Abstract

Spatial frequency domain imaging (SFDI) is a wide-field diffuse optical imaging modality that has attracted considerable interest in recent years. Typically, diffuse reflectance measurements of spatially modulated light are used to quantify the optical absorption and reduced scattering coefficients of tissue, and with these, chromophore concentrations are extracted. However, uncertainties in estimated absorption and reduced scattering coefficients are rarely reported, and we know of no method capable of providing these when look-up table (LUT) algorithms are used to recover the optical properties. We present a method to generate optical property uncertainty estimates from knowledge of diffuse reflectance measurement errors. By employing the Cramér-Rao bound, we can quickly and efficiently explore theoretical SFDI performance as a function of spatial frequencies and sample optical properties, allowing us to optimize spatial frequency selection for a given application. In practice, we can also obtain useful uncertainty estimates for optical properties recovered with a two-frequency LUT algorithm, as we demonstrate with tissue-simulating phantom and in vivo experiments. Finally, we illustrate how absorption coefficient uncertainties can be propagated forward to yield uncertainties for chromophore concentrations, which could significantly impact the interpretation of experimental results.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

1 February 2018: A typographical correction was made to Ref. 19.


OSA Recommended Articles
Feasibility of spatial frequency domain imaging (SFDI) for optically characterizing a preclinical oncology model

Syeda Tabassum, Yanyu Zhao, Raeef Istfan, Junjie Wu, David J. Waxman, and Darren Roblyer
Biomed. Opt. Express 7(10) 4154-4170 (2016)

Angle correction for small animal tumor imaging with spatial frequency domain imaging (SFDI)

Yanyu Zhao, Syeda Tabassum, Shaheer Piracha, Mohan Sobhana Nandhu, Mariano Viapiano, and Darren Roblyer
Biomed. Opt. Express 7(6) 2373-2384 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Yafi, T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans, and A. J. Durkin, “Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging,” Plast. Reconstr. Surg. 127(1), 117–130 (2011).
    [Crossref] [PubMed]
  2. D. J. Rohrbach, N. C. Zeitouni, D. Muffoletto, R. Saager, B. J. Tromberg, and U. Sunar, “Characterization of nonmelanoma skin cancer for light therapy using spatial frequency domain imaging,” Biomed. Opt. Express 6(5), 1761–1766 (2015).
    [Crossref] [PubMed]
  3. R. B. Saager, A. N. Dang, S. S. Huang, K. M. Kelly, and A. J. Durkin, “Portable (handheld) clinical device for quantitative spectroscopy of skin, utilizing spatial frequency domain reflectance techniques,” Rev. Sci. Instrum. 88(9), 094302 (2017).
    [Crossref] [PubMed]
  4. S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-inhuman pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
    [Crossref] [PubMed]
  5. C. M. Robbins, G. Raghavan, J. F. Antaki, and J. M. Kainerstorfer, “Feasibility of spatial frequency-domain imaging for monitoring palpable breast lesions,” J. Biomed. Opt. 22(12), 121605 (2017).
    [Crossref]
  6. S. Tabassum, Y. Zhao, R. Istfan, J. Wu, D. J. Waxman, and D. Roblyer, “Feasibility of spatial frequency domain imaging (SFDI) for optically characterizing a preclinical oncology model,” Biomed. Opt. Express 7(10), 4154–4170 (2016).
    [Crossref] [PubMed]
  7. R. P. Singh-Moon, D. M. Roblyer, I. J. Bigio, and S. Joshi, “Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging,” J. Biomed. Opt. 19(9), 096003 (2014).
    [Crossref]
  8. A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
    [Crossref] [PubMed]
  9. B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, and K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part I–theory and simulations,” IEEE Trans. Med. Imag. 21(7), 755–763 (2002).
    [Crossref]
  10. A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, “Fluorescence optical diffusion tomography using multiple-frequency data,” J. Opt. Soc. Am. A 21(6), 1035–1049 (2004).
    [Crossref]
  11. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: A singular value analysis,” Opt. Lett. 26(10), 701–703 (2001).
    [Crossref]
  12. F. Leblond, H. Dehghani, D. Kepshire, and B.W. Pogue, “Early-photon fluorescence tomography: spatial resolution improvements and noise stability considerations,” J. Opt. Soc. Am. A 26(6), 1444–1457 (2009).
    [Crossref]
  13. X. Zhang and C. Badea, “Effects of sampling strategy on image quality in noncontact panoramic fluorescence diffuse optical tomography for small animal imaging,” Opt. Express 17(7), 5125–5138 (2009).
    [Crossref] [PubMed]
  14. A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed Opt. 15(6), 061716 (2010).
    [Crossref]
  15. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
    [Crossref] [PubMed]
  16. F. Leblond, K. M. Tichauer, and B. W. Pogue, “Singular value decomposition metrics show limitations of detector design in diffuse fluorescence tomography,” Biomed. Opt. Express 1(5), 1514–1531 (2010).
    [Crossref]
  17. D. Karkala and P. K. Yalavarthy, “Data-resolution based optimization of the data-collection strategy for near infrared diffuse optical tomography,” Med. Phys. 39(8), 4715–4725 (2012).
    [Crossref] [PubMed]
  18. R. W. Holt, F. L. Leblond, and B. W. Pogue, “Methodology to optimize detector geometry in fluorescence tomography of tissue using the minimized curvature of the summed diffuse sensitivity projections,” J. Opt. Soc. Am. A 30(8), 1613–1619 (2013).
    [Crossref]
  19. V. Pera, “Cramér-Rao bounds for spatial frequency domain imaging,” figshare (2017) [uploaded 20 Dec 2017], https://doi.org/10.6084/m9.figshare.5715100 .
  20. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
    [Crossref] [PubMed]
  21. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
    [Crossref] [PubMed]
  22. M. Martinelli, A. Gardner, D. Cuccia, C. Hayakawa, J. Spanier, and V. Venugopalan, “Analysis of single Monte Carlo methods for prediction of reflectance from turbid media,” Opt. Express 19(20), 19627–19642 (2011).
    [Crossref]
  23. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice-Hall, 1993).
  24. J. Angelo, C. R. Vargas, B. T. Lee, I. J. Bigio, and S. Gioux, “Ultrafast optical property map generation using lookup tables,” J. Biomed. Opt. 21(11) 110501 (2016).
    [Crossref] [PubMed]
  25. T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
    [Crossref] [PubMed]
  26. S. Prahl, “Tabulated molar extinction coefficient for hemoglobin in water,” (Oregon Medical Laser Center, 1998), http://omlc.ogi.edu/spectra/hemoglobin/summary.html .
  27. F. Teng, T. Cormier, A. Sauer-Budge, R. Chaudhury, V. Pera, D. Chargin, S. Brookfield, N. Y. Ko, and D. Roblyer, “Wearable near-infrared optical probe for continuous monitoring during breast cancer neoadjuvant chemotherapy infusions,” J. Biomed. Opt. 22(1), 014001 (2017).
    [Crossref]
  28. V. Pera, D. H. Brooks, and M. Niedre, “On the use of the Cramér-Rao lower bound for diffuse optical imaging system design,” J. Biomed. Opt. 19(2), 025002 (2014).
    [Crossref] [PubMed]

2017 (3)

C. M. Robbins, G. Raghavan, J. F. Antaki, and J. M. Kainerstorfer, “Feasibility of spatial frequency-domain imaging for monitoring palpable breast lesions,” J. Biomed. Opt. 22(12), 121605 (2017).
[Crossref]

R. B. Saager, A. N. Dang, S. S. Huang, K. M. Kelly, and A. J. Durkin, “Portable (handheld) clinical device for quantitative spectroscopy of skin, utilizing spatial frequency domain reflectance techniques,” Rev. Sci. Instrum. 88(9), 094302 (2017).
[Crossref] [PubMed]

F. Teng, T. Cormier, A. Sauer-Budge, R. Chaudhury, V. Pera, D. Chargin, S. Brookfield, N. Y. Ko, and D. Roblyer, “Wearable near-infrared optical probe for continuous monitoring during breast cancer neoadjuvant chemotherapy infusions,” J. Biomed. Opt. 22(1), 014001 (2017).
[Crossref]

2016 (2)

2015 (1)

2014 (2)

V. Pera, D. H. Brooks, and M. Niedre, “On the use of the Cramér-Rao lower bound for diffuse optical imaging system design,” J. Biomed. Opt. 19(2), 025002 (2014).
[Crossref] [PubMed]

R. P. Singh-Moon, D. M. Roblyer, I. J. Bigio, and S. Joshi, “Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging,” J. Biomed. Opt. 19(9), 096003 (2014).
[Crossref]

2013 (1)

2012 (1)

D. Karkala and P. K. Yalavarthy, “Data-resolution based optimization of the data-collection strategy for near infrared diffuse optical tomography,” Med. Phys. 39(8), 4715–4725 (2012).
[Crossref] [PubMed]

2011 (4)

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-inhuman pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[Crossref] [PubMed]

A. Yafi, T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans, and A. J. Durkin, “Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging,” Plast. Reconstr. Surg. 127(1), 117–130 (2011).
[Crossref] [PubMed]

M. Martinelli, A. Gardner, D. Cuccia, C. Hayakawa, J. Spanier, and V. Venugopalan, “Analysis of single Monte Carlo methods for prediction of reflectance from turbid media,” Opt. Express 19(20), 19627–19642 (2011).
[Crossref]

2010 (3)

F. Leblond, K. M. Tichauer, and B. W. Pogue, “Singular value decomposition metrics show limitations of detector design in diffuse fluorescence tomography,” Biomed. Opt. Express 1(5), 1514–1531 (2010).
[Crossref]

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed Opt. 15(6), 061716 (2010).
[Crossref]

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
[Crossref] [PubMed]

2009 (3)

2005 (2)

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
[Crossref] [PubMed]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[Crossref] [PubMed]

2004 (1)

2002 (1)

B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, and K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part I–theory and simulations,” IEEE Trans. Med. Imag. 21(7), 755–763 (2002).
[Crossref]

2001 (1)

Angelo, J.

J. Angelo, C. R. Vargas, B. T. Lee, I. J. Bigio, and S. Gioux, “Ultrafast optical property map generation using lookup tables,” J. Biomed. Opt. 21(11) 110501 (2016).
[Crossref] [PubMed]

Antaki, J. F.

C. M. Robbins, G. Raghavan, J. F. Antaki, and J. M. Kainerstorfer, “Feasibility of spatial frequency-domain imaging for monitoring palpable breast lesions,” J. Biomed. Opt. 22(12), 121605 (2017).
[Crossref]

Ashitate, Y.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-inhuman pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[Crossref] [PubMed]

Ayers, F. R.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

Badea, C.

Bading, J. R.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[Crossref] [PubMed]

Bevilacqua, F.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
[Crossref] [PubMed]

Bigio, I. J.

J. Angelo, C. R. Vargas, B. T. Lee, I. J. Bigio, and S. Gioux, “Ultrafast optical property map generation using lookup tables,” J. Biomed. Opt. 21(11) 110501 (2016).
[Crossref] [PubMed]

R. P. Singh-Moon, D. M. Roblyer, I. J. Bigio, and S. Joshi, “Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging,” J. Biomed. Opt. 19(9), 096003 (2014).
[Crossref]

Boas, D. A.

Bouman, C. A.

Brookfield, S.

F. Teng, T. Cormier, A. Sauer-Budge, R. Chaudhury, V. Pera, D. Chargin, S. Brookfield, N. Y. Ko, and D. Roblyer, “Wearable near-infrared optical probe for continuous monitoring during breast cancer neoadjuvant chemotherapy infusions,” J. Biomed. Opt. 22(1), 014001 (2017).
[Crossref]

Brooks, D. H.

V. Pera, D. H. Brooks, and M. Niedre, “On the use of the Cramér-Rao lower bound for diffuse optical imaging system design,” J. Biomed. Opt. 19(2), 025002 (2014).
[Crossref] [PubMed]

Chargin, D.

F. Teng, T. Cormier, A. Sauer-Budge, R. Chaudhury, V. Pera, D. Chargin, S. Brookfield, N. Y. Ko, and D. Roblyer, “Wearable near-infrared optical probe for continuous monitoring during breast cancer neoadjuvant chemotherapy infusions,” J. Biomed. Opt. 22(1), 014001 (2017).
[Crossref]

Chaudhari, A. J.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[Crossref] [PubMed]

Chaudhury, R.

F. Teng, T. Cormier, A. Sauer-Budge, R. Chaudhury, V. Pera, D. Chargin, S. Brookfield, N. Y. Ko, and D. Roblyer, “Wearable near-infrared optical probe for continuous monitoring during breast cancer neoadjuvant chemotherapy infusions,” J. Biomed. Opt. 22(1), 014001 (2017).
[Crossref]

Cherry, S. R.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[Crossref] [PubMed]

Conti, P. S.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[Crossref] [PubMed]

Cormier, T.

F. Teng, T. Cormier, A. Sauer-Budge, R. Chaudhury, V. Pera, D. Chargin, S. Brookfield, N. Y. Ko, and D. Roblyer, “Wearable near-infrared optical probe for continuous monitoring during breast cancer neoadjuvant chemotherapy infusions,” J. Biomed. Opt. 22(1), 014001 (2017).
[Crossref]

Cuccia, D.

M. Martinelli, A. Gardner, D. Cuccia, C. Hayakawa, J. Spanier, and V. Venugopalan, “Analysis of single Monte Carlo methods for prediction of reflectance from turbid media,” Opt. Express 19(20), 19627–19642 (2011).
[Crossref]

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
[Crossref] [PubMed]

Cuccia, D. J.

A. Yafi, T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans, and A. J. Durkin, “Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging,” Plast. Reconstr. Surg. 127(1), 117–130 (2011).
[Crossref] [PubMed]

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-inhuman pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[Crossref] [PubMed]

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed Opt. 15(6), 061716 (2010).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
[Crossref] [PubMed]

Culver, J. P.

Dang, A. N.

R. B. Saager, A. N. Dang, S. S. Huang, K. M. Kelly, and A. J. Durkin, “Portable (handheld) clinical device for quantitative spectroscopy of skin, utilizing spatial frequency domain reflectance techniques,” Rev. Sci. Instrum. 88(9), 094302 (2017).
[Crossref] [PubMed]

Darvas, F.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[Crossref] [PubMed]

Dehghani, H.

Dell, S.

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed Opt. 15(6), 061716 (2010).
[Crossref]

Durkin, A. J.

R. B. Saager, A. N. Dang, S. S. Huang, K. M. Kelly, and A. J. Durkin, “Portable (handheld) clinical device for quantitative spectroscopy of skin, utilizing spatial frequency domain reflectance techniques,” Rev. Sci. Instrum. 88(9), 094302 (2017).
[Crossref] [PubMed]

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-inhuman pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[Crossref] [PubMed]

A. Yafi, T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans, and A. J. Durkin, “Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging,” Plast. Reconstr. Surg. 127(1), 117–130 (2011).
[Crossref] [PubMed]

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed Opt. 15(6), 061716 (2010).
[Crossref]

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
[Crossref] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
[Crossref] [PubMed]

Durr, N. J.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-inhuman pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[Crossref] [PubMed]

Erickson, T. A.

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
[Crossref] [PubMed]

Evans, G. R.

A. Yafi, T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans, and A. J. Durkin, “Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging,” Plast. Reconstr. Surg. 127(1), 117–130 (2011).
[Crossref] [PubMed]

Frangioni, J. V.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-inhuman pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[Crossref] [PubMed]

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed Opt. 15(6), 061716 (2010).
[Crossref]

Gardner, A.

Gioux, S.

J. Angelo, C. R. Vargas, B. T. Lee, I. J. Bigio, and S. Gioux, “Ultrafast optical property map generation using lookup tables,” J. Biomed. Opt. 21(11) 110501 (2016).
[Crossref] [PubMed]

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-inhuman pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[Crossref] [PubMed]

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed Opt. 15(6), 061716 (2010).
[Crossref]

Green, K. N.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

Hayakawa, C.

Holboke, M. J.

Holt, R. W.

Huang, S. S.

R. B. Saager, A. N. Dang, S. S. Huang, K. M. Kelly, and A. J. Durkin, “Portable (handheld) clinical device for quantitative spectroscopy of skin, utilizing spatial frequency domain reflectance techniques,” Rev. Sci. Instrum. 88(9), 094302 (2017).
[Crossref] [PubMed]

Istfan, R.

Jiang, S.

B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, and K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part I–theory and simulations,” IEEE Trans. Med. Imag. 21(7), 755–763 (2002).
[Crossref]

Joshi, S.

R. P. Singh-Moon, D. M. Roblyer, I. J. Bigio, and S. Joshi, “Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging,” J. Biomed. Opt. 19(9), 096003 (2014).
[Crossref]

Kainerstorfer, J. M.

C. M. Robbins, G. Raghavan, J. F. Antaki, and J. M. Kainerstorfer, “Feasibility of spatial frequency-domain imaging for monitoring palpable breast lesions,” J. Biomed. Opt. 22(12), 121605 (2017).
[Crossref]

Karkala, D.

D. Karkala and P. K. Yalavarthy, “Data-resolution based optimization of the data-collection strategy for near infrared diffuse optical tomography,” Med. Phys. 39(8), 4715–4725 (2012).
[Crossref] [PubMed]

Kay, S. M.

S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice-Hall, 1993).

Kelly, E.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-inhuman pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[Crossref] [PubMed]

Kelly, K. M.

R. B. Saager, A. N. Dang, S. S. Huang, K. M. Kelly, and A. J. Durkin, “Portable (handheld) clinical device for quantitative spectroscopy of skin, utilizing spatial frequency domain reflectance techniques,” Rev. Sci. Instrum. 88(9), 094302 (2017).
[Crossref] [PubMed]

Kepshire, D.

Kim, J. G.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

Ko, N. Y.

F. Teng, T. Cormier, A. Sauer-Budge, R. Chaudhury, V. Pera, D. Chargin, S. Brookfield, N. Y. Ko, and D. Roblyer, “Wearable near-infrared optical probe for continuous monitoring during breast cancer neoadjuvant chemotherapy infusions,” J. Biomed. Opt. 22(1), 014001 (2017).
[Crossref]

Koike, M. A.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

LaFerla, F. M.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

Leahy, R. M.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[Crossref] [PubMed]

Leblond, F.

Leblond, F. L.

Lee, B. T.

J. Angelo, C. R. Vargas, B. T. Lee, I. J. Bigio, and S. Gioux, “Ultrafast optical property map generation using lookup tables,” J. Biomed. Opt. 21(11) 110501 (2016).
[Crossref] [PubMed]

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-inhuman pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[Crossref] [PubMed]

Lin, A. J.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

Lin, S. J.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-inhuman pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[Crossref] [PubMed]

Martinelli, M.

Mazhar, A.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-inhuman pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[Crossref] [PubMed]

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed Opt. 15(6), 061716 (2010).
[Crossref]

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
[Crossref] [PubMed]

McBride, T. O.

B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, and K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part I–theory and simulations,” IEEE Trans. Med. Imag. 21(7), 755–763 (2002).
[Crossref]

Millane, R. P.

Milstein, A. B.

Moats, R. A.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[Crossref] [PubMed]

Moffitt, L. A.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-inhuman pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[Crossref] [PubMed]

Muffoletto, D.

Niedre, M.

V. Pera, D. H. Brooks, and M. Niedre, “On the use of the Cramér-Rao lower bound for diffuse optical imaging system design,” J. Biomed. Opt. 19(2), 025002 (2014).
[Crossref] [PubMed]

Ntziachristos, V.

Oh, S.

Oketokoun, R.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-inhuman pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[Crossref] [PubMed]

Patel, S.

A. Yafi, T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans, and A. J. Durkin, “Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging,” Plast. Reconstr. Surg. 127(1), 117–130 (2011).
[Crossref] [PubMed]

Paulsen, K. D.

B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, and K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part I–theory and simulations,” IEEE Trans. Med. Imag. 21(7), 755–763 (2002).
[Crossref]

Pera, V.

F. Teng, T. Cormier, A. Sauer-Budge, R. Chaudhury, V. Pera, D. Chargin, S. Brookfield, N. Y. Ko, and D. Roblyer, “Wearable near-infrared optical probe for continuous monitoring during breast cancer neoadjuvant chemotherapy infusions,” J. Biomed. Opt. 22(1), 014001 (2017).
[Crossref]

V. Pera, D. H. Brooks, and M. Niedre, “On the use of the Cramér-Rao lower bound for diffuse optical imaging system design,” J. Biomed. Opt. 19(2), 025002 (2014).
[Crossref] [PubMed]

Pogue, B. W.

Pogue, B.W.

Raghavan, G.

C. M. Robbins, G. Raghavan, J. F. Antaki, and J. M. Kainerstorfer, “Feasibility of spatial frequency-domain imaging for monitoring palpable breast lesions,” J. Biomed. Opt. 22(12), 121605 (2017).
[Crossref]

Rice, T. B.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

Robbins, C. M.

C. M. Robbins, G. Raghavan, J. F. Antaki, and J. M. Kainerstorfer, “Feasibility of spatial frequency-domain imaging for monitoring palpable breast lesions,” J. Biomed. Opt. 22(12), 121605 (2017).
[Crossref]

Roblyer, D.

F. Teng, T. Cormier, A. Sauer-Budge, R. Chaudhury, V. Pera, D. Chargin, S. Brookfield, N. Y. Ko, and D. Roblyer, “Wearable near-infrared optical probe for continuous monitoring during breast cancer neoadjuvant chemotherapy infusions,” J. Biomed. Opt. 22(1), 014001 (2017).
[Crossref]

S. Tabassum, Y. Zhao, R. Istfan, J. Wu, D. J. Waxman, and D. Roblyer, “Feasibility of spatial frequency domain imaging (SFDI) for optically characterizing a preclinical oncology model,” Biomed. Opt. Express 7(10), 4154–4170 (2016).
[Crossref] [PubMed]

Roblyer, D. M.

R. P. Singh-Moon, D. M. Roblyer, I. J. Bigio, and S. Joshi, “Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging,” J. Biomed. Opt. 19(9), 096003 (2014).
[Crossref]

Rohrbach, D. J.

Saager, R.

Saager, R. B.

R. B. Saager, A. N. Dang, S. S. Huang, K. M. Kelly, and A. J. Durkin, “Portable (handheld) clinical device for quantitative spectroscopy of skin, utilizing spatial frequency domain reflectance techniques,” Rev. Sci. Instrum. 88(9), 094302 (2017).
[Crossref] [PubMed]

A. Yafi, T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans, and A. J. Durkin, “Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging,” Plast. Reconstr. Surg. 127(1), 117–130 (2011).
[Crossref] [PubMed]

Sauer-Budge, A.

F. Teng, T. Cormier, A. Sauer-Budge, R. Chaudhury, V. Pera, D. Chargin, S. Brookfield, N. Y. Ko, and D. Roblyer, “Wearable near-infrared optical probe for continuous monitoring during breast cancer neoadjuvant chemotherapy infusions,” J. Biomed. Opt. 22(1), 014001 (2017).
[Crossref]

Scholz, T.

A. Yafi, T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans, and A. J. Durkin, “Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging,” Plast. Reconstr. Surg. 127(1), 117–130 (2011).
[Crossref] [PubMed]

Singh-Moon, R. P.

R. P. Singh-Moon, D. M. Roblyer, I. J. Bigio, and S. Joshi, “Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging,” J. Biomed. Opt. 19(9), 096003 (2014).
[Crossref]

Smith, D. J.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[Crossref] [PubMed]

Song, X.

B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, and K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part I–theory and simulations,” IEEE Trans. Med. Imag. 21(7), 755–763 (2002).
[Crossref]

Spanier, J.

Stockdale, A.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-inhuman pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[Crossref] [PubMed]

Stott, J. J.

Sunar, U.

Tabassum, S.

Teng, F.

F. Teng, T. Cormier, A. Sauer-Budge, R. Chaudhury, V. Pera, D. Chargin, S. Brookfield, N. Y. Ko, and D. Roblyer, “Wearable near-infrared optical probe for continuous monitoring during breast cancer neoadjuvant chemotherapy infusions,” J. Biomed. Opt. 22(1), 014001 (2017).
[Crossref]

Tichauer, K. M.

Tobias, A. M.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-inhuman pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[Crossref] [PubMed]

Tosteson, T. D.

B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, and K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part I–theory and simulations,” IEEE Trans. Med. Imag. 21(7), 755–763 (2002).
[Crossref]

Tromberg, B. J.

D. J. Rohrbach, N. C. Zeitouni, D. Muffoletto, R. Saager, B. J. Tromberg, and U. Sunar, “Characterization of nonmelanoma skin cancer for light therapy using spatial frequency domain imaging,” Biomed. Opt. Express 6(5), 1761–1766 (2015).
[Crossref] [PubMed]

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-inhuman pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[Crossref] [PubMed]

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed Opt. 15(6), 061716 (2010).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
[Crossref] [PubMed]

Tunnell, J. W.

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
[Crossref] [PubMed]

Vargas, C. R.

J. Angelo, C. R. Vargas, B. T. Lee, I. J. Bigio, and S. Gioux, “Ultrafast optical property map generation using lookup tables,” J. Biomed. Opt. 21(11) 110501 (2016).
[Crossref] [PubMed]

Venugopalan, V.

Vetter, T. S.

A. Yafi, T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans, and A. J. Durkin, “Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging,” Plast. Reconstr. Surg. 127(1), 117–130 (2011).
[Crossref] [PubMed]

Waxman, D. J.

Webb, K. J.

Weinmann, M.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-inhuman pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[Crossref] [PubMed]

Wu, J.

Yafi, A.

A. Yafi, T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans, and A. J. Durkin, “Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging,” Plast. Reconstr. Surg. 127(1), 117–130 (2011).
[Crossref] [PubMed]

Yalavarthy, P. K.

D. Karkala and P. K. Yalavarthy, “Data-resolution based optimization of the data-collection strategy for near infrared diffuse optical tomography,” Med. Phys. 39(8), 4715–4725 (2012).
[Crossref] [PubMed]

Yodh, A. G.

Zeitouni, N. C.

Zhang, X.

Zhao, Y.

Ann. Biomed. Eng. (1)

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

IEEE Trans. Med. Imag. (1)

B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, and K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part I–theory and simulations,” IEEE Trans. Med. Imag. 21(7), 755–763 (2002).
[Crossref]

J. Biomed Opt. (1)

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed Opt. 15(6), 061716 (2010).
[Crossref]

J. Biomed. Opt. (8)

R. P. Singh-Moon, D. M. Roblyer, I. J. Bigio, and S. Joshi, “Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging,” J. Biomed. Opt. 19(9), 096003 (2014).
[Crossref]

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-inhuman pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[Crossref] [PubMed]

C. M. Robbins, G. Raghavan, J. F. Antaki, and J. M. Kainerstorfer, “Feasibility of spatial frequency-domain imaging for monitoring palpable breast lesions,” J. Biomed. Opt. 22(12), 121605 (2017).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

J. Angelo, C. R. Vargas, B. T. Lee, I. J. Bigio, and S. Gioux, “Ultrafast optical property map generation using lookup tables,” J. Biomed. Opt. 21(11) 110501 (2016).
[Crossref] [PubMed]

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
[Crossref] [PubMed]

F. Teng, T. Cormier, A. Sauer-Budge, R. Chaudhury, V. Pera, D. Chargin, S. Brookfield, N. Y. Ko, and D. Roblyer, “Wearable near-infrared optical probe for continuous monitoring during breast cancer neoadjuvant chemotherapy infusions,” J. Biomed. Opt. 22(1), 014001 (2017).
[Crossref]

V. Pera, D. H. Brooks, and M. Niedre, “On the use of the Cramér-Rao lower bound for diffuse optical imaging system design,” J. Biomed. Opt. 19(2), 025002 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (3)

Med. Phys. (1)

D. Karkala and P. K. Yalavarthy, “Data-resolution based optimization of the data-collection strategy for near infrared diffuse optical tomography,” Med. Phys. 39(8), 4715–4725 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Med. Biol. (1)

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[Crossref] [PubMed]

Plast. Reconstr. Surg. (1)

A. Yafi, T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans, and A. J. Durkin, “Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging,” Plast. Reconstr. Surg. 127(1), 117–130 (2011).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

R. B. Saager, A. N. Dang, S. S. Huang, K. M. Kelly, and A. J. Durkin, “Portable (handheld) clinical device for quantitative spectroscopy of skin, utilizing spatial frequency domain reflectance techniques,” Rev. Sci. Instrum. 88(9), 094302 (2017).
[Crossref] [PubMed]

Other (3)

V. Pera, “Cramér-Rao bounds for spatial frequency domain imaging,” figshare (2017) [uploaded 20 Dec 2017], https://doi.org/10.6084/m9.figshare.5715100 .

S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice-Hall, 1993).

S. Prahl, “Tabulated molar extinction coefficient for hemoglobin in water,” (Oregon Medical Laser Center, 1998), http://omlc.ogi.edu/spectra/hemoglobin/summary.html .

Supplementary Material (1)

NameDescription
» Code 1       Matlab code (and associated files) for spatial frequency domain imaging Cramer-Rao bound calculation. Please see m-file for details.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Phantom optical properties for training (circles) and test (traingles) sets. (b) Diffuse reflectance error model. Data at 13 spatial frequencies and 4 spectral wavelengths.
Fig. 2
Fig. 2 (a)–(c) Histogram and (d)–(f) quantile-quantile plots for ROIs of 3 phantoms (1 per column). See Appendix A for phantom optical properties. Data shown is for the following spectral wavelengths and spatial frequencies: Phantom 16: 851 nm, 0.05 mm−1; Phantom 15: 659 nm, 0 mm−1; Phantom 1: 691 nm, 0.2 mm−1. Black trace on histograms represents Gaussian distribution with mean and standard deviation calculated from data. Red line on quantile-quantile plots represents response of data with Gaussian distribution.
Fig. 3
Fig. 3 Cramér-Rao bounds for (a) absorption and (b) reduced scattering coefficient uncertainties for four sets of optical properties. Optical property recovery assumes data at DC (0 mm−1) and one other spatial frequency. CRBs expressed as percentage of true optical properties.
Fig. 4
Fig. 4 Cramér-Rao bounds for (a) absorption and (c) reduced scattering coefficient uncertainties for four sets of optical properties; panel (b) zooms in on panel (a). “All” = 13 spatial frequencies (see Table 1); “No DC” = all spatial frequencies except DC (12 total). CRBs expressed as percentage of true optical properties.
Fig. 5
Fig. 5 Cramér-Rao bounds as a function of optical properties for data at spatial frequencies [0, 0.1] mm−1: (a) absorption and (b) reduced scattering coefficient uncertainties; (c) Pearson correlation coefficient. CRBs expressed as percentage of true optical properties.
Fig. 6
Fig. 6 Reduced Cramér-Rao bounds (lines) and LUT algorithm uncertainties (symbols) for four sets of optical properties at 659 nm: (a) absorption and (b) reduced scattering coefficient. Optical property recovery assumes data at DC (0 mm−1) and one other spatial frequency.
Fig. 7
Fig. 7 Optical property uncertainties for phantom data: predicted (rCRB) versus measured (LUT algorithm), expressed as percentage of true optical properties. Recovery of optical properties is for data at [0, 0.1] mm−1.
Fig. 8
Fig. 8 Cuff occlusion experiment: change in O2Hb and HHb from data at spatial frequency combinations of (a) [0, 0.1] mm−1 and (b) [0.05, 0.1] mm−1. Shaded regions represent uncertainties in chromophore concentrations. Note the different y-axis scales.

Tables (3)

Tables Icon

Table 1 SFDI instrument, data acquisition, and data processing parameters.

Tables Icon

Table 2 Optical property uncertainties for phantom data: mean absolute difference between predicted (rCRB) and measured (LUT algorithm), expressed as percentage of true optical properties. “All” refers to all four spectral wavelengths: 659, 691, 731, 851 nm.

Tables Icon

Table 3 Phantom optical properties at four spectral wavelengths for training and test sets.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

m ( θ , f x , λ ) = R d ( θ , f x ) + n ( θ , f x , λ ) ,
m ( θ , λ ) = [ m ( θ , f x 1 , λ ) m ( θ , f x 2 , λ ) m ( θ , f x K , λ ) ] ,
r ( θ ) = [ R d ( θ , f x 1 ) R d ( θ , f x 2 ) R d ( θ , f x K ) ] ,
C R d ( θ , λ ) = [ σ R d 2 ( θ , f x 1 , λ )         σ R d 2 ( θ , f x 1 , λ )   0 0           σ R d 2 ( θ , f x K , λ ) ] = [ c 2 ( f x 1 , λ ) R d 2 ( θ , f x 1 )         c 2 ( f x 2 , λ ) R d 2 ( θ , f x 2 )   0 0           c 2 ( f x K , λ ) R d 2 ( θ , f x K ) ] ,
[ F ( θ ) ] i j = r T ( θ ) θ i C R d 1 ( θ ) r ( θ ) θ j + 1 2 tr ( C R d 1 ( θ ) C R d ( θ ) θ i C R d 1 ( θ ) C R d ( θ ) θ j ) ,
r ( θ ) θ 1 = r ( θ ) μ a ,
r ( θ ) θ 2 = r ( θ ) μ s   ,
C R d ( θ ) θ 1 = C R d ( θ ) μ a ,
C R d ( θ ) θ 2 = C R d ( θ ) μ s   ,
[ r ( θ ) μ a ] k = R d ( μ a , μ s   , f x k ) μ a | θ ,
[ r ( θ ) μ s   ] k = R d ( μ a , μ s   , f x k ) μ s   | θ ,
[ C R d ( θ ) μ a ] k k = 2 c 2 ( f x k , λ ) R d ( θ , f x k ) R d ( μ a , μ s   , f x k ) μ a | θ ,
[ C R d ( θ ) μ s   ] k k = 2 c 2 ( f x k , λ ) R d ( θ , f x k ) R d ( μ a , μ s   , f x k ) μ s   | θ ,
CRB ( θ ) = [ σ μ a 2 σ μ a , μ s   2 σ μ a , μ s   2 σ μ s   2 ] = F ( θ ) 1 .
[ F ˜ ( θ ) ] i j = r T ( θ ) θ i C R d 1 ( θ ) r ( θ ) θ j ,
r C R B ( θ ) = F ˜ ( θ ) 1 .
[ F ( θ ) ] i j = k = 1 K ( S N R k 2 1 [ r ( θ ) ] k 2 [ r ( θ ) θ i ] k [ r ( θ ) θ j ] k + 2 1 [ r ( θ ) ] k 2 [ r ( θ ) θ i ] k [ r ( θ ) θ j ] k ) ,
μ a = E κ + n ,
C μ a = [ σ μ a 2 ( λ 1 )         σ μ a 2 ( λ 1 )   0 0           σ μ a 2 ( λ p ) ] .
κ ^ = ( E T C μ a 1 E ) 1 E T C μ a 1 μ a .
C κ ^ = ( E T C μ a 1 E ) 1 .

Metrics