, and Q. Fang, “Characterization of structural-prior guided optical tomography using realistic breast models derived from dual-energy x-ray mammography,” Biomed. Opt. Express 6(7), 2366–2379 (2015).
[Crossref] [PubMed]

B. Deng, M. Fradkin, J. M. Rouet, R. H. Moore, D. B. Kopans, D. A. Boas, M. Lundqvist, and Q. Fang, “Characterizing breast lesions through robust multimodal data fusion using independent diffuse optical and x-ray breast imaging,” J. Biomed. Opt. 20(8), 080502 (2015).
[Crossref] [PubMed]

S. A. Carp, A. Y. Sajjadi, C. M. Wanyo, Q. Fang, M. C. Specht, L. Schapira, B. Moy, A. Bardia, D. A. Boas, and S. J. Isakoff, “Hemodynamic signature of breast cancer under fractional mammographic compression using a dynamic diffuse optical tomography system,” Biomed. Opt. Express 4(12), 2911–2924 (2013).
[Crossref] [PubMed]

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Q. Fang, R. H. Moore, D. B. Kopans, and D. A. Boas, “Compositional-prior-guided image reconstruction algorithm for multi-modality imaging,” Biomed. Opt. Express 1(1), 223–235 (2010).
[Crossref] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).
[Crossref] [PubMed]

Boverman, G.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

Brooks, D. H.

B. Deng, D. H. Brooks, D. A. Boas, M. Lundqvist, and Q. Fang, “Characterization of structural-prior guided optical tomography using realistic breast models derived from dual-energy x-ray mammography,” Biomed. Opt. Express 6(7), 2366–2379 (2015).
[Crossref] [PubMed]

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

Busch, D. R.

H. Y. Ban, M. Schweiger, V. C. Kavuri, J. M. Cochran, L. Xie, D. R. Busch, J. Katrašnik, S. Pathak, S. H. Chung, K. Lee, R. Choe, B. J. Czerniecki, S. R. Arridge, and A. G. Yodh, “Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry,” Med. Phys. 43(7), 4383–4395 (2016).
[Crossref] [PubMed]

S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. 17(1), 72 (2015).
[Crossref] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14(2), 024020 (2009).
[Crossref] [PubMed]

Butler, J.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos Trans A Math Phys Eng Sci 369(1955), 4512–4530 (2011).
[Crossref] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref] [PubMed]

Carp, S. A.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]

B. B. Zimmermann, B. Deng, B. Singh, M. Martino, J. Selb, Q. Fang, A. Y. Sajjadi, J. Cormier, R. H. Moore, D. B. Kopans, D. A. Boas, M. A. Saksena, and S. A. Carp, “Multimodal breast cancer imaging using coregistered dynamic diffuse optical tomography and digital breast tomosynthesis,” J. Biomed. Opt. 22(4), 046008 (2017).
[Crossref] [PubMed]

A. Y. Sajjadi, S. J. Isakoff, B. Deng, B. Singh, C. M. Wanyo, Q. Fang, M. C. Specht, L. Schapira, B. Moy, A. Bardia, D. A. Boas, and S. A. Carp, “Normalization of compression-induced hemodynamics in patients responding to neoadjuvant chemotherapy monitored by dynamic tomographic optical breast imaging (DTOBI),” Biomed. Opt. Express 8(2), 555–569 (2017).
[Crossref] [PubMed]

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

S. A. Carp, A. Y. Sajjadi, C. M. Wanyo, Q. Fang, M. C. Specht, L. Schapira, B. Moy, A. Bardia, D. A. Boas, and S. J. Isakoff, “Hemodynamic signature of breast cancer under fractional mammographic compression using a dynamic diffuse optical tomography system,” Biomed. Opt. Express 4(12), 2911–2924 (2013).
[Crossref] [PubMed]

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

Carpenter, C. M.

Carpenter, P. M.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Cederström, B.

E. Fredenberg, M. Lundqvist, B. Cederström, M. Åslund, and M. Danielsson, “Energy resolution of a photon-counting silicon strip detector,” Nucl. Instrum. Methods 613(1), 156–162 (2010).
[Crossref]

Cerussi, A.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref] [PubMed]

Cerussi, A. E.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos Trans A Math Phys Eng Sci 369(1955), 4512–4530 (2011).
[Crossref] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).
[Crossref] [PubMed]

Chance, B.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14(2), 024020 (2009).
[Crossref] [PubMed]

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12), N155–N163 (2004).
[Crossref] [PubMed]

V. Ntziachristos and B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3(1), 41–46 (2000).
[Crossref] [PubMed]

Childs, C.

W. T. Tran, C. Childs, L. Chin, E. Slodkowska, L. Sannachi, H. Tadayyon, E. Watkins, S. L. Wong, B. Curpen, A. El Kaffas, A. Al-Mahrouki, A. Sadeghi-Naini, and G. J. Czarnota, “Multiparametric monitoring of chemotherapy treatment response in locally advanced breast cancer using quantitative ultrasound and diffuse optical spectroscopy,” Oncotarget 7(15), 19762–19780 (2016).
[Crossref] [PubMed]

Chin, L.

W. T. Tran, C. Childs, L. Chin, E. Slodkowska, L. Sannachi, H. Tadayyon, E. Watkins, S. L. Wong, B. Curpen, A. El Kaffas, A. Al-Mahrouki, A. Sadeghi-Naini, and G. J. Czarnota, “Multiparametric monitoring of chemotherapy treatment response in locally advanced breast cancer using quantitative ultrasound and diffuse optical spectroscopy,” Oncotarget 7(15), 19762–19780 (2016).
[Crossref] [PubMed]

Choe, R.

H. Y. Ban, M. Schweiger, V. C. Kavuri, J. M. Cochran, L. Xie, D. R. Busch, J. Katrašnik, S. Pathak, S. H. Chung, K. Lee, R. Choe, B. J. Czerniecki, S. R. Arridge, and A. G. Yodh, “Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry,” Med. Phys. 43(7), 4383–4395 (2016).
[Crossref] [PubMed]

S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. 17(1), 72 (2015).
[Crossref] [PubMed]

R. Choe and T. Durduran, “Diffuse optical monitoring of the neoadjuvant breast cancer therapy,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1367–1386 (2012).
[Crossref] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14(2), 024020 (2009).
[Crossref] [PubMed]

Chung, S. H.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

H. Y. Ban, M. Schweiger, V. C. Kavuri, J. M. Cochran, L. Xie, D. R. Busch, J. Katrašnik, S. Pathak, S. H. Chung, K. Lee, R. Choe, B. J. Czerniecki, S. R. Arridge, and A. G. Yodh, “Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry,” Med. Phys. 43(7), 4383–4395 (2016).
[Crossref] [PubMed]

S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. 17(1), 72 (2015).
[Crossref] [PubMed]

Cochran, J. M.

H. Y. Ban, M. Schweiger, V. C. Kavuri, J. M. Cochran, L. Xie, D. R. Busch, J. Katrašnik, S. Pathak, S. H. Chung, K. Lee, R. Choe, B. J. Czerniecki, S. R. Arridge, and A. G. Yodh, “Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry,” Med. Phys. 43(7), 4383–4395 (2016).
[Crossref] [PubMed]

Corlu, A.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14(2), 024020 (2009).
[Crossref] [PubMed]

Cormier, J.

B. B. Zimmermann, B. Deng, B. Singh, M. Martino, J. Selb, Q. Fang, A. Y. Sajjadi, J. Cormier, R. H. Moore, D. B. Kopans, D. A. Boas, M. A. Saksena, and S. A. Carp, “Multimodal breast cancer imaging using coregistered dynamic diffuse optical tomography and digital breast tomosynthesis,” J. Biomed. Opt. 22(4), 046008 (2017).
[Crossref] [PubMed]

Cronin, E. B.

Q. Zhu, P. A. DeFusco, A. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266(2), 433–442 (2013).
[Crossref] [PubMed]

Cubeddu, R.

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref] [PubMed]

Culver, J. P.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14(2), 024020 (2009).
[Crossref] [PubMed]

Curpen, B.

W. T. Tran, C. Childs, L. Chin, E. Slodkowska, L. Sannachi, H. Tadayyon, E. Watkins, S. L. Wong, B. Curpen, A. El Kaffas, A. Al-Mahrouki, A. Sadeghi-Naini, and G. J. Czarnota, “Multiparametric monitoring of chemotherapy treatment response in locally advanced breast cancer using quantitative ultrasound and diffuse optical spectroscopy,” Oncotarget 7(15), 19762–19780 (2016).
[Crossref] [PubMed]

Czarnota, G. J.

W. T. Tran, C. Childs, L. Chin, E. Slodkowska, L. Sannachi, H. Tadayyon, E. Watkins, S. L. Wong, B. Curpen, A. El Kaffas, A. Al-Mahrouki, A. Sadeghi-Naini, and G. J. Czarnota, “Multiparametric monitoring of chemotherapy treatment response in locally advanced breast cancer using quantitative ultrasound and diffuse optical spectroscopy,” Oncotarget 7(15), 19762–19780 (2016).
[Crossref] [PubMed]

Czerniecki, B. J.

H. Y. Ban, M. Schweiger, V. C. Kavuri, J. M. Cochran, L. Xie, D. R. Busch, J. Katrašnik, S. Pathak, S. H. Chung, K. Lee, R. Choe, B. J. Czerniecki, S. R. Arridge, and A. G. Yodh, “Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry,” Med. Phys. 43(7), 4383–4395 (2016).
[Crossref] [PubMed]

S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. 17(1), 72 (2015).
[Crossref] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14(2), 024020 (2009).
[Crossref] [PubMed]

Danielsson, M.

E. Fredenberg, M. Lundqvist, B. Cederström, M. Åslund, and M. Danielsson, “Energy resolution of a photon-counting silicon strip detector,” Nucl. Instrum. Methods 613(1), 156–162 (2010).
[Crossref]

DeFusco, P. A.

Q. Zhu, P. A. DeFusco, A. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266(2), 433–442 (2013).
[Crossref] [PubMed]

Dehghani, H.

DeMichele, A.

S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. 17(1), 72 (2015).
[Crossref] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14(2), 024020 (2009).
[Crossref] [PubMed]

Deng, B.

B. B. Zimmermann, B. Deng, B. Singh, M. Martino, J. Selb, Q. Fang, A. Y. Sajjadi, J. Cormier, R. H. Moore, D. B. Kopans, D. A. Boas, M. A. Saksena, and S. A. Carp, “Multimodal breast cancer imaging using coregistered dynamic diffuse optical tomography and digital breast tomosynthesis,” J. Biomed. Opt. 22(4), 046008 (2017).
[Crossref] [PubMed]

A. Y. Sajjadi, S. J. Isakoff, B. Deng, B. Singh, C. M. Wanyo, Q. Fang, M. C. Specht, L. Schapira, B. Moy, A. Bardia, D. A. Boas, and S. A. Carp, “Normalization of compression-induced hemodynamics in patients responding to neoadjuvant chemotherapy monitored by dynamic tomographic optical breast imaging (DTOBI),” Biomed. Opt. Express 8(2), 555–569 (2017).
[Crossref] [PubMed]

B. Deng, D. H. Brooks, D. A. Boas, M. Lundqvist, and Q. Fang, “Characterization of structural-prior guided optical tomography using realistic breast models derived from dual-energy x-ray mammography,” Biomed. Opt. Express 6(7), 2366–2379 (2015).
[Crossref] [PubMed]

B. Deng, M. Fradkin, J. M. Rouet, R. H. Moore, D. B. Kopans, D. A. Boas, M. Lundqvist, and Q. Fang, “Characterizing breast lesions through robust multimodal data fusion using independent diffuse optical and x-ray breast imaging,” J. Biomed. Opt. 20(8), 080502 (2015).
[Crossref] [PubMed]

diFlorio-Alexander, R. M.

J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37(7), 3715–3724 (2010).
[Crossref] [PubMed]

Ding, H.

H. Johansson, M. von Tiedemann, K. Erhard, H. Heese, H. Ding, S. Molloi, and E. Fredenberg, “Breast-density measurement using photon-counting spectral mammography,” Med. Phys. 44(7), 3579–3593 (2017).
[Crossref] [PubMed]

H. Ding and S. Molloi, “Quantification of breast density with spectral mammography based on a scanned multi-slit photon-counting detector: a feasibility study,” Phys. Med. Biol. 57(15), 4719–4738 (2012).
[Crossref] [PubMed]

Durduran, T.

R. Choe and T. Durduran, “Diffuse optical monitoring of the neoadjuvant breast cancer therapy,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1367–1386 (2012).
[Crossref] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14(2), 024020 (2009).
[Crossref] [PubMed]

Durkin, A.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref] [PubMed]

Ei-Ghussein, F.

Y. Zhao, M. A. Mastanduno, S. Jiang, F. Ei-Ghussein, J. Gui, B. W. Pogue, and K. D. Paulsen, “Optimization of image reconstruction for magnetic resonance imaging-guided near-infrared diffuse optical spectroscopy in breast,” J. Biomed. Opt. 20(5), 056009 (2015).
[Crossref] [PubMed]

El Kaffas, A.

W. T. Tran, C. Childs, L. Chin, E. Slodkowska, L. Sannachi, H. Tadayyon, E. Watkins, S. L. Wong, B. Curpen, A. El Kaffas, A. Al-Mahrouki, A. Sadeghi-Naini, and G. J. Czarnota, “Multiparametric monitoring of chemotherapy treatment response in locally advanced breast cancer using quantitative ultrasound and diffuse optical spectroscopy,” Oncotarget 7(15), 19762–19780 (2016).
[Crossref] [PubMed]

Erhard, K.

H. Johansson, M. von Tiedemann, K. Erhard, H. Heese, H. Ding, S. Molloi, and E. Fredenberg, “Breast-density measurement using photon-counting spectral mammography,” Med. Phys. 44(7), 3579–3593 (2017).
[Crossref] [PubMed]

Fang, Q.

A. Y. Sajjadi, S. J. Isakoff, B. Deng, B. Singh, C. M. Wanyo, Q. Fang, M. C. Specht, L. Schapira, B. Moy, A. Bardia, D. A. Boas, and S. A. Carp, “Normalization of compression-induced hemodynamics in patients responding to neoadjuvant chemotherapy monitored by dynamic tomographic optical breast imaging (DTOBI),” Biomed. Opt. Express 8(2), 555–569 (2017).
[Crossref] [PubMed]

B. B. Zimmermann, B. Deng, B. Singh, M. Martino, J. Selb, Q. Fang, A. Y. Sajjadi, J. Cormier, R. H. Moore, D. B. Kopans, D. A. Boas, M. A. Saksena, and S. A. Carp, “Multimodal breast cancer imaging using coregistered dynamic diffuse optical tomography and digital breast tomosynthesis,” J. Biomed. Opt. 22(4), 046008 (2017).
[Crossref] [PubMed]

B. Deng, D. H. Brooks, D. A. Boas, M. Lundqvist, and Q. Fang, “Characterization of structural-prior guided optical tomography using realistic breast models derived from dual-energy x-ray mammography,” Biomed. Opt. Express 6(7), 2366–2379 (2015).
[Crossref] [PubMed]

B. Deng, M. Fradkin, J. M. Rouet, R. H. Moore, D. B. Kopans, D. A. Boas, M. Lundqvist, and Q. Fang, “Characterizing breast lesions through robust multimodal data fusion using independent diffuse optical and x-ray breast imaging,” J. Biomed. Opt. 20(8), 080502 (2015).
[Crossref] [PubMed]

S. A. Carp, A. Y. Sajjadi, C. M. Wanyo, Q. Fang, M. C. Specht, L. Schapira, B. Moy, A. Bardia, D. A. Boas, and S. J. Isakoff, “Hemodynamic signature of breast cancer under fractional mammographic compression using a dynamic diffuse optical tomography system,” Biomed. Opt. Express 4(12), 2911–2924 (2013).
[Crossref] [PubMed]

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Q. Fang, R. H. Moore, D. B. Kopans, and D. A. Boas, “Compositional-prior-guided image reconstruction algorithm for multi-modality imaging,” Biomed. Opt. Express 1(1), 223–235 (2010).
[Crossref] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

Fantini, S.

S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng. 40(2), 398–407 (2012).
[Crossref] [PubMed]

Feldman, M. D.

S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. 17(1), 72 (2015).
[Crossref] [PubMed]

Foran, D. J.

G. Niculescu, J. L. Nosher, M. D. Schneider, and D. J. Foran, “A deformable model for tracking tumors across consecutive imaging studies,” Int. J. CARS 4(4), 337–347 (2009).
[Crossref] [PubMed]

Fradkin, M.

B. Deng, M. Fradkin, J. M. Rouet, R. H. Moore, D. B. Kopans, D. A. Boas, M. Lundqvist, and Q. Fang, “Characterizing breast lesions through robust multimodal data fusion using independent diffuse optical and x-ray breast imaging,” J. Biomed. Opt. 20(8), 080502 (2015).
[Crossref] [PubMed]

Fraker, D. L.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14(2), 024020 (2009).
[Crossref] [PubMed]

Fredenberg, E.

H. Johansson, M. von Tiedemann, K. Erhard, H. Heese, H. Ding, S. Molloi, and E. Fredenberg, “Breast-density measurement using photon-counting spectral mammography,” Med. Phys. 44(7), 3579–3593 (2017).
[Crossref] [PubMed]

E. Fredenberg, M. Lundqvist, B. Cederström, M. Åslund, and M. Danielsson, “Energy resolution of a photon-counting silicon strip detector,” Nucl. Instrum. Methods 613(1), 156–162 (2010).
[Crossref]

Friebel, M.

Froehlich, H. M.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref] [PubMed]

Gademann, G.

G. Krell, N. Saeid Nezhad, M. Walke, A. Al-Hamadi, and G. Gademann, “Assessment of iterative closest point registration accuracy for different phantom surfaces captured by an optical 3D sensor in radiotherapy,” Comput. Math. Methods Med. 2017, 2938504 (2017).
[Crossref] [PubMed]

Gelmon, K. A.

R. Yerushalmi, H. Kennecke, R. Woods, I. A. Olivotto, C. Speers, and K. A. Gelmon, “Does multicentric/multifocal breast cancer differ from unifocal breast cancer? An analysis of survival and contralateral breast cancer incidence,” Breast Cancer Res. Treat. 117(2), 365–370 (2009).
[Crossref] [PubMed]

Grosenick, D.

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref] [PubMed]

Gui, J.

Y. Zhao, M. A. Mastanduno, S. Jiang, F. Ei-Ghussein, J. Gui, B. W. Pogue, and K. D. Paulsen, “Optimization of image reconstruction for magnetic resonance imaging-guided near-infrared diffuse optical spectroscopy in breast,” J. Biomed. Opt. 20(5), 056009 (2015).
[Crossref] [PubMed]

Guven, M.

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12), N155–N163 (2004).
[Crossref] [PubMed]

Hart, J.

Q. Zhu, P. A. DeFusco, A. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266(2), 433–442 (2013).
[Crossref] [PubMed]

Hebden, J. C.

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
[Crossref] [PubMed]

Heese, H.

H. Johansson, M. von Tiedemann, K. Erhard, H. Heese, H. Ding, S. Molloi, and E. Fredenberg, “Breast-density measurement using photon-counting spectral mammography,” Med. Phys. 44(7), 3579–3593 (2017).
[Crossref] [PubMed]

Hegde, P. U.

Q. Zhu, P. A. DeFusco, A. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266(2), 433–442 (2013).
[Crossref] [PubMed]

Helfmann, J.

Hill, B.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]

Hsiang, D.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos Trans A Math Phys Eng Sci 369(1955), 4512–4530 (2011).
[Crossref] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref] [PubMed]

Hylton, N.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Intes, X.

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12), N155–N163 (2004).
[Crossref] [PubMed]

Isakoff, S. J.

A. Y. Sajjadi, S. J. Isakoff, B. Deng, B. Singh, C. M. Wanyo, Q. Fang, M. C. Specht, L. Schapira, B. Moy, A. Bardia, D. A. Boas, and S. A. Carp, “Normalization of compression-induced hemodynamics in patients responding to neoadjuvant chemotherapy monitored by dynamic tomographic optical breast imaging (DTOBI),” Biomed. Opt. Express 8(2), 555–569 (2017).
[Crossref] [PubMed]

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

S. A. Carp, A. Y. Sajjadi, C. M. Wanyo, Q. Fang, M. C. Specht, L. Schapira, B. Moy, A. Bardia, D. A. Boas, and S. J. Isakoff, “Hemodynamic signature of breast cancer under fractional mammographic compression using a dynamic diffuse optical tomography system,” Biomed. Opt. Express 4(12), 2911–2924 (2013).
[Crossref] [PubMed]

Jiang, S.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

L. Zhang, Y. Zhao, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Direct regularization from co-registered anatomical images for MRI-guided near-infrared spectral tomographic image reconstruction,” Biomed. Opt. Express 6(9), 3618–3630 (2015).
[Crossref] [PubMed]

Y. Zhao, M. A. Mastanduno, S. Jiang, F. Ei-Ghussein, J. Gui, B. W. Pogue, and K. D. Paulsen, “Optimization of image reconstruction for magnetic resonance imaging-guided near-infrared diffuse optical spectroscopy in breast,” J. Biomed. Opt. 20(5), 056009 (2015).
[Crossref] [PubMed]

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref] [PubMed]

J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37(7), 3715–3724 (2010).
[Crossref] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).
[Crossref] [PubMed]

Johansson, H.

H. Johansson, M. von Tiedemann, K. Erhard, H. Heese, H. Ding, S. Molloi, and E. Fredenberg, “Breast-density measurement using photon-counting spectral mammography,” Med. Phys. 44(7), 3579–3593 (2017).
[Crossref] [PubMed]

Kane, M.

Q. Zhu, P. A. DeFusco, A. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266(2), 433–442 (2013).
[Crossref] [PubMed]

Katrašnik, J.

H. Y. Ban, M. Schweiger, V. C. Kavuri, J. M. Cochran, L. Xie, D. R. Busch, J. Katrašnik, S. Pathak, S. H. Chung, K. Lee, R. Choe, B. J. Czerniecki, S. R. Arridge, and A. G. Yodh, “Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry,” Med. Phys. 43(7), 4383–4395 (2016).
[Crossref] [PubMed]

Kaufman, P. A.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref] [PubMed]

J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37(7), 3715–3724 (2010).
[Crossref] [PubMed]

Kavuri, V. C.

H. Y. Ban, M. Schweiger, V. C. Kavuri, J. M. Cochran, L. Xie, D. R. Busch, J. Katrašnik, S. Pathak, S. H. Chung, K. Lee, R. Choe, B. J. Czerniecki, S. R. Arridge, and A. G. Yodh, “Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry,” Med. Phys. 43(7), 4383–4395 (2016).
[Crossref] [PubMed]

Kennecke, H.

R. Yerushalmi, H. Kennecke, R. Woods, I. A. Olivotto, C. Speers, and K. A. Gelmon, “Does multicentric/multifocal breast cancer differ from unifocal breast cancer? An analysis of survival and contralateral breast cancer incidence,” Breast Cancer Res. Treat. 117(2), 365–370 (2009).
[Crossref] [PubMed]

Kim, H.

S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. 17(1), 72 (2015).
[Crossref] [PubMed]

Konecky, S. D.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14(2), 024020 (2009).
[Crossref] [PubMed]

Kopans, D. B.

B. B. Zimmermann, B. Deng, B. Singh, M. Martino, J. Selb, Q. Fang, A. Y. Sajjadi, J. Cormier, R. H. Moore, D. B. Kopans, D. A. Boas, M. A. Saksena, and S. A. Carp, “Multimodal breast cancer imaging using coregistered dynamic diffuse optical tomography and digital breast tomosynthesis,” J. Biomed. Opt. 22(4), 046008 (2017).
[Crossref] [PubMed]

B. Deng, M. Fradkin, J. M. Rouet, R. H. Moore, D. B. Kopans, D. A. Boas, M. Lundqvist, and Q. Fang, “Characterizing breast lesions through robust multimodal data fusion using independent diffuse optical and x-ray breast imaging,” J. Biomed. Opt. 20(8), 080502 (2015).
[Crossref] [PubMed]

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Q. Fang, R. H. Moore, D. B. Kopans, and D. A. Boas, “Compositional-prior-guided image reconstruction algorithm for multi-modality imaging,” Biomed. Opt. Express 1(1), 223–235 (2010).
[Crossref] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

Krell, G.

G. Krell, N. Saeid Nezhad, M. Walke, A. Al-Hamadi, and G. Gademann, “Assessment of iterative closest point registration accuracy for different phantom surfaces captured by an optical 3D sensor in radiotherapy,” Comput. Math. Methods Med. 2017, 2938504 (2017).
[Crossref] [PubMed]

Lee, K.

H. Y. Ban, M. Schweiger, V. C. Kavuri, J. M. Cochran, L. Xie, D. R. Busch, J. Katrašnik, S. Pathak, S. H. Chung, K. Lee, R. Choe, B. J. Czerniecki, S. R. Arridge, and A. G. Yodh, “Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry,” Med. Phys. 43(7), 4383–4395 (2016).
[Crossref] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14(2), 024020 (2009).
[Crossref] [PubMed]

Leproux, A.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Li, Z.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref] [PubMed]

J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37(7), 3715–3724 (2010).
[Crossref] [PubMed]

Lundqvist, M.

B. Deng, D. H. Brooks, D. A. Boas, M. Lundqvist, and Q. Fang, “Characterization of structural-prior guided optical tomography using realistic breast models derived from dual-energy x-ray mammography,” Biomed. Opt. Express 6(7), 2366–2379 (2015).
[Crossref] [PubMed]

B. Deng, M. Fradkin, J. M. Rouet, R. H. Moore, D. B. Kopans, D. A. Boas, M. Lundqvist, and Q. Fang, “Characterizing breast lesions through robust multimodal data fusion using independent diffuse optical and x-ray breast imaging,” J. Biomed. Opt. 20(8), 080502 (2015).
[Crossref] [PubMed]

E. Fredenberg, M. Lundqvist, B. Cederström, M. Åslund, and M. Danielsson, “Energy resolution of a photon-counting silicon strip detector,” Nucl. Instrum. Methods 613(1), 156–162 (2010).
[Crossref]

Maloux, C.

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12), N155–N163 (2004).
[Crossref] [PubMed]

Mankoff, D.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Martinez, D.

S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. 17(1), 72 (2015).
[Crossref] [PubMed]

Martino, M.

B. B. Zimmermann, B. Deng, B. Singh, M. Martino, J. Selb, Q. Fang, A. Y. Sajjadi, J. Cormier, R. H. Moore, D. B. Kopans, D. A. Boas, M. A. Saksena, and S. A. Carp, “Multimodal breast cancer imaging using coregistered dynamic diffuse optical tomography and digital breast tomosynthesis,” J. Biomed. Opt. 22(4), 046008 (2017).
[Crossref] [PubMed]

Mastanduno, M. A.

Y. Zhao, M. A. Mastanduno, S. Jiang, F. Ei-Ghussein, J. Gui, B. W. Pogue, and K. D. Paulsen, “Optimization of image reconstruction for magnetic resonance imaging-guided near-infrared diffuse optical spectroscopy in breast,” J. Biomed. Opt. 20(5), 056009 (2015).
[Crossref] [PubMed]

Mehta, R.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref] [PubMed]

Mehta, R. S.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos Trans A Math Phys Eng Sci 369(1955), 4512–4530 (2011).
[Crossref] [PubMed]

Meinke, M.

Miller, E. L.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

Molloi, S.

H. Johansson, M. von Tiedemann, K. Erhard, H. Heese, H. Ding, S. Molloi, and E. Fredenberg, “Breast-density measurement using photon-counting spectral mammography,” Med. Phys. 44(7), 3579–3593 (2017).
[Crossref] [PubMed]

H. Ding and S. Molloi, “Quantification of breast density with spectral mammography based on a scanned multi-slit photon-counting detector: a feasibility study,” Phys. Med. Biol. 57(15), 4719–4738 (2012).
[Crossref] [PubMed]

Moore, R. H.

B. B. Zimmermann, B. Deng, B. Singh, M. Martino, J. Selb, Q. Fang, A. Y. Sajjadi, J. Cormier, R. H. Moore, D. B. Kopans, D. A. Boas, M. A. Saksena, and S. A. Carp, “Multimodal breast cancer imaging using coregistered dynamic diffuse optical tomography and digital breast tomosynthesis,” J. Biomed. Opt. 22(4), 046008 (2017).
[Crossref] [PubMed]

B. Deng, M. Fradkin, J. M. Rouet, R. H. Moore, D. B. Kopans, D. A. Boas, M. Lundqvist, and Q. Fang, “Characterizing breast lesions through robust multimodal data fusion using independent diffuse optical and x-ray breast imaging,” J. Biomed. Opt. 20(8), 080502 (2015).
[Crossref] [PubMed]

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Q. Fang, R. H. Moore, D. B. Kopans, and D. A. Boas, “Compositional-prior-guided image reconstruction algorithm for multi-modality imaging,” Biomed. Opt. Express 1(1), 223–235 (2010).
[Crossref] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

Moy, B.

Müller, G.

Niculescu, G.

G. Niculescu, J. L. Nosher, M. D. Schneider, and D. J. Foran, “A deformable model for tracking tumors across consecutive imaging studies,” Int. J. CARS 4(4), 337–347 (2009).
[Crossref] [PubMed]

Nosher, J. L.

G. Niculescu, J. L. Nosher, M. D. Schneider, and D. J. Foran, “A deformable model for tracking tumors across consecutive imaging studies,” Int. J. CARS 4(4), 337–347 (2009).
[Crossref] [PubMed]

Ntziachristos, V.

V. Ntziachristos and B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3(1), 41–46 (2000).
[Crossref] [PubMed]

O’Sullivan, T. D.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Olivotto, I. A.

R. Yerushalmi, H. Kennecke, R. Woods, I. A. Olivotto, C. Speers, and K. A. Gelmon, “Does multicentric/multifocal breast cancer differ from unifocal breast cancer? An analysis of survival and contralateral breast cancer incidence,” Breast Cancer Res. Treat. 117(2), 365–370 (2009).
[Crossref] [PubMed]

Pakalniskis, M. G.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref] [PubMed]

Pathak, S.

H. Y. Ban, M. Schweiger, V. C. Kavuri, J. M. Cochran, L. Xie, D. R. Busch, J. Katrašnik, S. Pathak, S. H. Chung, K. Lee, R. Choe, B. J. Czerniecki, S. R. Arridge, and A. G. Yodh, “Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry,” Med. Phys. 43(7), 4383–4395 (2016).
[Crossref] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14(2), 024020 (2009).
[Crossref] [PubMed]

Paulsen, K. D.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Y. Zhao, M. A. Mastanduno, S. Jiang, F. Ei-Ghussein, J. Gui, B. W. Pogue, and K. D. Paulsen, “Optimization of image reconstruction for magnetic resonance imaging-guided near-infrared diffuse optical spectroscopy in breast,” J. Biomed. Opt. 20(5), 056009 (2015).
[Crossref] [PubMed]

L. Zhang, Y. Zhao, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Direct regularization from co-registered anatomical images for MRI-guided near-infrared spectral tomographic image reconstruction,” Biomed. Opt. Express 6(9), 3618–3630 (2015).
[Crossref] [PubMed]

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref] [PubMed]

J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37(7), 3715–3724 (2010).
[Crossref] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).
[Crossref] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).
[Crossref] [PubMed]

Pogue, B.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]

Pogue, B. W.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

L. Zhang, Y. Zhao, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Direct regularization from co-registered anatomical images for MRI-guided near-infrared spectral tomographic image reconstruction,” Biomed. Opt. Express 6(9), 3618–3630 (2015).
[Crossref] [PubMed]

Y. Zhao, M. A. Mastanduno, S. Jiang, F. Ei-Ghussein, J. Gui, B. W. Pogue, and K. D. Paulsen, “Optimization of image reconstruction for magnetic resonance imaging-guided near-infrared diffuse optical spectroscopy in breast,” J. Biomed. Opt. 20(5), 056009 (2015).
[Crossref] [PubMed]

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref] [PubMed]

J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37(7), 3715–3724 (2010).
[Crossref] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).
[Crossref] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).
[Crossref] [PubMed]

Poplack, S. P.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref] [PubMed]

Putt, M. E.

S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. 17(1), 72 (2015).
[Crossref] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14(2), 024020 (2009).
[Crossref] [PubMed]

Ricci, A.

Q. Zhu, P. A. DeFusco, A. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266(2), 433–442 (2013).
[Crossref] [PubMed]

Rinneberg, H.

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref] [PubMed]

Roblyer, D.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Rosen, M. A.

S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. 17(1), 72 (2015).
[Crossref] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14(2), 024020 (2009).
[Crossref] [PubMed]

Rouet, J. M.

B. Deng, M. Fradkin, J. M. Rouet, R. H. Moore, D. B. Kopans, D. A. Boas, M. Lundqvist, and Q. Fang, “Characterizing breast lesions through robust multimodal data fusion using independent diffuse optical and x-ray breast imaging,” J. Biomed. Opt. 20(8), 080502 (2015).
[Crossref] [PubMed]

Sadeghi-Naini, A.

W. T. Tran, C. Childs, L. Chin, E. Slodkowska, L. Sannachi, H. Tadayyon, E. Watkins, S. L. Wong, B. Curpen, A. El Kaffas, A. Al-Mahrouki, A. Sadeghi-Naini, and G. J. Czarnota, “Multiparametric monitoring of chemotherapy treatment response in locally advanced breast cancer using quantitative ultrasound and diffuse optical spectroscopy,” Oncotarget 7(15), 19762–19780 (2016).
[Crossref] [PubMed]

Saeid Nezhad, N.

G. Krell, N. Saeid Nezhad, M. Walke, A. Al-Hamadi, and G. Gademann, “Assessment of iterative closest point registration accuracy for different phantom surfaces captured by an optical 3D sensor in radiotherapy,” Comput. Math. Methods Med. 2017, 2938504 (2017).
[Crossref] [PubMed]

Sajjadi, A. Y.

Saksena, M. A.

B. B. Zimmermann, B. Deng, B. Singh, M. Martino, J. Selb, Q. Fang, A. Y. Sajjadi, J. Cormier, R. H. Moore, D. B. Kopans, D. A. Boas, M. A. Saksena, and S. A. Carp, “Multimodal breast cancer imaging using coregistered dynamic diffuse optical tomography and digital breast tomosynthesis,” J. Biomed. Opt. 22(4), 046008 (2017).
[Crossref] [PubMed]

Sannachi, L.

W. T. Tran, C. Childs, L. Chin, E. Slodkowska, L. Sannachi, H. Tadayyon, E. Watkins, S. L. Wong, B. Curpen, A. El Kaffas, A. Al-Mahrouki, A. Sadeghi-Naini, and G. J. Czarnota, “Multiparametric monitoring of chemotherapy treatment response in locally advanced breast cancer using quantitative ultrasound and diffuse optical spectroscopy,” Oncotarget 7(15), 19762–19780 (2016).
[Crossref] [PubMed]

Sassaroli, A.

S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng. 40(2), 398–407 (2012).
[Crossref] [PubMed]

Schapira, L.

Schnall, M.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Schnall, M. D.

S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. 17(1), 72 (2015).
[Crossref] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14(2), 024020 (2009).
[Crossref] [PubMed]

Schneider, M. D.

G. Niculescu, J. L. Nosher, M. D. Schneider, and D. J. Foran, “A deformable model for tracking tumors across consecutive imaging studies,” Int. J. CARS 4(4), 337–347 (2009).
[Crossref] [PubMed]

Schwab, M. C.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref] [PubMed]

Schweiger, M.

H. Y. Ban, M. Schweiger, V. C. Kavuri, J. M. Cochran, L. Xie, D. R. Busch, J. Katrašnik, S. Pathak, S. H. Chung, K. Lee, R. Choe, B. J. Czerniecki, S. R. Arridge, and A. G. Yodh, “Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry,” Med. Phys. 43(7), 4383–4395 (2016).
[Crossref] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14(2), 024020 (2009).
[Crossref] [PubMed]

Selb, J.

B. B. Zimmermann, B. Deng, B. Singh, M. Martino, J. Selb, Q. Fang, A. Y. Sajjadi, J. Cormier, R. H. Moore, D. B. Kopans, D. A. Boas, M. A. Saksena, and S. A. Carp, “Multimodal breast cancer imaging using coregistered dynamic diffuse optical tomography and digital breast tomosynthesis,” J. Biomed. Opt. 22(4), 046008 (2017).
[Crossref] [PubMed]

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

Shah, N.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref] [PubMed]

Singh, B.

B. B. Zimmermann, B. Deng, B. Singh, M. Martino, J. Selb, Q. Fang, A. Y. Sajjadi, J. Cormier, R. H. Moore, D. B. Kopans, D. A. Boas, M. A. Saksena, and S. A. Carp, “Multimodal breast cancer imaging using coregistered dynamic diffuse optical tomography and digital breast tomosynthesis,” J. Biomed. Opt. 22(4), 046008 (2017).
[Crossref] [PubMed]

A. Y. Sajjadi, S. J. Isakoff, B. Deng, B. Singh, C. M. Wanyo, Q. Fang, M. C. Specht, L. Schapira, B. Moy, A. Bardia, D. A. Boas, and S. A. Carp, “Normalization of compression-induced hemodynamics in patients responding to neoadjuvant chemotherapy monitored by dynamic tomographic optical breast imaging (DTOBI),” Biomed. Opt. Express 8(2), 555–569 (2017).
[Crossref] [PubMed]

Slodkowska, E.

W. T. Tran, C. Childs, L. Chin, E. Slodkowska, L. Sannachi, H. Tadayyon, E. Watkins, S. L. Wong, B. Curpen, A. El Kaffas, A. Al-Mahrouki, A. Sadeghi-Naini, and G. J. Czarnota, “Multiparametric monitoring of chemotherapy treatment response in locally advanced breast cancer using quantitative ultrasound and diffuse optical spectroscopy,” Oncotarget 7(15), 19762–19780 (2016).
[Crossref] [PubMed]

Snyder, B. S.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Specht, M. C.

Speers, C.

R. Yerushalmi, H. Kennecke, R. Woods, I. A. Olivotto, C. Speers, and K. A. Gelmon, “Does multicentric/multifocal breast cancer differ from unifocal breast cancer? An analysis of survival and contralateral breast cancer incidence,” Breast Cancer Res. Treat. 117(2), 365–370 (2009).
[Crossref] [PubMed]

Tadayyon, H.

W. T. Tran, C. Childs, L. Chin, E. Slodkowska, L. Sannachi, H. Tadayyon, E. Watkins, S. L. Wong, B. Curpen, A. El Kaffas, A. Al-Mahrouki, A. Sadeghi-Naini, and G. J. Czarnota, “Multiparametric monitoring of chemotherapy treatment response in locally advanced breast cancer using quantitative ultrasound and diffuse optical spectroscopy,” Oncotarget 7(15), 19762–19780 (2016).
[Crossref] [PubMed]

Tanamai, V. W.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos Trans A Math Phys Eng Sci 369(1955), 4512–4530 (2011).
[Crossref] [PubMed]

Tannenbaum, S. H.

Q. Zhu, P. A. DeFusco, A. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266(2), 433–442 (2013).
[Crossref] [PubMed]

Taroni, P.

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref] [PubMed]

Tavakoli, B.

Q. Zhu, P. A. DeFusco, A. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266(2), 433–442 (2013).
[Crossref] [PubMed]

Tchou, J.

S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. 17(1), 72 (2015).
[Crossref] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14(2), 024020 (2009).
[Crossref] [PubMed]

Tosteson, T. D.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref] [PubMed]

Tran, W. T.

W. T. Tran, C. Childs, L. Chin, E. Slodkowska, L. Sannachi, H. Tadayyon, E. Watkins, S. L. Wong, B. Curpen, A. El Kaffas, A. Al-Mahrouki, A. Sadeghi-Naini, and G. J. Czarnota, “Multiparametric monitoring of chemotherapy treatment response in locally advanced breast cancer using quantitative ultrasound and diffuse optical spectroscopy,” Oncotarget 7(15), 19762–19780 (2016).
[Crossref] [PubMed]

Tromberg, B. J.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos Trans A Math Phys Eng Sci 369(1955), 4512–4530 (2011).
[Crossref] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).
[Crossref] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref] [PubMed]

Vavadi, H.

M. Althobaiti, H. Vavadi, and Q. Zhu, “Diffuse optical tomography reconstruction method using ultrasound images as prior for regularization matrix,” J. Biomed. Opt. 22(2), 026002 (2017).
[Crossref] [PubMed]

von Tiedemann, M.

H. Johansson, M. von Tiedemann, K. Erhard, H. Heese, H. Ding, S. Molloi, and E. Fredenberg, “Breast-density measurement using photon-counting spectral mammography,” Med. Phys. 44(7), 3579–3593 (2017).
[Crossref] [PubMed]

Walke, M.

G. Krell, N. Saeid Nezhad, M. Walke, A. Al-Hamadi, and G. Gademann, “Assessment of iterative closest point registration accuracy for different phantom surfaces captured by an optical 3D sensor in radiotherapy,” Comput. Math. Methods Med. 2017, 2938504 (2017).
[Crossref] [PubMed]

Wang, J.

J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37(7), 3715–3724 (2010).
[Crossref] [PubMed]

Wanyo, C. M.

Watkins, E.

W. T. Tran, C. Childs, L. Chin, E. Slodkowska, L. Sannachi, H. Tadayyon, E. Watkins, S. L. Wong, B. Curpen, A. El Kaffas, A. Al-Mahrouki, A. Sadeghi-Naini, and G. J. Czarnota, “Multiparametric monitoring of chemotherapy treatment response in locally advanced breast cancer using quantitative ultrasound and diffuse optical spectroscopy,” Oncotarget 7(15), 19762–19780 (2016).
[Crossref] [PubMed]

Wells, W. A.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref] [PubMed]

Wong, S. L.

W. T. Tran, C. Childs, L. Chin, E. Slodkowska, L. Sannachi, H. Tadayyon, E. Watkins, S. L. Wong, B. Curpen, A. El Kaffas, A. Al-Mahrouki, A. Sadeghi-Naini, and G. J. Czarnota, “Multiparametric monitoring of chemotherapy treatment response in locally advanced breast cancer using quantitative ultrasound and diffuse optical spectroscopy,” Oncotarget 7(15), 19762–19780 (2016).
[Crossref] [PubMed]

Woods, R.

R. Yerushalmi, H. Kennecke, R. Woods, I. A. Olivotto, C. Speers, and K. A. Gelmon, “Does multicentric/multifocal breast cancer differ from unifocal breast cancer? An analysis of survival and contralateral breast cancer incidence,” Breast Cancer Res. Treat. 117(2), 365–370 (2009).
[Crossref] [PubMed]

Xie, L.

H. Y. Ban, M. Schweiger, V. C. Kavuri, J. M. Cochran, L. Xie, D. R. Busch, J. Katrašnik, S. Pathak, S. H. Chung, K. Lee, R. Choe, B. J. Czerniecki, S. R. Arridge, and A. G. Yodh, “Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry,” Med. Phys. 43(7), 4383–4395 (2016).
[Crossref] [PubMed]

Xu, Y.

Q. Zhu, P. A. DeFusco, A. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266(2), 433–442 (2013).
[Crossref] [PubMed]

Yalavarthy, P. K.

Yang, W.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Yazici, B.

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12), N155–N163 (2004).
[Crossref] [PubMed]

Yerushalmi, R.

R. Yerushalmi, H. Kennecke, R. Woods, I. A. Olivotto, C. Speers, and K. A. Gelmon, “Does multicentric/multifocal breast cancer differ from unifocal breast cancer? An analysis of survival and contralateral breast cancer incidence,” Breast Cancer Res. Treat. 117(2), 365–370 (2009).
[Crossref] [PubMed]

Yodh, A. G.

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

H. Y. Ban, M. Schweiger, V. C. Kavuri, J. M. Cochran, L. Xie, D. R. Busch, J. Katrašnik, S. Pathak, S. H. Chung, K. Lee, R. Choe, B. J. Czerniecki, S. R. Arridge, and A. G. Yodh, “Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry,” Med. Phys. 43(7), 4383–4395 (2016).
[Crossref] [PubMed]

S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. 17(1), 72 (2015).
[Crossref] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14(2), 024020 (2009).
[Crossref] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).
[Crossref] [PubMed]

Zhang, L.

Zhang, Q.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

Zhang, Z.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, M. A. Mastanduno, S. Jiang, F. Ei-Ghussein, J. Gui, B. W. Pogue, and K. D. Paulsen, “Optimization of image reconstruction for magnetic resonance imaging-guided near-infrared diffuse optical spectroscopy in breast,” J. Biomed. Opt. 20(5), 056009 (2015).
[Crossref] [PubMed]

L. Zhang, Y. Zhao, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Direct regularization from co-registered anatomical images for MRI-guided near-infrared spectral tomographic image reconstruction,” Biomed. Opt. Express 6(9), 3618–3630 (2015).
[Crossref] [PubMed]

Zhu, Q.

M. Althobaiti, H. Vavadi, and Q. Zhu, “Diffuse optical tomography reconstruction method using ultrasound images as prior for regularization matrix,” J. Biomed. Opt. 22(2), 026002 (2017).
[Crossref] [PubMed]

Q. Zhu, P. A. DeFusco, A. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266(2), 433–442 (2013).
[Crossref] [PubMed]

Zimmermann, B. B.

B. B. Zimmermann, B. Deng, B. Singh, M. Martino, J. Selb, Q. Fang, A. Y. Sajjadi, J. Cormier, R. H. Moore, D. B. Kopans, D. A. Boas, M. A. Saksena, and S. A. Carp, “Multimodal breast cancer imaging using coregistered dynamic diffuse optical tomography and digital breast tomosynthesis,” J. Biomed. Opt. 22(4), 046008 (2017).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng. 40(2), 398–407 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (5)

Breast Cancer Res. (2)

V. Ntziachristos and B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3(1), 41–46 (2000).
[Crossref] [PubMed]

S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. 17(1), 72 (2015).
[Crossref] [PubMed]

Breast Cancer Res. Treat. (1)

R. Yerushalmi, H. Kennecke, R. Woods, I. A. Olivotto, C. Speers, and K. A. Gelmon, “Does multicentric/multifocal breast cancer differ from unifocal breast cancer? An analysis of survival and contralateral breast cancer incidence,” Breast Cancer Res. Treat. 117(2), 365–370 (2009).
[Crossref] [PubMed]

Cancer Res. (1)

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, D. Mankoff, and ACRIN 6691 investigators, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Comput. Math. Methods Med. (1)

G. Krell, N. Saeid Nezhad, M. Walke, A. Al-Hamadi, and G. Gademann, “Assessment of iterative closest point registration accuracy for different phantom surfaces captured by an optical 3D sensor in radiotherapy,” Comput. Math. Methods Med. 2017, 2938504 (2017).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Choe and T. Durduran, “Diffuse optical monitoring of the neoadjuvant breast cancer therapy,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1367–1386 (2012).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

Int. J. CARS (1)

G. Niculescu, J. L. Nosher, M. D. Schneider, and D. J. Foran, “A deformable model for tracking tumors across consecutive imaging studies,” Int. J. CARS 4(4), 337–347 (2009).
[Crossref] [PubMed]

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

J. Biomed. Opt. (7)

A. Leproux, T. D. O’Sullivan, A. Cerussi, A. Durkin, B. Hill, N. Hylton, A. G. Yodh, S. A. Carp, D. Boas, S. Jiang, K. D. Paulsen, B. Pogue, D. Roblyer, W. Yang, and B. J. Tromberg, “Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial,” J. Biomed. Opt. 22(12), 121604 (2017).
[Crossref]

B. B. Zimmermann, B. Deng, B. Singh, M. Martino, J. Selb, Q. Fang, A. Y. Sajjadi, J. Cormier, R. H. Moore, D. B. Kopans, D. A. Boas, M. A. Saksena, and S. A. Carp, “Multimodal breast cancer imaging using coregistered dynamic diffuse optical tomography and digital breast tomosynthesis,” J. Biomed. Opt. 22(4), 046008 (2017).
[Crossref] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14(2), 024020 (2009).
[Crossref] [PubMed]

B. Deng, M. Fradkin, J. M. Rouet, R. H. Moore, D. B. Kopans, D. A. Boas, M. Lundqvist, and Q. Fang, “Characterizing breast lesions through robust multimodal data fusion using independent diffuse optical and x-ray breast imaging,” J. Biomed. Opt. 20(8), 080502 (2015).
[Crossref] [PubMed]

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref] [PubMed]

M. Althobaiti, H. Vavadi, and Q. Zhu, “Diffuse optical tomography reconstruction method using ultrasound images as prior for regularization matrix,” J. Biomed. Opt. 22(2), 026002 (2017).
[Crossref] [PubMed]

Y. Zhao, M. A. Mastanduno, S. Jiang, F. Ei-Ghussein, J. Gui, B. W. Pogue, and K. D. Paulsen, “Optimization of image reconstruction for magnetic resonance imaging-guided near-infrared diffuse optical spectroscopy in breast,” J. Biomed. Opt. 20(5), 056009 (2015).
[Crossref] [PubMed]

Med. Phys. (4)

H. Johansson, M. von Tiedemann, K. Erhard, H. Heese, H. Ding, S. Molloi, and E. Fredenberg, “Breast-density measurement using photon-counting spectral mammography,” Med. Phys. 44(7), 3579–3593 (2017).
[Crossref] [PubMed]

H. Y. Ban, M. Schweiger, V. C. Kavuri, J. M. Cochran, L. Xie, D. R. Busch, J. Katrašnik, S. Pathak, S. H. Chung, K. Lee, R. Choe, B. J. Czerniecki, S. R. Arridge, and A. G. Yodh, “Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry,” Med. Phys. 43(7), 4383–4395 (2016).
[Crossref] [PubMed]

J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37(7), 3715–3724 (2010).
[Crossref] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).
[Crossref] [PubMed]

Nucl. Instrum. Methods (1)

E. Fredenberg, M. Lundqvist, B. Cederström, M. Åslund, and M. Danielsson, “Energy resolution of a photon-counting silicon strip detector,” Nucl. Instrum. Methods 613(1), 156–162 (2010).
[Crossref]

Oncotarget (1)

W. T. Tran, C. Childs, L. Chin, E. Slodkowska, L. Sannachi, H. Tadayyon, E. Watkins, S. L. Wong, B. Curpen, A. El Kaffas, A. Al-Mahrouki, A. Sadeghi-Naini, and G. J. Czarnota, “Multiparametric monitoring of chemotherapy treatment response in locally advanced breast cancer using quantitative ultrasound and diffuse optical spectroscopy,” Oncotarget 7(15), 19762–19780 (2016).
[Crossref] [PubMed]

Opt. Express (1)

Philos Trans A Math Phys Eng Sci (1)

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos Trans A Math Phys Eng Sci 369(1955), 4512–4530 (2011).
[Crossref] [PubMed]

Phys. Med. Biol. (3)

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
[Crossref] [PubMed]

H. Ding and S. Molloi, “Quantification of breast density with spectral mammography based on a scanned multi-slit photon-counting detector: a feasibility study,” Phys. Med. Biol. 57(15), 4719–4738 (2012).
[Crossref] [PubMed]

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12), N155–N163 (2004).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref] [PubMed]

Radiology (3)

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref] [PubMed]

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[Crossref] [PubMed]

Q. Zhu, P. A. DeFusco, A. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266(2), 433–442 (2013).
[Crossref] [PubMed]

Other (2)

B. Deng and Q. Fang, “Open-source DigiBreast – a complex digital breast phantom with 3D tissue compositions,” (2015) URL: http://openjd.sf.net/digibreast

Q. Fang and D. Boas, “Tetrahedral mesh generation from volumetric binary and gray-scale images,” Proc. of IEEE Int. Symp on Biomed. Imaging (ISBI’09), 1142–5 (2009) URL: http://iso2mesh.sf.net

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a-e) 2D mammographic cranio-caudal (CC) views of five healthy volunteers whose clinical scans taken by Philips MicroDose SI system were used to generate the digital breast phantoms in this study. Cross-sectional views of 3D reconstruction mesh overlaid with optical (f-j) sources and (k-o) detectors for all five cases. Shadowed magenta areas around central magenta dots indicate the defined lesion regions and lesion centroids.

Fig. 2
Fig. 2

Schematic drawings of source probe modification to simulate the tilt experimental error scenario. Case 3 is used as a representative example. (a) Forward mesh overlaid with source optodes. Black and magenta dashed lines represent the sagittal and lateral axes around which tilting modifications are performed. x-z plane views from the chest wall of modified meshes and optodes with (b) −2° and (c) 2° tilt, respectively, about the sagittal axis, i.e., in the L-R direction. (d) y-z plane view of the modified mesh and probe with 2° tilt about the lateral axis, i.e., in the N-C direction. Blue solid lines in (b-d) represent the unmodified plate surface.

Fig. 3
Fig. 3

(a-e) ‘Ground-truth’ reference HbT images, and (f-j) HbT images recovered using three-composition-prior under the best-case scenarios for all five cases. Black contour lines mark out regions where HbT > 20 µM in all cases except Case 2, the densest case, where HbT > 22 µM were used to draw the contour line. RMSE of HbT and tumor contrast R are shown in the upper left corner of each plot (R only for ground truth). All images are extracted from the z-slice that crosses the lesion center.

Fig. 4
Fig. 4

HbT images recovered using three-composition-prior for Case 3 under four experimental errors. Rows from top to bottom represent error types of (a) translational offset along the x-axis, (b) source plate N-C tilt, (c) breast thickness mismatch, and (d) cross-talk between signal channels. All images are extracted from the z-slice that crosses the lesion center. RMSE of HbT and recovered tumor contrast R are shown in the upper left corner of each plot. Black contour lines mark out regions where HbT > 20 µM.

Fig. 5
Fig. 5

Images of reduced scattering coefficients at 830 nm (µs'830) recovered using three-composition-prior for Case 3 under the same four experimental errors as shown in Fig. 4. Rows from top to bottom represent error types of (a) translational offset along the x-axis, (b) source plate N-C tilt, (c) breast thickness mismatch, and (d) cross-talk between signal channels. All images are extracted from the z-slice that crosses the lesion center. Black contour lines circle out regions where µs'830 > 7.28 cm−1 to help visualize progressive changes caused by experimental errors. RMSE of µs'830 and recovered tumor contrast in µs'830 are shown in the upper left corner of each plot.

Fig. 6
Fig. 6

Scatter plots of (a) mean HbT in surrounding normal tissue area, HbTn, (b) mean HbT in the lesion ROI, HbTt, (c) lesion contrast, R, and (d) overall RMSE of HbT, versus source plate rotation levels in Case 1. Red dot-dashed lines in (a-c) represents thresholds that equal to 5% deviation from the best-case scenario values (rotation level = 0), and that in (d) represents RMSE = 2 µM.

Fig. 7
Fig. 7

Recovered three-composition-prior guided HbT images with (bottom row) and without (top row) accounting for plate positioning errors or breast shape inaccuracies. (a,g) 1 mm translational x-axis offset error in Case 1; (b,h) 2° source plate rotation error in Case 2; (c,i) −2° source plate L-R tilt in Case 3; (d,j) 1.5° source plate N-C tilt in Case 3; (e,k) 5% breast shape expansion in Case 4; (f,l) 5% breast thickness mismatch in Case 5. Colormap is set to be the same as the best-case scenario images shown in Fig. 3 for easy comparison. RMSE of HbT and R are shown in the upper left corner of each plot.

Fig. 8
Fig. 8

Raw data of Case 3 with (a) 0.1‰, (b) 0.5‰, (c) 1‰, (d) 2‰, and (e) 5‰ contamination by cross-talk overlaid with unmodified raw data. Black dots: unmodified raw data; Cyan dots: error-bearing raw data at 690 nm; Red dots: error-bearing raw data at 830 nm.

Fig. 9
Fig. 9

Reconstructed HbT images of Case 3 guided by three-composition-priors with 5‰ cross-talk contamination in raw data and SD separation limit settings of (a) 11 cm, (b) 10 cm, (c) 9 cm, (d) 8 cm, and (e) 7 cm. (f) The best-case scenario HbT image for comparison.

Tables (6)

Tables Icon

Table 1 Statistics of five digital breast phantoms and their corresponding meshes and forward models

Tables Icon

Table 2 Reference optical properties for various breast tissue types

Tables Icon

Table 3 Reconstruction statistics of the best-case scenarios for each breast phantom case

Tables Icon

Table 4 Tolerance of HbT images recovered using three-composition-prior guided reconstruction to various experimental errors in all phantom cases

Tables Icon

Table 5 Tolerance of HbT images recovered using two-composition-prior guided reconstruction to various experimental errors in all phantom cases

Tables Icon

Table 6 Tolerance of HbT images recovered without using structural priors to various experimental errors in all phantom cases

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

µ( r ) = C f ( r )× µ f ×[ 1 C t ( r ) ]+[ 1 C f ( r ) ]× µ a ×[ 1 C t ( r ) ]+ C t ( r )× µ t ,
Φ s i d j ' =( 1  ε )   Φ s i d j + k=1 ki n w s k d j   Φ s k d j , k=1 ki n w s k d j =ε ,
w s k d j = ε/(n  1) ,
w s k d j = ε   1 r s i    r s k 2 /  k=1 ki n 1 r s i    r s k 2 .