Abstract

A laser scanning optical resolution photoacoustic microscopy (LS OR-PAM) system based on a stationary fibre optic sensor is described. The sensor comprises an optically resonant interferometric polymer cavity formed on the tip of a rounded single mode optical fibre. It provides low noise equivalent pressure (NEP = 68.7 Pa over a 20 MHz measurement bandwidth), a broad bandwidth that extends to 80 MHz and a near omnidirectional response. The latter is a significant advantage, as it allows large areas (>1cm2) to be imaged without the need for translational mechanical scanning offering the potential for fast image acquisition. The system provides a lateral resolution of 8 µm, an axial resolution of 21 µm, and a field of view up to 10 mm × 10 mm. To demonstrate the system, in vivo 3D structural images of the microvasculature of a mouse ear were obtained, showing single capillaries overlaying larger vessels as well as functional images revealing blood oxygen saturation.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Fast-scanning photoacoustic microscopy with a side-looking fiber optic ultrasound sensor

Yizhi Liang, Jin-wei Liu, Long Jin, Bai-Ou Guan, and Lidai Wang
Biomed. Opt. Express 9(11) 5809-5816 (2018)

In vivo near-realtime volumetric optical-resolution photoacoustic microscopy using a high-repetition-rate nanosecond fiber-laser

Wei Shi, Parsin Hajireza, Peng Shao, Alexander Forbrich, and Roger J. Zemp
Opt. Express 19(18) 17143-17150 (2011)

Real-time handheld optical-resolution photoacoustic microscopy

Parsin Hajireza, Wei Shi, and Roger J. Zemp
Opt. Express 19(21) 20097-20102 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. Yao and L. V. Wang, “Photoacoustic microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
    [Crossref] [PubMed]
  2. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
    [Crossref] [PubMed]
  3. S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
    [Crossref] [PubMed]
  4. J. Yao, C.-H. Huang, L. Wang, J.-M. Yang, L. Gao, K. I. Maslov, J. Zou, and L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” J. Biomed. Opt. 17(8), 080505 (2012).
    [Crossref] [PubMed]
  5. J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5(1), 7932 (2015).
    [Crossref] [PubMed]
  6. Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34(12), 1771–1773 (2009).
    [Crossref] [PubMed]
  7. Z. Xie, S.-L. Chen, T. Ling, L. J. Guo, P. L. Carson, and X. Wang, “Pure optical photoacoustic microscopy,” Opt. Express 19(10), 9027–9034 (2011).
    [Crossref] [PubMed]
  8. Y. Yuan, S. Yang, and D. Xing, “Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer,” Appl. Phys. Lett. 100(2), 023702 (2012).
    [Crossref]
  9. W. Song, Q. Wei, L. Feng, V. Sarthy, S. Jiao, X. Liu, and H. F. Zhang, “Multimodal photoacoustic ophthalmoscopy in mouse,” J. Biophotonics 6(6-7), 505–512 (2013).
    [Crossref] [PubMed]
  10. H. Kang, S.-W. Lee, E.-S. Lee, S.-H. Kim, and T. G. Lee, “Real-time GPU-accelerated processing and volumetric display for wide-field laser-scanning optical-resolution photoacoustic microscopy,” Biomed. Opt. Express 6(12), 4650–4660 (2015).
    [Crossref] [PubMed]
  11. W. Shi, P. Hajireza, P. Shao, A. Forbrich, and R. J. Zemp, “In vivo near-realtime volumetric optical-resolution photoacoustic microscopy using a high-repetition-rate nanosecond fiber-laser,” Opt. Express 19(18), 17143–17150 (2011).
    [Crossref] [PubMed]
  12. L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39(7), 2117–2120 (2014).
    [Crossref] [PubMed]
  13. T. J. Allen, E. Zhang, and P. C. Beard, “Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor,” in Proc. of SPIE, Photons Plus Ultrasound: Imaging and Sensing, A. A. Oraevsky and L. V. Wang, eds. (2015), Vol. 9323, p. 93230Z.
  14. J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
    [Crossref]
  15. E. Z. Zhang and P. C. Beard, “Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection,” in Proc. of SPIE, Photons Plus Ultrasound: Imaging and SensingA. A. Oraevsky and L. V. Wang, (2015), 9323, pp. 932311.
  16. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
    [Crossref] [PubMed]
  17. J. A. Guggenheim, E. Z. Zhang, and P. C. Beard, “A Method for Measuring the Directional Response of Ultrasound Receivers in the Range 0.3-80 MHz Using a Laser-Generated Ultrasound Source,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(12), 1857–1863 (2017).
    [Crossref] [PubMed]
  18. G. Wissmeyer, D. Soliman, R. Shnaiderman, A. Rosenthal, and V. Ntziachristos, “All-optical optoacoustic microscope based on wideband pulse interferometry,” Opt. Lett. 41(9), 1953–1956 (2016).
    [Crossref] [PubMed]
  19. B. Dong, L. Hao, Z. Zhang, K. Zhang, S. Chen, C. Sun, and H. F. Zhang, “Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection,” Optica 2(2), 169–176 (2015).
    [Crossref]
  20. B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
    [Crossref] [PubMed]

2017 (2)

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

J. A. Guggenheim, E. Z. Zhang, and P. C. Beard, “A Method for Measuring the Directional Response of Ultrasound Receivers in the Range 0.3-80 MHz Using a Laser-Generated Ultrasound Source,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(12), 1857–1863 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (3)

2014 (1)

2013 (2)

J. Yao and L. V. Wang, “Photoacoustic microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref] [PubMed]

W. Song, Q. Wei, L. Feng, V. Sarthy, S. Jiao, X. Liu, and H. F. Zhang, “Multimodal photoacoustic ophthalmoscopy in mouse,” J. Biophotonics 6(6-7), 505–512 (2013).
[Crossref] [PubMed]

2012 (3)

J. Yao, C.-H. Huang, L. Wang, J.-M. Yang, L. Gao, K. I. Maslov, J. Zou, and L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” J. Biomed. Opt. 17(8), 080505 (2012).
[Crossref] [PubMed]

Y. Yuan, S. Yang, and D. Xing, “Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer,” Appl. Phys. Lett. 100(2), 023702 (2012).
[Crossref]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref] [PubMed]

2011 (3)

2009 (1)

2008 (2)

Allen, T. J.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Arridge, S. R.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref] [PubMed]

Beard, P.

Beard, P. C.

J. A. Guggenheim, E. Z. Zhang, and P. C. Beard, “A Method for Measuring the Directional Response of Ultrasound Receivers in the Range 0.3-80 MHz Using a Laser-Generated Ultrasound Source,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(12), 1857–1863 (2017).
[Crossref] [PubMed]

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref] [PubMed]

E. Z. Zhang and P. C. Beard, “Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection,” in Proc. of SPIE, Photons Plus Ultrasound: Imaging and SensingA. A. Oraevsky and L. V. Wang, (2015), 9323, pp. 932311.

Carson, P. L.

Chen, R.

Chen, S.

Chen, S.-L.

Colchester, R. J.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Cox, B.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref] [PubMed]

Desjardins, A. E.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Dong, B.

Feng, L.

W. Song, Q. Wei, L. Feng, V. Sarthy, S. Jiao, X. Liu, and H. F. Zhang, “Multimodal photoacoustic ophthalmoscopy in mouse,” J. Biophotonics 6(6-7), 505–512 (2013).
[Crossref] [PubMed]

Forbrich, A.

Gao, L.

J. Yao, C.-H. Huang, L. Wang, J.-M. Yang, L. Gao, K. I. Maslov, J. Zou, and L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” J. Biomed. Opt. 17(8), 080505 (2012).
[Crossref] [PubMed]

Guggenheim, J. A.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

J. A. Guggenheim, E. Z. Zhang, and P. C. Beard, “A Method for Measuring the Directional Response of Ultrasound Receivers in the Range 0.3-80 MHz Using a Laser-Generated Ultrasound Source,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(12), 1857–1863 (2017).
[Crossref] [PubMed]

Guo, L. J.

Hajireza, P.

Hao, L.

Hu, S.

Huang, C.-H.

J. Yao, C.-H. Huang, L. Wang, J.-M. Yang, L. Gao, K. I. Maslov, J. Zou, and L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” J. Biomed. Opt. 17(8), 080505 (2012).
[Crossref] [PubMed]

Jiao, S.

W. Song, Q. Wei, L. Feng, V. Sarthy, S. Jiao, X. Liu, and H. F. Zhang, “Multimodal photoacoustic ophthalmoscopy in mouse,” J. Biophotonics 6(6-7), 505–512 (2013).
[Crossref] [PubMed]

Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34(12), 1771–1773 (2009).
[Crossref] [PubMed]

Kang, H.

Kim, C.

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5(1), 7932 (2015).
[Crossref] [PubMed]

Kim, J. Y.

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5(1), 7932 (2015).
[Crossref] [PubMed]

Kim, S.-H.

Laufer, J.

Laufer, J. G.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref] [PubMed]

Lee, C.

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5(1), 7932 (2015).
[Crossref] [PubMed]

Lee, E.-S.

Lee, S.-W.

Lee, T. G.

Li, J.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Li, L.

Lim, G.

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5(1), 7932 (2015).
[Crossref] [PubMed]

Ling, T.

Liu, X.

W. Song, Q. Wei, L. Feng, V. Sarthy, S. Jiao, X. Liu, and H. F. Zhang, “Multimodal photoacoustic ophthalmoscopy in mouse,” J. Biophotonics 6(6-7), 505–512 (2013).
[Crossref] [PubMed]

Maslov, K.

Maslov, K. I.

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39(7), 2117–2120 (2014).
[Crossref] [PubMed]

J. Yao, C.-H. Huang, L. Wang, J.-M. Yang, L. Gao, K. I. Maslov, J. Zou, and L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” J. Biomed. Opt. 17(8), 080505 (2012).
[Crossref] [PubMed]

Noimark, S.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Ntziachristos, V.

Ogunlade, O.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Oraevsky, A. A.

E. Z. Zhang and P. C. Beard, “Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection,” in Proc. of SPIE, Photons Plus Ultrasound: Imaging and SensingA. A. Oraevsky and L. V. Wang, (2015), 9323, pp. 932311.

Papakonstantinou, I.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Park, K.

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5(1), 7932 (2015).
[Crossref] [PubMed]

Parkin, I. P.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Puliafito, C. A.

Rosenthal, A.

Sarthy, V.

W. Song, Q. Wei, L. Feng, V. Sarthy, S. Jiao, X. Liu, and H. F. Zhang, “Multimodal photoacoustic ophthalmoscopy in mouse,” J. Biophotonics 6(6-7), 505–512 (2013).
[Crossref] [PubMed]

Shao, P.

Shi, W.

Shnaiderman, R.

Shung, K. K.

Soetikno, B. T.

Soliman, D.

Song, W.

W. Song, Q. Wei, L. Feng, V. Sarthy, S. Jiao, X. Liu, and H. F. Zhang, “Multimodal photoacoustic ophthalmoscopy in mouse,” J. Biophotonics 6(6-7), 505–512 (2013).
[Crossref] [PubMed]

Sun, C.

Wang, L.

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39(7), 2117–2120 (2014).
[Crossref] [PubMed]

J. Yao, C.-H. Huang, L. Wang, J.-M. Yang, L. Gao, K. I. Maslov, J. Zou, and L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” J. Biomed. Opt. 17(8), 080505 (2012).
[Crossref] [PubMed]

Wang, L. V.

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39(7), 2117–2120 (2014).
[Crossref] [PubMed]

J. Yao and L. V. Wang, “Photoacoustic microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref] [PubMed]

J. Yao, C.-H. Huang, L. Wang, J.-M. Yang, L. Gao, K. I. Maslov, J. Zou, and L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” J. Biomed. Opt. 17(8), 080505 (2012).
[Crossref] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
[Crossref] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[Crossref] [PubMed]

E. Z. Zhang and P. C. Beard, “Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection,” in Proc. of SPIE, Photons Plus Ultrasound: Imaging and SensingA. A. Oraevsky and L. V. Wang, (2015), 9323, pp. 932311.

Wang, X.

Wei, Q.

W. Song, Q. Wei, L. Feng, V. Sarthy, S. Jiao, X. Liu, and H. F. Zhang, “Multimodal photoacoustic ophthalmoscopy in mouse,” J. Biophotonics 6(6-7), 505–512 (2013).
[Crossref] [PubMed]

Wissmeyer, G.

Xie, Z.

Xing, D.

Y. Yuan, S. Yang, and D. Xing, “Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer,” Appl. Phys. Lett. 100(2), 023702 (2012).
[Crossref]

Yang, J.-M.

J. Yao, C.-H. Huang, L. Wang, J.-M. Yang, L. Gao, K. I. Maslov, J. Zou, and L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” J. Biomed. Opt. 17(8), 080505 (2012).
[Crossref] [PubMed]

Yang, S.

Y. Yuan, S. Yang, and D. Xing, “Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer,” Appl. Phys. Lett. 100(2), 023702 (2012).
[Crossref]

Yao, J.

J. Yao and L. V. Wang, “Photoacoustic microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref] [PubMed]

J. Yao, C.-H. Huang, L. Wang, J.-M. Yang, L. Gao, K. I. Maslov, J. Zou, and L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” J. Biomed. Opt. 17(8), 080505 (2012).
[Crossref] [PubMed]

Yeh, C.

Yuan, Y.

Y. Yuan, S. Yang, and D. Xing, “Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer,” Appl. Phys. Lett. 100(2), 023702 (2012).
[Crossref]

Zemp, R. J.

Zhang, E.

Zhang, E. Z.

J. A. Guggenheim, E. Z. Zhang, and P. C. Beard, “A Method for Measuring the Directional Response of Ultrasound Receivers in the Range 0.3-80 MHz Using a Laser-Generated Ultrasound Source,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(12), 1857–1863 (2017).
[Crossref] [PubMed]

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

E. Z. Zhang and P. C. Beard, “Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection,” in Proc. of SPIE, Photons Plus Ultrasound: Imaging and SensingA. A. Oraevsky and L. V. Wang, (2015), 9323, pp. 932311.

Zhang, H. F.

Zhang, K.

Zhang, Z.

Zhou, Q.

Zou, J.

J. Yao, C.-H. Huang, L. Wang, J.-M. Yang, L. Gao, K. I. Maslov, J. Zou, and L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” J. Biomed. Opt. 17(8), 080505 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Yuan, S. Yang, and D. Xing, “Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer,” Appl. Phys. Lett. 100(2), 023702 (2012).
[Crossref]

Biomed. Opt. Express (1)

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

J. A. Guggenheim, E. Z. Zhang, and P. C. Beard, “A Method for Measuring the Directional Response of Ultrasound Receivers in the Range 0.3-80 MHz Using a Laser-Generated Ultrasound Source,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(12), 1857–1863 (2017).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref] [PubMed]

J. Yao, C.-H. Huang, L. Wang, J.-M. Yang, L. Gao, K. I. Maslov, J. Zou, and L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” J. Biomed. Opt. 17(8), 080505 (2012).
[Crossref] [PubMed]

J. Biophotonics (1)

W. Song, Q. Wei, L. Feng, V. Sarthy, S. Jiao, X. Liu, and H. F. Zhang, “Multimodal photoacoustic ophthalmoscopy in mouse,” J. Biophotonics 6(6-7), 505–512 (2013).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

J. Yao and L. V. Wang, “Photoacoustic microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Optica (1)

Sci. Rep. (1)

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5(1), 7932 (2015).
[Crossref] [PubMed]

Other (2)

T. J. Allen, E. Zhang, and P. C. Beard, “Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor,” in Proc. of SPIE, Photons Plus Ultrasound: Imaging and Sensing, A. A. Oraevsky and L. V. Wang, eds. (2015), Vol. 9323, p. 93230Z.

E. Z. Zhang and P. C. Beard, “Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection,” in Proc. of SPIE, Photons Plus Ultrasound: Imaging and SensingA. A. Oraevsky and L. V. Wang, (2015), 9323, pp. 932311.

Supplementary Material (1)

NameDescription
» Visualization 1       A fly-through movie showing successive individual x-y slices through a 3D ORPAM image of a mouse ear

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup. (SMF: Single Mode Fibre, L: Lens).
Fig. 2
Fig. 2 Acoustic characteristics of the optical fibre sensor, (a) Impulse response, (b) Frequency response, (c) Directional response (normalised to θ = 0°), (d) profile through (c) for selected frequencies [15].
Fig. 3
Fig. 3 Edge spread function (ESF) obtained from the sum of profiles obtained through the photoacoustic image of a black absorbing ribbon (see inset) and line spread function (LSF) calculated by taking the derivative of the ESF. One of the profiles taken across the edge of the ribbon is highlighted in the inset by a dotted line.
Fig. 4
Fig. 4 Photoacoustic images of leaf phantom. (a) and (b) show a photograph and a photoacoustic image of the leaf phantom respectively. The scan area was 10 mm × 10 mm with a 10 μm step-size (total of 106 samples). The parameters of the excitation source were λ = 578nm, with a 1.2 ns pulse-width, pulse repetition frequency (PRF) of 3 kHz and <200 nJ pulse energy. The FWHM of the focal spot was 8 μm. The fiber sensor was positioned at a vertical distance of 1.6 mm above the phantom. (c) and (d) show respectively a photograph and a photoacoustic image of a smaller area of the leaf (2 × 2 mm2). These areas are indicated by a dotted box in their main respective images. Arrows are used to highlight the presence of some of the carbon fibres.
Fig. 5
Fig. 5 In vivo photoacoustic image of mouse ear microvasculature. (a) MIP Image acquired over a scan area of 8 mm × 8 mm with a 10 μm step-size (total of 640 × 103 samples) and an excitation wavelength of 532 nm. A 1.2 ns pulse-width and pulse repetition frequency (PRF) of 5 kHz was used. The FWHM of the focal spot was 8 μm. The position of the fibre sensor is indicated by a white cross and was positioned at a vertical distance of 1.5 mm above the sample. The inset represents a magnified region of interested (solid square box 1.5 × 1.5 mm2) highlighting the shadowing caused by the presence of Sebaceous glands, indicated by arrows. (b) Photoacoustic image of a smaller region of interest delineated by a square dotted box in (a) (2 × 2 mm2 in steps of 10 µm). The arrows indicate the presence of single capillaries.
Fig. 6
Fig. 6 Photoacoustic image of a smaller region of interest delineated by a square dotted box in Fig. 5 (2 × 2 mm2 in steps of 10 µm) illustrating depth resolved nature of the image. (a) MIP colour coded for depth. The arrow highlights the presence of a capillary (coloured red) overlaying a deeper laying vessel (coloured in yellow). (b) Slices through the 3D data set for three different depths with a depth separation of 100 µm. A fly-through movie showing successive individual x-y slices through the entire data set can be viewed online (Visualization 1).
Fig. 7
Fig. 7 in-vivo photoacoustic image of a mouse ear obtained at 578 nm (imaged area: 8 × 8 mm2 in steps of 10 µm). The fibre sensor was positioned above the centre of the imaged area at a vertical distance of 2.2 mm above the sample. The inserts shows a map of oxygen saturation, calculated using the mean values of the pixels within each segmented vessel. The region of interest (2 × 2 mm2 in steps of 10 µm) is indicated by dotted boxes in the main image.

Metrics