Abstract

Fluorescence-based expansion microscopy (ExM) is a new technique which can yield nanoscale resolution of biological specimen on a conventional fluorescence microscope through physical sample expansion up to 20 times its original dimensions while preserving structural information. It however inherits known issues of fluorescence microscopy such as photostability and multiplexing capabilities, as well as an ExM-specific issue in signal intensity reduction due to a dilution effect after expansion. To address these issues, we propose using antigen-targeting plasmonic nanoparticle labels which can be imaged using surface-enhanced Raman scattering spectroscopy (SERS) and dark-field spectroscopy. We demonstrate that the nanoparticles enable multimodal imaging: bright-field, dark-field and SERS, with excellent photostability, contrast enhancement and brightness.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Substrate-based platform for boosting the surface-enhanced Raman of plasmonic nanoparticles

Qiao Min, Yuanjie Pang, Daniel J. Collins, Nikita A. Kuklev, Kristy Gottselig, David W. Steuerman, and Reuven Gordon
Opt. Express 19(2) 1648-1655 (2011)

Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates

Wu Yuan, Ho Pui Ho, Rebecca K. Y. Lee, and Siu Kai Kong
Appl. Opt. 48(22) 4329-4337 (2009)

Leukemia cells detection based on electroporation assisted surface-enhanced Raman scattering

Yun Yu, Juqiang Lin, Duo Lin, Shangyuan Feng, Weiwei Chen, Zufang Huang, Hao Huang, and Rong Chen
Biomed. Opt. Express 8(9) 4108-4121 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt Lett 19, 780–782 (1994).
    [Crossref] [PubMed]
  2. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
    [Crossref] [PubMed]
  3. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006).
    [Crossref] [PubMed]
  4. F. Chen, P. W. Tillberg, and E. S. Boyden, “Expansion microscopy,” Science 347, 543–548 (2015).
    [Crossref] [PubMed]
  5. T. Ku, J. Swaney, J.-Y. Park, A. Albanese, E. Murray, J. H. Cho, Y.-G. Park, V. Mangena, J. Chen, and K. Chung, “Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues,” Nat. Biotechnol. 34, 973–981 (2016).
    [Crossref] [PubMed]
  6. P. W. Tillberg, F. Chen, K. D. Piatkevich, Y. Zhao, C.-C. J. Yu, B. P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E. M. DeGennaro, D. H. Roossien, G. Gong, U. Seneviratne, S. R. Tannenbaum, R. Desimone, D. Cai, and E. S. Boyden, “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol. 34, 987–992 (2016).
    [Crossref] [PubMed]
  7. J.-B. Chang, F. Chen, Y.-G. Yoon, E. E. Jung, H. Babcock, J. S. Kang, S. Asano, H.-J. Suk, N. Pak, P. W. Tillberg, A. T. Wassie, D. Cai, and E. S. Boyden, “Iterative expansion microscopy,” Nat. Methods 14, 593–599 (2017).
    [Crossref] [PubMed]
  8. Y. Zhao, O. Bucur, H. Irshad, F. Chen, A. Weins, A. L. Stancu, E.-Y. Oh, M. DiStasio, V. Torous, B. Glass, I. E. Stillman, S. J. Schnitt, A. H. Beck, and E. S. Boyden, “Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy,” Nat. Biotechnol. 352 (2017).
    [Crossref]
  9. L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544, 465–470 (2017).
    [Crossref] [PubMed]
  10. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
    [Crossref] [PubMed]
  11. C. M. MacLaughlin, N. Mullaithilaga, G. Yang, S. Y. Ip, C. Wang, and G. C. Walker, “Surface-enhanced Raman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia and lymphoma cells and SERS flow cytometry,” Langmuir 29, 1908–1919 (2013).
    [Crossref] [PubMed]
  12. J.-H. Kim, J.-S. Kim, H. Choi, S.-M. Lee, B.-H. Jun, K.-N. Yu, E. Kuk, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78, 6967–6973 (2006).
    [Crossref] [PubMed]
  13. B. Lutz, C. Dentinger, L. Sun, L. Nguyen, J. Zhang, A. Chmura, A. Allen, S. Chan, and B. Knudsen, “Raman nanoparticle probes for antibody-based protein detection in tissues,” J. Histochem. Cytochem. 56, 371–379 (2008).
    [Crossref]
  14. S. Penn, R. Cromer, M. Sha, B. Doering, B. Brown, S. Norton, and I. Walton, “Nanoplex® biotags: Near-IR excited, highly multiplexed nanoparticulate optical detection tags for diagnostic assays,” http://nsti.org/publications/Nanotech/2007/pdf/741.pdf .
  15. M. Salehi, L. Schneider, P. Ströbel, A. Marx, J. Packeisen, and S. Schlücker, “Two-color SERS microscopy for protein co-localization in prostate tissue with primary antibody–protein A/G –gold nanocluster conjugates,” Nanoscale 6, 2361–2367 (2014).
    [Crossref] [PubMed]
  16. L. Fabris, “Gold-based SERS tags for biomedical imaging,” J. Opt. 17, 114002 (2015).
    [Crossref]
  17. Y. Wang, B. Yan, and L. Chen, “SERS tags: novel optical nanoprobes for bioanalysis,” Chem. Rev. 113, 1391–1428 (2012).
    [Crossref]
  18. E. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
    [Crossref]
  19. A. Pallaoro, G. B. Braun, and M. Moskovits, “Biotags based on surface-enhanced Raman can be as bright as fluorescence tags,” Nano Lett. 15, 6745–6750 (2015).
    [Crossref] [PubMed]
  20. J. Qi and W.-C. Shih, “Performance of line-scan Raman microscopy for high-throughput chemical imaging of cell population,” Appl. Opt. 53, 2881–2885 (2014).
    [Crossref] [PubMed]
  21. N. Sudheendran, J. Qi, E. D. Young, A. J. Lazar, D. C. Lev, R. E. Pollock, K. V. Larin, and W.-C. Shih, “Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection,” Laser Phys. Lett. 11, 105602 (2014).
    [Crossref]
  22. S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75, 4312–4318 (2003).
    [Crossref] [PubMed]
  23. R. J. Mullen, C. R. Buck, and A. M. Smith, “NeuN, a neuronal specific nuclear protein in vertebrates,” Development 116, 201–211 (1992).
    [PubMed]
  24. D. Lind, S. Franken, J. Kappler, J. Jankowski, and K. Schilling, “Characterization of the neuronal marker NeuN as a multiply phosphorylated antigen with discrete subcellular localization,” J. Neurosci. Res. 79, 295–302 (2005).
    [Crossref]
  25. A. M. Lavezzi, M. F. Corna, and L. Matturri, “Neuronal nuclear antigen (NeuN): a useful marker of neuronal immaturity in sudden unexplained perinatal death,” J. Neurol. Sci. 329, 45–50 (2013).
    [Crossref] [PubMed]
  26. S. Schlücker, B. Küstner, A. Punge, R. Bonfig, A. Marx, and P. Ströbel, “Immuno-Raman microspectroscopy: in situ detection of antigens in tissue specimens by surface-enhanced Raman scattering,” J. Raman Spectrosc. 37, 719–721 (2006).
    [Crossref]
  27. A. Indrasekara, B. J. Paladini, D. J. Naczynski, V. Starovoytov, P. V. Moghe, and L. Fabris, “Dimeric gold nanoparticle assemblies as tags for SERS-based cancer detection,” Adv. Healthcare Mater. 2, 1370–1376 (2013).
    [Crossref]
  28. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
    [Crossref] [PubMed]
  29. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua,“Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
    [Crossref] [PubMed]
  30. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref] [PubMed]
  31. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
    [Crossref]
  32. J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473–477 (2005).
    [Crossref] [PubMed]
  33. K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63, 1999–2004 (2003).
    [PubMed]
  34. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829–834 (2005).
    [Crossref] [PubMed]
  35. C. Yu, H. Nakshatri, and J. Irudayaraj, “Identity profiling of cell surface markers by multiplex gold nanorod probes,” Nano Lett. 7, 2300–2306 (2007).
    [Crossref] [PubMed]
  36. L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85, 21–32 (2009).
    [Crossref] [PubMed]
  37. F. Zhao, M. M. P. Arnob, O. Zenasni, J. Li, and W.-C. Shih, “Far-field plasmonic coupling in 2-dimensional polycrystalline plasmonic arrays enables wide tunability with low-cost nanofabrication,” Nanoscale Horiz. 2267 (2017).
  38. C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling,” J. Am. Chem. Soc. 130, 824–826 (2008).
    [Crossref] [PubMed]
  39. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164 (2010).
    [Crossref]
  40. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
    [Crossref] [PubMed]
  41. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
    [Crossref] [PubMed]
  42. M. M. P. Arnob, F. Zhao, J. Li, and W.-C. Shih, “Ebl-based fabrication and different modeling approaches for nanoporous gold nanodisks,” ACS Photonics 4, 1870–1878 (2017).
    [Crossref]
  43. K. Faulds, R. Jarvis, W. E. Smith, D. Graham, and R. Goodacre, “Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS),” Analyst 133, 1505–1512 (2008).
    [Crossref] [PubMed]
  44. G. von Maltzahn, A. Centrone, J.-H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21, 3175–3180 (2009).
    [Crossref]
  45. X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “A molecular beacon-based signal-off surface-enhanced Raman scattering strategy for highly sensitive, reproducible, and multiplexed dna detection,” Small 9, 2493–2499 (2013).
    [Crossref] [PubMed]
  46. X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics,” Nanoscale 6, 8521–8526 (2014).
    [Crossref]

2017 (5)

J.-B. Chang, F. Chen, Y.-G. Yoon, E. E. Jung, H. Babcock, J. S. Kang, S. Asano, H.-J. Suk, N. Pak, P. W. Tillberg, A. T. Wassie, D. Cai, and E. S. Boyden, “Iterative expansion microscopy,” Nat. Methods 14, 593–599 (2017).
[Crossref] [PubMed]

Y. Zhao, O. Bucur, H. Irshad, F. Chen, A. Weins, A. L. Stancu, E.-Y. Oh, M. DiStasio, V. Torous, B. Glass, I. E. Stillman, S. J. Schnitt, A. H. Beck, and E. S. Boyden, “Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy,” Nat. Biotechnol. 352 (2017).
[Crossref]

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544, 465–470 (2017).
[Crossref] [PubMed]

F. Zhao, M. M. P. Arnob, O. Zenasni, J. Li, and W.-C. Shih, “Far-field plasmonic coupling in 2-dimensional polycrystalline plasmonic arrays enables wide tunability with low-cost nanofabrication,” Nanoscale Horiz. 2267 (2017).

M. M. P. Arnob, F. Zhao, J. Li, and W.-C. Shih, “Ebl-based fabrication and different modeling approaches for nanoporous gold nanodisks,” ACS Photonics 4, 1870–1878 (2017).
[Crossref]

2016 (2)

T. Ku, J. Swaney, J.-Y. Park, A. Albanese, E. Murray, J. H. Cho, Y.-G. Park, V. Mangena, J. Chen, and K. Chung, “Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues,” Nat. Biotechnol. 34, 973–981 (2016).
[Crossref] [PubMed]

P. W. Tillberg, F. Chen, K. D. Piatkevich, Y. Zhao, C.-C. J. Yu, B. P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E. M. DeGennaro, D. H. Roossien, G. Gong, U. Seneviratne, S. R. Tannenbaum, R. Desimone, D. Cai, and E. S. Boyden, “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol. 34, 987–992 (2016).
[Crossref] [PubMed]

2015 (3)

L. Fabris, “Gold-based SERS tags for biomedical imaging,” J. Opt. 17, 114002 (2015).
[Crossref]

F. Chen, P. W. Tillberg, and E. S. Boyden, “Expansion microscopy,” Science 347, 543–548 (2015).
[Crossref] [PubMed]

A. Pallaoro, G. B. Braun, and M. Moskovits, “Biotags based on surface-enhanced Raman can be as bright as fluorescence tags,” Nano Lett. 15, 6745–6750 (2015).
[Crossref] [PubMed]

2014 (4)

J. Qi and W.-C. Shih, “Performance of line-scan Raman microscopy for high-throughput chemical imaging of cell population,” Appl. Opt. 53, 2881–2885 (2014).
[Crossref] [PubMed]

N. Sudheendran, J. Qi, E. D. Young, A. J. Lazar, D. C. Lev, R. E. Pollock, K. V. Larin, and W.-C. Shih, “Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection,” Laser Phys. Lett. 11, 105602 (2014).
[Crossref]

M. Salehi, L. Schneider, P. Ströbel, A. Marx, J. Packeisen, and S. Schlücker, “Two-color SERS microscopy for protein co-localization in prostate tissue with primary antibody–protein A/G –gold nanocluster conjugates,” Nanoscale 6, 2361–2367 (2014).
[Crossref] [PubMed]

X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics,” Nanoscale 6, 8521–8526 (2014).
[Crossref]

2013 (4)

X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “A molecular beacon-based signal-off surface-enhanced Raman scattering strategy for highly sensitive, reproducible, and multiplexed dna detection,” Small 9, 2493–2499 (2013).
[Crossref] [PubMed]

C. M. MacLaughlin, N. Mullaithilaga, G. Yang, S. Y. Ip, C. Wang, and G. C. Walker, “Surface-enhanced Raman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia and lymphoma cells and SERS flow cytometry,” Langmuir 29, 1908–1919 (2013).
[Crossref] [PubMed]

A. M. Lavezzi, M. F. Corna, and L. Matturri, “Neuronal nuclear antigen (NeuN): a useful marker of neuronal immaturity in sudden unexplained perinatal death,” J. Neurol. Sci. 329, 45–50 (2013).
[Crossref] [PubMed]

A. Indrasekara, B. J. Paladini, D. J. Naczynski, V. Starovoytov, P. V. Moghe, and L. Fabris, “Dimeric gold nanoparticle assemblies as tags for SERS-based cancer detection,” Adv. Healthcare Mater. 2, 1370–1376 (2013).
[Crossref]

2012 (1)

Y. Wang, B. Yan, and L. Chen, “SERS tags: novel optical nanoprobes for bioanalysis,” Chem. Rev. 113, 1391–1428 (2012).
[Crossref]

2011 (1)

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[Crossref] [PubMed]

2010 (1)

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164 (2010).
[Crossref]

2009 (2)

G. von Maltzahn, A. Centrone, J.-H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21, 3175–3180 (2009).
[Crossref]

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85, 21–32 (2009).
[Crossref] [PubMed]

2008 (6)

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua,“Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

B. Lutz, C. Dentinger, L. Sun, L. Nguyen, J. Zhang, A. Chmura, A. Allen, S. Chan, and B. Knudsen, “Raman nanoparticle probes for antibody-based protein detection in tissues,” J. Histochem. Cytochem. 56, 371–379 (2008).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

K. Faulds, R. Jarvis, W. E. Smith, D. Graham, and R. Goodacre, “Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS),” Analyst 133, 1505–1512 (2008).
[Crossref] [PubMed]

C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling,” J. Am. Chem. Soc. 130, 824–826 (2008).
[Crossref] [PubMed]

2007 (3)

E. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

C. Yu, H. Nakshatri, and J. Irudayaraj, “Identity profiling of cell surface markers by multiplex gold nanorod probes,” Nano Lett. 7, 2300–2306 (2007).
[Crossref] [PubMed]

2006 (5)

S. Schlücker, B. Küstner, A. Punge, R. Bonfig, A. Marx, and P. Ströbel, “Immuno-Raman microspectroscopy: in situ detection of antigens in tissue specimens by surface-enhanced Raman scattering,” J. Raman Spectrosc. 37, 719–721 (2006).
[Crossref]

J.-H. Kim, J.-S. Kim, H. Choi, S.-M. Lee, B.-H. Jun, K.-N. Yu, E. Kuk, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78, 6967–6973 (2006).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006).
[Crossref] [PubMed]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[Crossref] [PubMed]

2005 (3)

D. Lind, S. Franken, J. Kappler, J. Jankowski, and K. Schilling, “Characterization of the neuronal marker NeuN as a multiply phosphorylated antigen with discrete subcellular localization,” J. Neurosci. Res. 79, 295–302 (2005).
[Crossref]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829–834 (2005).
[Crossref] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473–477 (2005).
[Crossref] [PubMed]

2003 (3)

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63, 1999–2004 (2003).
[PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75, 4312–4318 (2003).
[Crossref] [PubMed]

1994 (1)

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt Lett 19, 780–782 (1994).
[Crossref] [PubMed]

1992 (1)

R. J. Mullen, C. R. Buck, and A. M. Smith, “NeuN, a neuronal specific nuclear protein in vertebrates,” Development 116, 201–211 (1992).
[PubMed]

Aaron, J.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63, 1999–2004 (2003).
[PubMed]

Aizpurua, J.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua,“Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
[Crossref] [PubMed]

Albanese, A.

T. Ku, J. Swaney, J.-Y. Park, A. Albanese, E. Murray, J. H. Cho, Y.-G. Park, V. Mangena, J. Chen, and K. Chung, “Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues,” Nat. Biotechnol. 34, 973–981 (2016).
[Crossref] [PubMed]

Allen, A.

B. Lutz, C. Dentinger, L. Sun, L. Nguyen, J. Zhang, A. Chmura, A. Allen, S. Chan, and B. Knudsen, “Raman nanoparticle probes for antibody-based protein detection in tissues,” J. Histochem. Cytochem. 56, 371–379 (2008).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Anzalone, A. V.

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544, 465–470 (2017).
[Crossref] [PubMed]

Arnob, M. M. P.

F. Zhao, M. M. P. Arnob, O. Zenasni, J. Li, and W.-C. Shih, “Far-field plasmonic coupling in 2-dimensional polycrystalline plasmonic arrays enables wide tunability with low-cost nanofabrication,” Nanoscale Horiz. 2267 (2017).

M. M. P. Arnob, F. Zhao, J. Li, and W.-C. Shih, “Ebl-based fabrication and different modeling approaches for nanoporous gold nanodisks,” ACS Photonics 4, 1870–1878 (2017).
[Crossref]

Asano, S.

J.-B. Chang, F. Chen, Y.-G. Yoon, E. E. Jung, H. Babcock, J. S. Kang, S. Asano, H.-J. Suk, N. Pak, P. W. Tillberg, A. T. Wassie, D. Cai, and E. S. Boyden, “Iterative expansion microscopy,” Nat. Methods 14, 593–599 (2017).
[Crossref] [PubMed]

Au, L.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473–477 (2005).
[Crossref] [PubMed]

Babcock, H.

J.-B. Chang, F. Chen, Y.-G. Yoon, E. E. Jung, H. Babcock, J. S. Kang, S. Asano, H.-J. Suk, N. Pak, P. W. Tillberg, A. T. Wassie, D. Cai, and E. S. Boyden, “Iterative expansion microscopy,” Nat. Methods 14, 593–599 (2017).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006).
[Crossref] [PubMed]

Beck, A. H.

Y. Zhao, O. Bucur, H. Irshad, F. Chen, A. Weins, A. L. Stancu, E.-Y. Oh, M. DiStasio, V. Torous, B. Glass, I. E. Stillman, S. J. Schnitt, A. H. Beck, and E. S. Boyden, “Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy,” Nat. Biotechnol. 352 (2017).
[Crossref]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Bhatia, S. N.

G. von Maltzahn, A. Centrone, J.-H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21, 3175–3180 (2009).
[Crossref]

Blackie, E.

E. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

Bonfig, R.

S. Schlücker, B. Küstner, A. Punge, R. Bonfig, A. Marx, and P. Ströbel, “Immuno-Raman microspectroscopy: in situ detection of antigens in tissue specimens by surface-enhanced Raman scattering,” J. Raman Spectrosc. 37, 719–721 (2006).
[Crossref]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Boyden, E. S.

Y. Zhao, O. Bucur, H. Irshad, F. Chen, A. Weins, A. L. Stancu, E.-Y. Oh, M. DiStasio, V. Torous, B. Glass, I. E. Stillman, S. J. Schnitt, A. H. Beck, and E. S. Boyden, “Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy,” Nat. Biotechnol. 352 (2017).
[Crossref]

J.-B. Chang, F. Chen, Y.-G. Yoon, E. E. Jung, H. Babcock, J. S. Kang, S. Asano, H.-J. Suk, N. Pak, P. W. Tillberg, A. T. Wassie, D. Cai, and E. S. Boyden, “Iterative expansion microscopy,” Nat. Methods 14, 593–599 (2017).
[Crossref] [PubMed]

P. W. Tillberg, F. Chen, K. D. Piatkevich, Y. Zhao, C.-C. J. Yu, B. P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E. M. DeGennaro, D. H. Roossien, G. Gong, U. Seneviratne, S. R. Tannenbaum, R. Desimone, D. Cai, and E. S. Boyden, “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol. 34, 987–992 (2016).
[Crossref] [PubMed]

F. Chen, P. W. Tillberg, and E. S. Boyden, “Expansion microscopy,” Science 347, 543–548 (2015).
[Crossref] [PubMed]

Braun, G. B.

A. Pallaoro, G. B. Braun, and M. Moskovits, “Biotags based on surface-enhanced Raman can be as bright as fluorescence tags,” Nano Lett. 15, 6745–6750 (2015).
[Crossref] [PubMed]

Bryant, G. W.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua,“Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
[Crossref] [PubMed]

Buck, C. R.

R. J. Mullen, C. R. Buck, and A. M. Smith, “NeuN, a neuronal specific nuclear protein in vertebrates,” Development 116, 201–211 (1992).
[PubMed]

Bucur, O.

Y. Zhao, O. Bucur, H. Irshad, F. Chen, A. Weins, A. L. Stancu, E.-Y. Oh, M. DiStasio, V. Torous, B. Glass, I. E. Stillman, S. J. Schnitt, A. H. Beck, and E. S. Boyden, “Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy,” Nat. Biotechnol. 352 (2017).
[Crossref]

Cai, D.

J.-B. Chang, F. Chen, Y.-G. Yoon, E. E. Jung, H. Babcock, J. S. Kang, S. Asano, H.-J. Suk, N. Pak, P. W. Tillberg, A. T. Wassie, D. Cai, and E. S. Boyden, “Iterative expansion microscopy,” Nat. Methods 14, 593–599 (2017).
[Crossref] [PubMed]

P. W. Tillberg, F. Chen, K. D. Piatkevich, Y. Zhao, C.-C. J. Yu, B. P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E. M. DeGennaro, D. H. Roossien, G. Gong, U. Seneviratne, S. R. Tannenbaum, R. Desimone, D. Cai, and E. S. Boyden, “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol. 34, 987–992 (2016).
[Crossref] [PubMed]

Cang, H.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473–477 (2005).
[Crossref] [PubMed]

Centrone, A.

G. von Maltzahn, A. Centrone, J.-H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21, 3175–3180 (2009).
[Crossref]

Chan, S.

B. Lutz, C. Dentinger, L. Sun, L. Nguyen, J. Zhang, A. Chmura, A. Allen, S. Chan, and B. Knudsen, “Raman nanoparticle probes for antibody-based protein detection in tissues,” J. Histochem. Cytochem. 56, 371–379 (2008).
[Crossref]

Chang, J.-B.

J.-B. Chang, F. Chen, Y.-G. Yoon, E. E. Jung, H. Babcock, J. S. Kang, S. Asano, H.-J. Suk, N. Pak, P. W. Tillberg, A. T. Wassie, D. Cai, and E. S. Boyden, “Iterative expansion microscopy,” Nat. Methods 14, 593–599 (2017).
[Crossref] [PubMed]

Chen, C.-F.

C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling,” J. Am. Chem. Soc. 130, 824–826 (2008).
[Crossref] [PubMed]

Chen, F.

J.-B. Chang, F. Chen, Y.-G. Yoon, E. E. Jung, H. Babcock, J. S. Kang, S. Asano, H.-J. Suk, N. Pak, P. W. Tillberg, A. T. Wassie, D. Cai, and E. S. Boyden, “Iterative expansion microscopy,” Nat. Methods 14, 593–599 (2017).
[Crossref] [PubMed]

Y. Zhao, O. Bucur, H. Irshad, F. Chen, A. Weins, A. L. Stancu, E.-Y. Oh, M. DiStasio, V. Torous, B. Glass, I. E. Stillman, S. J. Schnitt, A. H. Beck, and E. S. Boyden, “Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy,” Nat. Biotechnol. 352 (2017).
[Crossref]

P. W. Tillberg, F. Chen, K. D. Piatkevich, Y. Zhao, C.-C. J. Yu, B. P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E. M. DeGennaro, D. H. Roossien, G. Gong, U. Seneviratne, S. R. Tannenbaum, R. Desimone, D. Cai, and E. S. Boyden, “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol. 34, 987–992 (2016).
[Crossref] [PubMed]

F. Chen, P. W. Tillberg, and E. S. Boyden, “Expansion microscopy,” Science 347, 543–548 (2015).
[Crossref] [PubMed]

Chen, H.-Y.

C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling,” J. Am. Chem. Soc. 130, 824–826 (2008).
[Crossref] [PubMed]

Chen, J.

T. Ku, J. Swaney, J.-Y. Park, A. Albanese, E. Murray, J. H. Cho, Y.-G. Park, V. Mangena, J. Chen, and K. Chung, “Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues,” Nat. Biotechnol. 34, 973–981 (2016).
[Crossref] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473–477 (2005).
[Crossref] [PubMed]

Chen, L.

Y. Wang, B. Yan, and L. Chen, “SERS tags: novel optical nanoprobes for bioanalysis,” Chem. Rev. 113, 1391–1428 (2012).
[Crossref]

Chen, Z.

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544, 465–470 (2017).
[Crossref] [PubMed]

Cheng, J.-X.

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85, 21–32 (2009).
[Crossref] [PubMed]

Chmura, A.

B. Lutz, C. Dentinger, L. Sun, L. Nguyen, J. Zhang, A. Chmura, A. Allen, S. Chan, and B. Knudsen, “Raman nanoparticle probes for antibody-based protein detection in tissues,” J. Histochem. Cytochem. 56, 371–379 (2008).
[Crossref]

Cho, J. H.

T. Ku, J. Swaney, J.-Y. Park, A. Albanese, E. Murray, J. H. Cho, Y.-G. Park, V. Mangena, J. Chen, and K. Chung, “Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues,” Nat. Biotechnol. 34, 973–981 (2016).
[Crossref] [PubMed]

Cho, M.-H.

J.-H. Kim, J.-S. Kim, H. Choi, S.-M. Lee, B.-H. Jun, K.-N. Yu, E. Kuk, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78, 6967–6973 (2006).
[Crossref] [PubMed]

Choi, H.

J.-H. Kim, J.-S. Kim, H. Choi, S.-M. Lee, B.-H. Jun, K.-N. Yu, E. Kuk, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78, 6967–6973 (2006).
[Crossref] [PubMed]

Chung, K.

T. Ku, J. Swaney, J.-Y. Park, A. Albanese, E. Murray, J. H. Cho, Y.-G. Park, V. Mangena, J. Chen, and K. Chung, “Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues,” Nat. Biotechnol. 34, 973–981 (2016).
[Crossref] [PubMed]

Cobb, M. J.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473–477 (2005).
[Crossref] [PubMed]

Corna, M. F.

A. M. Lavezzi, M. F. Corna, and L. Matturri, “Neuronal nuclear antigen (NeuN): a useful marker of neuronal immaturity in sudden unexplained perinatal death,” J. Neurol. Sci. 329, 45–50 (2013).
[Crossref] [PubMed]

Cornish, V. W.

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544, 465–470 (2017).
[Crossref] [PubMed]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

DeGennaro, E. M.

P. W. Tillberg, F. Chen, K. D. Piatkevich, Y. Zhao, C.-C. J. Yu, B. P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E. M. DeGennaro, D. H. Roossien, G. Gong, U. Seneviratne, S. R. Tannenbaum, R. Desimone, D. Cai, and E. S. Boyden, “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol. 34, 987–992 (2016).
[Crossref] [PubMed]

Dentinger, C.

B. Lutz, C. Dentinger, L. Sun, L. Nguyen, J. Zhang, A. Chmura, A. Allen, S. Chan, and B. Knudsen, “Raman nanoparticle probes for antibody-based protein detection in tissues,” J. Histochem. Cytochem. 56, 371–379 (2008).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

Desimone, R.

P. W. Tillberg, F. Chen, K. D. Piatkevich, Y. Zhao, C.-C. J. Yu, B. P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E. M. DeGennaro, D. H. Roossien, G. Gong, U. Seneviratne, S. R. Tannenbaum, R. Desimone, D. Cai, and E. S. Boyden, “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol. 34, 987–992 (2016).
[Crossref] [PubMed]

DiStasio, M.

Y. Zhao, O. Bucur, H. Irshad, F. Chen, A. Weins, A. L. Stancu, E.-Y. Oh, M. DiStasio, V. Torous, B. Glass, I. E. Stillman, S. J. Schnitt, A. H. Beck, and E. S. Boyden, “Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy,” Nat. Biotechnol. 352 (2017).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[Crossref] [PubMed]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829–834 (2005).
[Crossref] [PubMed]

El-Sayed, M. A.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164 (2010).
[Crossref]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[Crossref] [PubMed]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829–834 (2005).
[Crossref] [PubMed]

English, B. P.

P. W. Tillberg, F. Chen, K. D. Piatkevich, Y. Zhao, C.-C. J. Yu, B. P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E. M. DeGennaro, D. H. Roossien, G. Gong, U. Seneviratne, S. R. Tannenbaum, R. Desimone, D. Cai, and E. S. Boyden, “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol. 34, 987–992 (2016).
[Crossref] [PubMed]

Etchegoin, P. G.

E. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

Fabris, L.

L. Fabris, “Gold-based SERS tags for biomedical imaging,” J. Opt. 17, 114002 (2015).
[Crossref]

A. Indrasekara, B. J. Paladini, D. J. Naczynski, V. Starovoytov, P. V. Moghe, and L. Fabris, “Dimeric gold nanoparticle assemblies as tags for SERS-based cancer detection,” Adv. Healthcare Mater. 2, 1370–1376 (2013).
[Crossref]

Fan, C.

X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics,” Nanoscale 6, 8521–8526 (2014).
[Crossref]

X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “A molecular beacon-based signal-off surface-enhanced Raman scattering strategy for highly sensitive, reproducible, and multiplexed dna detection,” Small 9, 2493–2499 (2013).
[Crossref] [PubMed]

Faulds, K.

K. Faulds, R. Jarvis, W. E. Smith, D. Graham, and R. Goodacre, “Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS),” Analyst 133, 1505–1512 (2008).
[Crossref] [PubMed]

Follen, M.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63, 1999–2004 (2003).
[PubMed]

Franken, S.

D. Lind, S. Franken, J. Kappler, J. Jankowski, and K. Schilling, “Characterization of the neuronal marker NeuN as a multiply phosphorylated antigen with discrete subcellular localization,” J. Neurosci. Res. 79, 295–302 (2005).
[Crossref]

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Gao, L.

P. W. Tillberg, F. Chen, K. D. Piatkevich, Y. Zhao, C.-C. J. Yu, B. P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E. M. DeGennaro, D. H. Roossien, G. Gong, U. Seneviratne, S. R. Tannenbaum, R. Desimone, D. Cai, and E. S. Boyden, “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol. 34, 987–992 (2016).
[Crossref] [PubMed]

García de Abajo, F. J.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua,“Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
[Crossref] [PubMed]

Glass, B.

Y. Zhao, O. Bucur, H. Irshad, F. Chen, A. Weins, A. L. Stancu, E.-Y. Oh, M. DiStasio, V. Torous, B. Glass, I. E. Stillman, S. J. Schnitt, A. H. Beck, and E. S. Boyden, “Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy,” Nat. Biotechnol. 352 (2017).
[Crossref]

Gong, G.

P. W. Tillberg, F. Chen, K. D. Piatkevich, Y. Zhao, C.-C. J. Yu, B. P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E. M. DeGennaro, D. H. Roossien, G. Gong, U. Seneviratne, S. R. Tannenbaum, R. Desimone, D. Cai, and E. S. Boyden, “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol. 34, 987–992 (2016).
[Crossref] [PubMed]

Goodacre, R.

K. Faulds, R. Jarvis, W. E. Smith, D. Graham, and R. Goodacre, “Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS),” Analyst 133, 1505–1512 (2008).
[Crossref] [PubMed]

Graham, D.

K. Faulds, R. Jarvis, W. E. Smith, D. Graham, and R. Goodacre, “Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS),” Analyst 133, 1505–1512 (2008).
[Crossref] [PubMed]

Guo, Y.

X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics,” Nanoscale 6, 8521–8526 (2014).
[Crossref]

X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “A molecular beacon-based signal-off surface-enhanced Raman scattering strategy for highly sensitive, reproducible, and multiplexed dna detection,” Small 9, 2493–2499 (2013).
[Crossref] [PubMed]

Gwo, S.

C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling,” J. Am. Chem. Soc. 130, 824–826 (2008).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Hatton, T. A.

G. von Maltzahn, A. Centrone, J.-H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21, 3175–3180 (2009).
[Crossref]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

He, Y.

X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics,” Nanoscale 6, 8521–8526 (2014).
[Crossref]

X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “A molecular beacon-based signal-off surface-enhanced Raman scattering strategy for highly sensitive, reproducible, and multiplexed dna detection,” Small 9, 2493–2499 (2013).
[Crossref] [PubMed]

Hell, S. W.

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt Lett 19, 780–782 (1994).
[Crossref] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Hu, F.

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544, 465–470 (2017).
[Crossref] [PubMed]

Huang, X.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829–834 (2005).
[Crossref] [PubMed]

Huffman, S. W.

S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75, 4312–4318 (2003).
[Crossref] [PubMed]

Indrasekara, A.

A. Indrasekara, B. J. Paladini, D. J. Naczynski, V. Starovoytov, P. V. Moghe, and L. Fabris, “Dimeric gold nanoparticle assemblies as tags for SERS-based cancer detection,” Adv. Healthcare Mater. 2, 1370–1376 (2013).
[Crossref]

Ip, S. Y.

C. M. MacLaughlin, N. Mullaithilaga, G. Yang, S. Y. Ip, C. Wang, and G. C. Walker, “Surface-enhanced Raman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia and lymphoma cells and SERS flow cytometry,” Langmuir 29, 1908–1919 (2013).
[Crossref] [PubMed]

Irshad, H.

Y. Zhao, O. Bucur, H. Irshad, F. Chen, A. Weins, A. L. Stancu, E.-Y. Oh, M. DiStasio, V. Torous, B. Glass, I. E. Stillman, S. J. Schnitt, A. H. Beck, and E. S. Boyden, “Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy,” Nat. Biotechnol. 352 (2017).
[Crossref]

Irudayaraj, J.

C. Yu, H. Nakshatri, and J. Irudayaraj, “Identity profiling of cell surface markers by multiplex gold nanorod probes,” Nano Lett. 7, 2300–2306 (2007).
[Crossref] [PubMed]

Jain, P. K.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164 (2010).
[Crossref]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[Crossref] [PubMed]

Jankowski, J.

D. Lind, S. Franken, J. Kappler, J. Jankowski, and K. Schilling, “Characterization of the neuronal marker NeuN as a multiply phosphorylated antigen with discrete subcellular localization,” J. Neurosci. Res. 79, 295–302 (2005).
[Crossref]

Jarvis, R.

K. Faulds, R. Jarvis, W. E. Smith, D. Graham, and R. Goodacre, “Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS),” Analyst 133, 1505–1512 (2008).
[Crossref] [PubMed]

Jeong, D. H.

J.-H. Kim, J.-S. Kim, H. Choi, S.-M. Lee, B.-H. Jun, K.-N. Yu, E. Kuk, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78, 6967–6973 (2006).
[Crossref] [PubMed]

Jiang, X.

X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics,” Nanoscale 6, 8521–8526 (2014).
[Crossref]

X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “A molecular beacon-based signal-off surface-enhanced Raman scattering strategy for highly sensitive, reproducible, and multiplexed dna detection,” Small 9, 2493–2499 (2013).
[Crossref] [PubMed]

Jun, B.-H.

J.-H. Kim, J.-S. Kim, H. Choi, S.-M. Lee, B.-H. Jun, K.-N. Yu, E. Kuk, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78, 6967–6973 (2006).
[Crossref] [PubMed]

Jung, E. E.

J.-B. Chang, F. Chen, Y.-G. Yoon, E. E. Jung, H. Babcock, J. S. Kang, S. Asano, H.-J. Suk, N. Pak, P. W. Tillberg, A. T. Wassie, D. Cai, and E. S. Boyden, “Iterative expansion microscopy,” Nat. Methods 14, 593–599 (2017).
[Crossref] [PubMed]

Kang, J. S.

J.-B. Chang, F. Chen, Y.-G. Yoon, E. E. Jung, H. Babcock, J. S. Kang, S. Asano, H.-J. Suk, N. Pak, P. W. Tillberg, A. T. Wassie, D. Cai, and E. S. Boyden, “Iterative expansion microscopy,” Nat. Methods 14, 593–599 (2017).
[Crossref] [PubMed]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Kappler, J.

D. Lind, S. Franken, J. Kappler, J. Jankowski, and K. Schilling, “Characterization of the neuronal marker NeuN as a multiply phosphorylated antigen with discrete subcellular localization,” J. Neurosci. Res. 79, 295–302 (2005).
[Crossref]

Kim, J.-H.

J.-H. Kim, J.-S. Kim, H. Choi, S.-M. Lee, B.-H. Jun, K.-N. Yu, E. Kuk, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78, 6967–6973 (2006).
[Crossref] [PubMed]

Kim, J.-S.

J.-H. Kim, J.-S. Kim, H. Choi, S.-M. Lee, B.-H. Jun, K.-N. Yu, E. Kuk, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78, 6967–6973 (2006).
[Crossref] [PubMed]

Kim, Y.-K.

J.-H. Kim, J.-S. Kim, H. Choi, S.-M. Lee, B.-H. Jun, K.-N. Yu, E. Kuk, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78, 6967–6973 (2006).
[Crossref] [PubMed]

Kimmey, M. B.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473–477 (2005).
[Crossref] [PubMed]

Knudsen, B.

B. Lutz, C. Dentinger, L. Sun, L. Nguyen, J. Zhang, A. Chmura, A. Allen, S. Chan, and B. Knudsen, “Raman nanoparticle probes for antibody-based protein detection in tissues,” J. Histochem. Cytochem. 56, 371–379 (2008).
[Crossref]

Ku, T.

T. Ku, J. Swaney, J.-Y. Park, A. Albanese, E. Murray, J. H. Cho, Y.-G. Park, V. Mangena, J. Chen, and K. Chung, “Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues,” Nat. Biotechnol. 34, 973–981 (2016).
[Crossref] [PubMed]

Kuk, E.

J.-H. Kim, J.-S. Kim, H. Choi, S.-M. Lee, B.-H. Jun, K.-N. Yu, E. Kuk, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78, 6967–6973 (2006).
[Crossref] [PubMed]

Küstner, B.

S. Schlücker, B. Küstner, A. Punge, R. Bonfig, A. Marx, and P. Ströbel, “Immuno-Raman microspectroscopy: in situ detection of antigens in tissue specimens by surface-enhanced Raman scattering,” J. Raman Spectrosc. 37, 719–721 (2006).
[Crossref]

Larin, K. V.

N. Sudheendran, J. Qi, E. D. Young, A. J. Lazar, D. C. Lev, R. E. Pollock, K. V. Larin, and W.-C. Shih, “Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection,” Laser Phys. Lett. 11, 105602 (2014).
[Crossref]

Lavezzi, A. M.

A. M. Lavezzi, M. F. Corna, and L. Matturri, “Neuronal nuclear antigen (NeuN): a useful marker of neuronal immaturity in sudden unexplained perinatal death,” J. Neurol. Sci. 329, 45–50 (2013).
[Crossref] [PubMed]

Lazar, A. J.

N. Sudheendran, J. Qi, E. D. Young, A. J. Lazar, D. C. Lev, R. E. Pollock, K. V. Larin, and W.-C. Shih, “Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection,” Laser Phys. Lett. 11, 105602 (2014).
[Crossref]

Le Ru, E.

E. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[Crossref] [PubMed]

Lee, S.-M.

J.-H. Kim, J.-S. Kim, H. Choi, S.-M. Lee, B.-H. Jun, K.-N. Yu, E. Kuk, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78, 6967–6973 (2006).
[Crossref] [PubMed]

Lee, S.-T.

X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics,” Nanoscale 6, 8521–8526 (2014).
[Crossref]

X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “A molecular beacon-based signal-off surface-enhanced Raman scattering strategy for highly sensitive, reproducible, and multiplexed dna detection,” Small 9, 2493–2499 (2013).
[Crossref] [PubMed]

Lee, Y.-S.

J.-H. Kim, J.-S. Kim, H. Choi, S.-M. Lee, B.-H. Jun, K.-N. Yu, E. Kuk, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78, 6967–6973 (2006).
[Crossref] [PubMed]

Lev, D. C.

N. Sudheendran, J. Qi, E. D. Young, A. J. Lazar, D. C. Lev, R. E. Pollock, K. V. Larin, and W.-C. Shih, “Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection,” Laser Phys. Lett. 11, 105602 (2014).
[Crossref]

Levin, I. W.

S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75, 4312–4318 (2003).
[Crossref] [PubMed]

Li,

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473–477 (2005).
[Crossref] [PubMed]

Li, J.

F. Zhao, M. M. P. Arnob, O. Zenasni, J. Li, and W.-C. Shih, “Far-field plasmonic coupling in 2-dimensional polycrystalline plasmonic arrays enables wide tunability with low-cost nanofabrication,” Nanoscale Horiz. 2267 (2017).

M. M. P. Arnob, F. Zhao, J. Li, and W.-C. Shih, “Ebl-based fabrication and different modeling approaches for nanoporous gold nanodisks,” ACS Photonics 4, 1870–1878 (2017).
[Crossref]

Li, Z.-Y.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473–477 (2005).
[Crossref] [PubMed]

Lin, K.-J.

C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling,” J. Am. Chem. Soc. 130, 824–826 (2008).
[Crossref] [PubMed]

Lind, D.

D. Lind, S. Franken, J. Kappler, J. Jankowski, and K. Schilling, “Characterization of the neuronal marker NeuN as a multiply phosphorylated antigen with discrete subcellular localization,” J. Neurosci. Res. 79, 295–302 (2005).
[Crossref]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Long, R.

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544, 465–470 (2017).
[Crossref] [PubMed]

Lotan, R.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63, 1999–2004 (2003).
[PubMed]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Lutz, B.

B. Lutz, C. Dentinger, L. Sun, L. Nguyen, J. Zhang, A. Chmura, A. Allen, S. Chan, and B. Knudsen, “Raman nanoparticle probes for antibody-based protein detection in tissues,” J. Histochem. Cytochem. 56, 371–379 (2008).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

MacLaughlin, C. M.

C. M. MacLaughlin, N. Mullaithilaga, G. Yang, S. Y. Ip, C. Wang, and G. C. Walker, “Surface-enhanced Raman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia and lymphoma cells and SERS flow cytometry,” Langmuir 29, 1908–1919 (2013).
[Crossref] [PubMed]

Malpica, A.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63, 1999–2004 (2003).
[PubMed]

Mangena, V.

T. Ku, J. Swaney, J.-Y. Park, A. Albanese, E. Murray, J. H. Cho, Y.-G. Park, V. Mangena, J. Chen, and K. Chung, “Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues,” Nat. Biotechnol. 34, 973–981 (2016).
[Crossref] [PubMed]

Martorell, A.

P. W. Tillberg, F. Chen, K. D. Piatkevich, Y. Zhao, C.-C. J. Yu, B. P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E. M. DeGennaro, D. H. Roossien, G. Gong, U. Seneviratne, S. R. Tannenbaum, R. Desimone, D. Cai, and E. S. Boyden, “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol. 34, 987–992 (2016).
[Crossref] [PubMed]

Marx, A.

M. Salehi, L. Schneider, P. Ströbel, A. Marx, J. Packeisen, and S. Schlücker, “Two-color SERS microscopy for protein co-localization in prostate tissue with primary antibody–protein A/G –gold nanocluster conjugates,” Nanoscale 6, 2361–2367 (2014).
[Crossref] [PubMed]

S. Schlücker, B. Küstner, A. Punge, R. Bonfig, A. Marx, and P. Ströbel, “Immuno-Raman microspectroscopy: in situ detection of antigens in tissue specimens by surface-enhanced Raman scattering,” J. Raman Spectrosc. 37, 719–721 (2006).
[Crossref]

Matturri, L.

A. M. Lavezzi, M. F. Corna, and L. Matturri, “Neuronal nuclear antigen (NeuN): a useful marker of neuronal immaturity in sudden unexplained perinatal death,” J. Neurol. Sci. 329, 45–50 (2013).
[Crossref] [PubMed]

Meyer, M.

E. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

Min, W.

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544, 465–470 (2017).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Moghe, P. V.

A. Indrasekara, B. J. Paladini, D. J. Naczynski, V. Starovoytov, P. V. Moghe, and L. Fabris, “Dimeric gold nanoparticle assemblies as tags for SERS-based cancer detection,” Adv. Healthcare Mater. 2, 1370–1376 (2013).
[Crossref]

Moskovits, M.

A. Pallaoro, G. B. Braun, and M. Moskovits, “Biotags based on surface-enhanced Raman can be as bright as fluorescence tags,” Nano Lett. 15, 6745–6750 (2015).
[Crossref] [PubMed]

Mullaithilaga, N.

C. M. MacLaughlin, N. Mullaithilaga, G. Yang, S. Y. Ip, C. Wang, and G. C. Walker, “Surface-enhanced Raman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia and lymphoma cells and SERS flow cytometry,” Langmuir 29, 1908–1919 (2013).
[Crossref] [PubMed]

Mullen, R. J.

R. J. Mullen, C. R. Buck, and A. M. Smith, “NeuN, a neuronal specific nuclear protein in vertebrates,” Development 116, 201–211 (1992).
[PubMed]

Murray, E.

T. Ku, J. Swaney, J.-Y. Park, A. Albanese, E. Murray, J. H. Cho, Y.-G. Park, V. Mangena, J. Chen, and K. Chung, “Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues,” Nat. Biotechnol. 34, 973–981 (2016).
[Crossref] [PubMed]

Naczynski, D. J.

A. Indrasekara, B. J. Paladini, D. J. Naczynski, V. Starovoytov, P. V. Moghe, and L. Fabris, “Dimeric gold nanoparticle assemblies as tags for SERS-based cancer detection,” Adv. Healthcare Mater. 2, 1370–1376 (2013).
[Crossref]

Nakshatri, H.

C. Yu, H. Nakshatri, and J. Irudayaraj, “Identity profiling of cell surface markers by multiplex gold nanorod probes,” Nano Lett. 7, 2300–2306 (2007).
[Crossref] [PubMed]

Nguyen, L.

B. Lutz, C. Dentinger, L. Sun, L. Nguyen, J. Zhang, A. Chmura, A. Allen, S. Chan, and B. Knudsen, “Raman nanoparticle probes for antibody-based protein detection in tissues,” J. Histochem. Cytochem. 56, 371–379 (2008).
[Crossref]

Nordlander, P.

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[Crossref] [PubMed]

Oh, E.-Y.

Y. Zhao, O. Bucur, H. Irshad, F. Chen, A. Weins, A. L. Stancu, E.-Y. Oh, M. DiStasio, V. Torous, B. Glass, I. E. Stillman, S. J. Schnitt, A. H. Beck, and E. S. Boyden, “Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy,” Nat. Biotechnol. 352 (2017).
[Crossref]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Packeisen, J.

M. Salehi, L. Schneider, P. Ströbel, A. Marx, J. Packeisen, and S. Schlücker, “Two-color SERS microscopy for protein co-localization in prostate tissue with primary antibody–protein A/G –gold nanocluster conjugates,” Nanoscale 6, 2361–2367 (2014).
[Crossref] [PubMed]

Pak, N.

J.-B. Chang, F. Chen, Y.-G. Yoon, E. E. Jung, H. Babcock, J. S. Kang, S. Asano, H.-J. Suk, N. Pak, P. W. Tillberg, A. T. Wassie, D. Cai, and E. S. Boyden, “Iterative expansion microscopy,” Nat. Methods 14, 593–599 (2017).
[Crossref] [PubMed]

Paladini, B. J.

A. Indrasekara, B. J. Paladini, D. J. Naczynski, V. Starovoytov, P. V. Moghe, and L. Fabris, “Dimeric gold nanoparticle assemblies as tags for SERS-based cancer detection,” Adv. Healthcare Mater. 2, 1370–1376 (2013).
[Crossref]

Pallaoro, A.

A. Pallaoro, G. B. Braun, and M. Moskovits, “Biotags based on surface-enhanced Raman can be as bright as fluorescence tags,” Nano Lett. 15, 6745–6750 (2015).
[Crossref] [PubMed]

Park, J.-H.

G. von Maltzahn, A. Centrone, J.-H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21, 3175–3180 (2009).
[Crossref]

Park, J.-Y.

T. Ku, J. Swaney, J.-Y. Park, A. Albanese, E. Murray, J. H. Cho, Y.-G. Park, V. Mangena, J. Chen, and K. Chung, “Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues,” Nat. Biotechnol. 34, 973–981 (2016).
[Crossref] [PubMed]

Park, Y.-G.

T. Ku, J. Swaney, J.-Y. Park, A. Albanese, E. Murray, J. H. Cho, Y.-G. Park, V. Mangena, J. Chen, and K. Chung, “Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues,” Nat. Biotechnol. 34, 973–981 (2016).
[Crossref] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Pavlova, I.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63, 1999–2004 (2003).
[PubMed]

Piatkevich, K. D.

P. W. Tillberg, F. Chen, K. D. Piatkevich, Y. Zhao, C.-C. J. Yu, B. P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E. M. DeGennaro, D. H. Roossien, G. Gong, U. Seneviratne, S. R. Tannenbaum, R. Desimone, D. Cai, and E. S. Boyden, “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol. 34, 987–992 (2016).
[Crossref] [PubMed]

Pollock, R. E.

N. Sudheendran, J. Qi, E. D. Young, A. J. Lazar, D. C. Lev, R. E. Pollock, K. V. Larin, and W.-C. Shih, “Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection,” Laser Phys. Lett. 11, 105602 (2014).
[Crossref]

Punge, A.

S. Schlücker, B. Küstner, A. Punge, R. Bonfig, A. Marx, and P. Ströbel, “Immuno-Raman microspectroscopy: in situ detection of antigens in tissue specimens by surface-enhanced Raman scattering,” J. Raman Spectrosc. 37, 719–721 (2006).
[Crossref]

Qi, J.

J. Qi and W.-C. Shih, “Performance of line-scan Raman microscopy for high-throughput chemical imaging of cell population,” Appl. Opt. 53, 2881–2885 (2014).
[Crossref] [PubMed]

N. Sudheendran, J. Qi, E. D. Young, A. J. Lazar, D. C. Lev, R. E. Pollock, K. V. Larin, and W.-C. Shih, “Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection,” Laser Phys. Lett. 11, 105602 (2014).
[Crossref]

Ramanathan, R.

G. von Maltzahn, A. Centrone, J.-H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21, 3175–3180 (2009).
[Crossref]

Richards-Kortum, R.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63, 1999–2004 (2003).
[PubMed]

Roossien, D. H.

P. W. Tillberg, F. Chen, K. D. Piatkevich, Y. Zhao, C.-C. J. Yu, B. P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E. M. DeGennaro, D. H. Roossien, G. Gong, U. Seneviratne, S. R. Tannenbaum, R. Desimone, D. Cai, and E. S. Boyden, “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol. 34, 987–992 (2016).
[Crossref] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006).
[Crossref] [PubMed]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Saeki, F.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473–477 (2005).
[Crossref] [PubMed]

Sailor, M. J.

G. von Maltzahn, A. Centrone, J.-H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21, 3175–3180 (2009).
[Crossref]

Salehi, M.

M. Salehi, L. Schneider, P. Ströbel, A. Marx, J. Packeisen, and S. Schlücker, “Two-color SERS microscopy for protein co-localization in prostate tissue with primary antibody–protein A/G –gold nanocluster conjugates,” Nanoscale 6, 2361–2367 (2014).
[Crossref] [PubMed]

Schaeberle, M. D.

S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75, 4312–4318 (2003).
[Crossref] [PubMed]

Schilling, K.

D. Lind, S. Franken, J. Kappler, J. Jankowski, and K. Schilling, “Characterization of the neuronal marker NeuN as a multiply phosphorylated antigen with discrete subcellular localization,” J. Neurosci. Res. 79, 295–302 (2005).
[Crossref]

Schlücker, S.

M. Salehi, L. Schneider, P. Ströbel, A. Marx, J. Packeisen, and S. Schlücker, “Two-color SERS microscopy for protein co-localization in prostate tissue with primary antibody–protein A/G –gold nanocluster conjugates,” Nanoscale 6, 2361–2367 (2014).
[Crossref] [PubMed]

S. Schlücker, B. Küstner, A. Punge, R. Bonfig, A. Marx, and P. Ströbel, “Immuno-Raman microspectroscopy: in situ detection of antigens in tissue specimens by surface-enhanced Raman scattering,” J. Raman Spectrosc. 37, 719–721 (2006).
[Crossref]

S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75, 4312–4318 (2003).
[Crossref] [PubMed]

Schneider, L.

M. Salehi, L. Schneider, P. Ströbel, A. Marx, J. Packeisen, and S. Schlücker, “Two-color SERS microscopy for protein co-localization in prostate tissue with primary antibody–protein A/G –gold nanocluster conjugates,” Nanoscale 6, 2361–2367 (2014).
[Crossref] [PubMed]

Schnitt, S. J.

Y. Zhao, O. Bucur, H. Irshad, F. Chen, A. Weins, A. L. Stancu, E.-Y. Oh, M. DiStasio, V. Torous, B. Glass, I. E. Stillman, S. J. Schnitt, A. H. Beck, and E. S. Boyden, “Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy,” Nat. Biotechnol. 352 (2017).
[Crossref]

Seneviratne, U.

P. W. Tillberg, F. Chen, K. D. Piatkevich, Y. Zhao, C.-C. J. Yu, B. P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E. M. DeGennaro, D. H. Roossien, G. Gong, U. Seneviratne, S. R. Tannenbaum, R. Desimone, D. Cai, and E. S. Boyden, “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol. 34, 987–992 (2016).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Shi, L.

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544, 465–470 (2017).
[Crossref] [PubMed]

Shih, W.-C.

F. Zhao, M. M. P. Arnob, O. Zenasni, J. Li, and W.-C. Shih, “Far-field plasmonic coupling in 2-dimensional polycrystalline plasmonic arrays enables wide tunability with low-cost nanofabrication,” Nanoscale Horiz. 2267 (2017).

M. M. P. Arnob, F. Zhao, J. Li, and W.-C. Shih, “Ebl-based fabrication and different modeling approaches for nanoporous gold nanodisks,” ACS Photonics 4, 1870–1878 (2017).
[Crossref]

J. Qi and W.-C. Shih, “Performance of line-scan Raman microscopy for high-throughput chemical imaging of cell population,” Appl. Opt. 53, 2881–2885 (2014).
[Crossref] [PubMed]

N. Sudheendran, J. Qi, E. D. Young, A. J. Lazar, D. C. Lev, R. E. Pollock, K. V. Larin, and W.-C. Shih, “Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection,” Laser Phys. Lett. 11, 105602 (2014).
[Crossref]

Smith, A. M.

R. J. Mullen, C. R. Buck, and A. M. Smith, “NeuN, a neuronal specific nuclear protein in vertebrates,” Development 116, 201–211 (1992).
[PubMed]

Smith, W. E.

K. Faulds, R. Jarvis, W. E. Smith, D. Graham, and R. Goodacre, “Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS),” Analyst 133, 1505–1512 (2008).
[Crossref] [PubMed]

Sokolov, K.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63, 1999–2004 (2003).
[PubMed]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Stancu, A. L.

Y. Zhao, O. Bucur, H. Irshad, F. Chen, A. Weins, A. L. Stancu, E.-Y. Oh, M. DiStasio, V. Torous, B. Glass, I. E. Stillman, S. J. Schnitt, A. H. Beck, and E. S. Boyden, “Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy,” Nat. Biotechnol. 352 (2017).
[Crossref]

Starovoytov, V.

A. Indrasekara, B. J. Paladini, D. J. Naczynski, V. Starovoytov, P. V. Moghe, and L. Fabris, “Dimeric gold nanoparticle assemblies as tags for SERS-based cancer detection,” Adv. Healthcare Mater. 2, 1370–1376 (2013).
[Crossref]

Stillman, I. E.

Y. Zhao, O. Bucur, H. Irshad, F. Chen, A. Weins, A. L. Stancu, E.-Y. Oh, M. DiStasio, V. Torous, B. Glass, I. E. Stillman, S. J. Schnitt, A. H. Beck, and E. S. Boyden, “Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy,” Nat. Biotechnol. 352 (2017).
[Crossref]

Ströbel, P.

M. Salehi, L. Schneider, P. Ströbel, A. Marx, J. Packeisen, and S. Schlücker, “Two-color SERS microscopy for protein co-localization in prostate tissue with primary antibody–protein A/G –gold nanocluster conjugates,” Nanoscale 6, 2361–2367 (2014).
[Crossref] [PubMed]

S. Schlücker, B. Küstner, A. Punge, R. Bonfig, A. Marx, and P. Ströbel, “Immuno-Raman microspectroscopy: in situ detection of antigens in tissue specimens by surface-enhanced Raman scattering,” J. Raman Spectrosc. 37, 719–721 (2006).
[Crossref]

Su, S.

X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics,” Nanoscale 6, 8521–8526 (2014).
[Crossref]

X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “A molecular beacon-based signal-off surface-enhanced Raman scattering strategy for highly sensitive, reproducible, and multiplexed dna detection,” Small 9, 2493–2499 (2013).
[Crossref] [PubMed]

Su, Y.

X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics,” Nanoscale 6, 8521–8526 (2014).
[Crossref]

X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “A molecular beacon-based signal-off surface-enhanced Raman scattering strategy for highly sensitive, reproducible, and multiplexed dna detection,” Small 9, 2493–2499 (2013).
[Crossref] [PubMed]

Sudheendran, N.

N. Sudheendran, J. Qi, E. D. Young, A. J. Lazar, D. C. Lev, R. E. Pollock, K. V. Larin, and W.-C. Shih, “Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection,” Laser Phys. Lett. 11, 105602 (2014).
[Crossref]

Suk, H.-J.

J.-B. Chang, F. Chen, Y.-G. Yoon, E. E. Jung, H. Babcock, J. S. Kang, S. Asano, H.-J. Suk, N. Pak, P. W. Tillberg, A. T. Wassie, D. Cai, and E. S. Boyden, “Iterative expansion microscopy,” Nat. Methods 14, 593–599 (2017).
[Crossref] [PubMed]

P. W. Tillberg, F. Chen, K. D. Piatkevich, Y. Zhao, C.-C. J. Yu, B. P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E. M. DeGennaro, D. H. Roossien, G. Gong, U. Seneviratne, S. R. Tannenbaum, R. Desimone, D. Cai, and E. S. Boyden, “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol. 34, 987–992 (2016).
[Crossref] [PubMed]

Sun, L.

B. Lutz, C. Dentinger, L. Sun, L. Nguyen, J. Zhang, A. Chmura, A. Allen, S. Chan, and B. Knudsen, “Raman nanoparticle probes for antibody-based protein detection in tissues,” J. Histochem. Cytochem. 56, 371–379 (2008).
[Crossref]

Swaney, J.

T. Ku, J. Swaney, J.-Y. Park, A. Albanese, E. Murray, J. H. Cho, Y.-G. Park, V. Mangena, J. Chen, and K. Chung, “Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues,” Nat. Biotechnol. 34, 973–981 (2016).
[Crossref] [PubMed]

Tannenbaum, S. R.

P. W. Tillberg, F. Chen, K. D. Piatkevich, Y. Zhao, C.-C. J. Yu, B. P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E. M. DeGennaro, D. H. Roossien, G. Gong, U. Seneviratne, S. R. Tannenbaum, R. Desimone, D. Cai, and E. S. Boyden, “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol. 34, 987–992 (2016).
[Crossref] [PubMed]

Tillberg, P. W.

J.-B. Chang, F. Chen, Y.-G. Yoon, E. E. Jung, H. Babcock, J. S. Kang, S. Asano, H.-J. Suk, N. Pak, P. W. Tillberg, A. T. Wassie, D. Cai, and E. S. Boyden, “Iterative expansion microscopy,” Nat. Methods 14, 593–599 (2017).
[Crossref] [PubMed]

P. W. Tillberg, F. Chen, K. D. Piatkevich, Y. Zhao, C.-C. J. Yu, B. P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E. M. DeGennaro, D. H. Roossien, G. Gong, U. Seneviratne, S. R. Tannenbaum, R. Desimone, D. Cai, and E. S. Boyden, “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol. 34, 987–992 (2016).
[Crossref] [PubMed]

F. Chen, P. W. Tillberg, and E. S. Boyden, “Expansion microscopy,” Science 347, 543–548 (2015).
[Crossref] [PubMed]

Tong, L.

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85, 21–32 (2009).
[Crossref] [PubMed]

Torous, V.

Y. Zhao, O. Bucur, H. Irshad, F. Chen, A. Weins, A. L. Stancu, E.-Y. Oh, M. DiStasio, V. Torous, B. Glass, I. E. Stillman, S. J. Schnitt, A. H. Beck, and E. S. Boyden, “Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy,” Nat. Biotechnol. 352 (2017).
[Crossref]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Tzeng, S.-D.

C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling,” J. Am. Chem. Soc. 130, 824–826 (2008).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

von Maltzahn, G.

G. von Maltzahn, A. Centrone, J.-H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21, 3175–3180 (2009).
[Crossref]

Walker, G. C.

C. M. MacLaughlin, N. Mullaithilaga, G. Yang, S. Y. Ip, C. Wang, and G. C. Walker, “Surface-enhanced Raman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia and lymphoma cells and SERS flow cytometry,” Langmuir 29, 1908–1919 (2013).
[Crossref] [PubMed]

Wang, C.

C. M. MacLaughlin, N. Mullaithilaga, G. Yang, S. Y. Ip, C. Wang, and G. C. Walker, “Surface-enhanced Raman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia and lymphoma cells and SERS flow cytometry,” Langmuir 29, 1908–1919 (2013).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, B. Yan, and L. Chen, “SERS tags: novel optical nanoprobes for bioanalysis,” Chem. Rev. 113, 1391–1428 (2012).
[Crossref]

Wassie, A. T.

J.-B. Chang, F. Chen, Y.-G. Yoon, E. E. Jung, H. Babcock, J. S. Kang, S. Asano, H.-J. Suk, N. Pak, P. W. Tillberg, A. T. Wassie, D. Cai, and E. S. Boyden, “Iterative expansion microscopy,” Nat. Methods 14, 593–599 (2017).
[Crossref] [PubMed]

Wei, A.

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85, 21–32 (2009).
[Crossref] [PubMed]

Wei, L.

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544, 465–470 (2017).
[Crossref] [PubMed]

Wei, Q.

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85, 21–32 (2009).
[Crossref] [PubMed]

Wei, X.

X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics,” Nanoscale 6, 8521–8526 (2014).
[Crossref]

X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “A molecular beacon-based signal-off surface-enhanced Raman scattering strategy for highly sensitive, reproducible, and multiplexed dna detection,” Small 9, 2493–2499 (2013).
[Crossref] [PubMed]

Weins, A.

Y. Zhao, O. Bucur, H. Irshad, F. Chen, A. Weins, A. L. Stancu, E.-Y. Oh, M. DiStasio, V. Torous, B. Glass, I. E. Stillman, S. J. Schnitt, A. H. Beck, and E. S. Boyden, “Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy,” Nat. Biotechnol. 352 (2017).
[Crossref]

Wichmann, J.

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt Lett 19, 780–782 (1994).
[Crossref] [PubMed]

Wiley, B. J.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473–477 (2005).
[Crossref] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Xia, Y.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473–477 (2005).
[Crossref] [PubMed]

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Yan, B.

Y. Wang, B. Yan, and L. Chen, “SERS tags: novel optical nanoprobes for bioanalysis,” Chem. Rev. 113, 1391–1428 (2012).
[Crossref]

Yang, G.

C. M. MacLaughlin, N. Mullaithilaga, G. Yang, S. Y. Ip, C. Wang, and G. C. Walker, “Surface-enhanced Raman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia and lymphoma cells and SERS flow cytometry,” Langmuir 29, 1908–1919 (2013).
[Crossref] [PubMed]

Yoon, Y.-G.

J.-B. Chang, F. Chen, Y.-G. Yoon, E. E. Jung, H. Babcock, J. S. Kang, S. Asano, H.-J. Suk, N. Pak, P. W. Tillberg, A. T. Wassie, D. Cai, and E. S. Boyden, “Iterative expansion microscopy,” Nat. Methods 14, 593–599 (2017).
[Crossref] [PubMed]

Yoshida, F.

P. W. Tillberg, F. Chen, K. D. Piatkevich, Y. Zhao, C.-C. J. Yu, B. P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E. M. DeGennaro, D. H. Roossien, G. Gong, U. Seneviratne, S. R. Tannenbaum, R. Desimone, D. Cai, and E. S. Boyden, “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol. 34, 987–992 (2016).
[Crossref] [PubMed]

Young, E. D.

N. Sudheendran, J. Qi, E. D. Young, A. J. Lazar, D. C. Lev, R. E. Pollock, K. V. Larin, and W.-C. Shih, “Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection,” Laser Phys. Lett. 11, 105602 (2014).
[Crossref]

Yu, C.

C. Yu, H. Nakshatri, and J. Irudayaraj, “Identity profiling of cell surface markers by multiplex gold nanorod probes,” Nano Lett. 7, 2300–2306 (2007).
[Crossref] [PubMed]

Yu, C.-C. J.

P. W. Tillberg, F. Chen, K. D. Piatkevich, Y. Zhao, C.-C. J. Yu, B. P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E. M. DeGennaro, D. H. Roossien, G. Gong, U. Seneviratne, S. R. Tannenbaum, R. Desimone, D. Cai, and E. S. Boyden, “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol. 34, 987–992 (2016).
[Crossref] [PubMed]

Yu, K.-N.

J.-H. Kim, J.-S. Kim, H. Choi, S.-M. Lee, B.-H. Jun, K.-N. Yu, E. Kuk, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78, 6967–6973 (2006).
[Crossref] [PubMed]

Yuste, R.

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544, 465–470 (2017).
[Crossref] [PubMed]

Zenasni, O.

F. Zhao, M. M. P. Arnob, O. Zenasni, J. Li, and W.-C. Shih, “Far-field plasmonic coupling in 2-dimensional polycrystalline plasmonic arrays enables wide tunability with low-cost nanofabrication,” Nanoscale Horiz. 2267 (2017).

Zhang, H.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473–477 (2005).
[Crossref] [PubMed]

Zhang, J.

B. Lutz, C. Dentinger, L. Sun, L. Nguyen, J. Zhang, A. Chmura, A. Allen, S. Chan, and B. Knudsen, “Raman nanoparticle probes for antibody-based protein detection in tissues,” J. Histochem. Cytochem. 56, 371–379 (2008).
[Crossref]

Zhang, L.

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544, 465–470 (2017).
[Crossref] [PubMed]

Zhao, F.

F. Zhao, M. M. P. Arnob, O. Zenasni, J. Li, and W.-C. Shih, “Far-field plasmonic coupling in 2-dimensional polycrystalline plasmonic arrays enables wide tunability with low-cost nanofabrication,” Nanoscale Horiz. 2267 (2017).

M. M. P. Arnob, F. Zhao, J. Li, and W.-C. Shih, “Ebl-based fabrication and different modeling approaches for nanoporous gold nanodisks,” ACS Photonics 4, 1870–1878 (2017).
[Crossref]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, O. Bucur, H. Irshad, F. Chen, A. Weins, A. L. Stancu, E.-Y. Oh, M. DiStasio, V. Torous, B. Glass, I. E. Stillman, S. J. Schnitt, A. H. Beck, and E. S. Boyden, “Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy,” Nat. Biotechnol. 352 (2017).
[Crossref]

P. W. Tillberg, F. Chen, K. D. Piatkevich, Y. Zhao, C.-C. J. Yu, B. P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E. M. DeGennaro, D. H. Roossien, G. Gong, U. Seneviratne, S. R. Tannenbaum, R. Desimone, D. Cai, and E. S. Boyden, “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol. 34, 987–992 (2016).
[Crossref] [PubMed]

Zhong, Y.

X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics,” Nanoscale 6, 8521–8526 (2014).
[Crossref]

X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “A molecular beacon-based signal-off surface-enhanced Raman scattering strategy for highly sensitive, reproducible, and multiplexed dna detection,” Small 9, 2493–2499 (2013).
[Crossref] [PubMed]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006).
[Crossref] [PubMed]

Zuloaga, J.

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[Crossref] [PubMed]

ACS Photonics (1)

M. M. P. Arnob, F. Zhao, J. Li, and W.-C. Shih, “Ebl-based fabrication and different modeling approaches for nanoporous gold nanodisks,” ACS Photonics 4, 1870–1878 (2017).
[Crossref]

Adv. Healthcare Mater. (1)

A. Indrasekara, B. J. Paladini, D. J. Naczynski, V. Starovoytov, P. V. Moghe, and L. Fabris, “Dimeric gold nanoparticle assemblies as tags for SERS-based cancer detection,” Adv. Healthcare Mater. 2, 1370–1376 (2013).
[Crossref]

Adv. Mater. (1)

G. von Maltzahn, A. Centrone, J.-H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21, 3175–3180 (2009).
[Crossref]

Anal. Chem. (2)

S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75, 4312–4318 (2003).
[Crossref] [PubMed]

J.-H. Kim, J.-S. Kim, H. Choi, S.-M. Lee, B.-H. Jun, K.-N. Yu, E. Kuk, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78, 6967–6973 (2006).
[Crossref] [PubMed]

Analyst (1)

K. Faulds, R. Jarvis, W. E. Smith, D. Graham, and R. Goodacre, “Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS),” Analyst 133, 1505–1512 (2008).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Appl. Opt. (1)

Cancer Res. (1)

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63, 1999–2004 (2003).
[PubMed]

Chem. Phys. Lett. (1)

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164 (2010).
[Crossref]

Chem. Rev. (1)

Y. Wang, B. Yan, and L. Chen, “SERS tags: novel optical nanoprobes for bioanalysis,” Chem. Rev. 113, 1391–1428 (2012).
[Crossref]

Development (1)

R. J. Mullen, C. R. Buck, and A. M. Smith, “NeuN, a neuronal specific nuclear protein in vertebrates,” Development 116, 201–211 (1992).
[PubMed]

J. Am. Chem. Soc. (1)

C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling,” J. Am. Chem. Soc. 130, 824–826 (2008).
[Crossref] [PubMed]

J. Histochem. Cytochem. (1)

B. Lutz, C. Dentinger, L. Sun, L. Nguyen, J. Zhang, A. Chmura, A. Allen, S. Chan, and B. Knudsen, “Raman nanoparticle probes for antibody-based protein detection in tissues,” J. Histochem. Cytochem. 56, 371–379 (2008).
[Crossref]

J. Neurol. Sci. (1)

A. M. Lavezzi, M. F. Corna, and L. Matturri, “Neuronal nuclear antigen (NeuN): a useful marker of neuronal immaturity in sudden unexplained perinatal death,” J. Neurol. Sci. 329, 45–50 (2013).
[Crossref] [PubMed]

J. Neurosci. Res. (1)

D. Lind, S. Franken, J. Kappler, J. Jankowski, and K. Schilling, “Characterization of the neuronal marker NeuN as a multiply phosphorylated antigen with discrete subcellular localization,” J. Neurosci. Res. 79, 295–302 (2005).
[Crossref]

J. Opt. (1)

L. Fabris, “Gold-based SERS tags for biomedical imaging,” J. Opt. 17, 114002 (2015).
[Crossref]

J. Phys. Chem. B (1)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

E. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

J. Raman Spectrosc. (1)

S. Schlücker, B. Küstner, A. Punge, R. Bonfig, A. Marx, and P. Ströbel, “Immuno-Raman microspectroscopy: in situ detection of antigens in tissue specimens by surface-enhanced Raman scattering,” J. Raman Spectrosc. 37, 719–721 (2006).
[Crossref]

Langmuir (1)

C. M. MacLaughlin, N. Mullaithilaga, G. Yang, S. Y. Ip, C. Wang, and G. C. Walker, “Surface-enhanced Raman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia and lymphoma cells and SERS flow cytometry,” Langmuir 29, 1908–1919 (2013).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

N. Sudheendran, J. Qi, E. D. Young, A. J. Lazar, D. C. Lev, R. E. Pollock, K. V. Larin, and W.-C. Shih, “Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection,” Laser Phys. Lett. 11, 105602 (2014).
[Crossref]

Nano Lett. (6)

A. Pallaoro, G. B. Braun, and M. Moskovits, “Biotags based on surface-enhanced Raman can be as bright as fluorescence tags,” Nano Lett. 15, 6745–6750 (2015).
[Crossref] [PubMed]

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua,“Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
[Crossref] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473–477 (2005).
[Crossref] [PubMed]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829–834 (2005).
[Crossref] [PubMed]

C. Yu, H. Nakshatri, and J. Irudayaraj, “Identity profiling of cell surface markers by multiplex gold nanorod probes,” Nano Lett. 7, 2300–2306 (2007).
[Crossref] [PubMed]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[Crossref] [PubMed]

Nanoscale (2)

X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics,” Nanoscale 6, 8521–8526 (2014).
[Crossref]

M. Salehi, L. Schneider, P. Ströbel, A. Marx, J. Packeisen, and S. Schlücker, “Two-color SERS microscopy for protein co-localization in prostate tissue with primary antibody–protein A/G –gold nanocluster conjugates,” Nanoscale 6, 2361–2367 (2014).
[Crossref] [PubMed]

Nanoscale Horiz. (1)

F. Zhao, M. M. P. Arnob, O. Zenasni, J. Li, and W.-C. Shih, “Far-field plasmonic coupling in 2-dimensional polycrystalline plasmonic arrays enables wide tunability with low-cost nanofabrication,” Nanoscale Horiz. 2267 (2017).

Nat. Biotechnol. (3)

T. Ku, J. Swaney, J.-Y. Park, A. Albanese, E. Murray, J. H. Cho, Y.-G. Park, V. Mangena, J. Chen, and K. Chung, “Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues,” Nat. Biotechnol. 34, 973–981 (2016).
[Crossref] [PubMed]

P. W. Tillberg, F. Chen, K. D. Piatkevich, Y. Zhao, C.-C. J. Yu, B. P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E. M. DeGennaro, D. H. Roossien, G. Gong, U. Seneviratne, S. R. Tannenbaum, R. Desimone, D. Cai, and E. S. Boyden, “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol. 34, 987–992 (2016).
[Crossref] [PubMed]

Y. Zhao, O. Bucur, H. Irshad, F. Chen, A. Weins, A. L. Stancu, E.-Y. Oh, M. DiStasio, V. Torous, B. Glass, I. E. Stillman, S. J. Schnitt, A. H. Beck, and E. S. Boyden, “Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy,” Nat. Biotechnol. 352 (2017).
[Crossref]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Nat. Methods (2)

J.-B. Chang, F. Chen, Y.-G. Yoon, E. E. Jung, H. Babcock, J. S. Kang, S. Asano, H.-J. Suk, N. Pak, P. W. Tillberg, A. T. Wassie, D. Cai, and E. S. Boyden, “Iterative expansion microscopy,” Nat. Methods 14, 593–599 (2017).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006).
[Crossref] [PubMed]

Nature (2)

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544, 465–470 (2017).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

Opt Lett (1)

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt Lett 19, 780–782 (1994).
[Crossref] [PubMed]

Photochem. Photobiol. (1)

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85, 21–32 (2009).
[Crossref] [PubMed]

Science (3)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

F. Chen, P. W. Tillberg, and E. S. Boyden, “Expansion microscopy,” Science 347, 543–548 (2015).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Small (1)

X. Wei, S. Su, Y. Guo, X. Jiang, Y. Zhong, Y. Su, C. Fan, S.-T. Lee, and Y. He, “A molecular beacon-based signal-off surface-enhanced Raman scattering strategy for highly sensitive, reproducible, and multiplexed dna detection,” Small 9, 2493–2499 (2013).
[Crossref] [PubMed]

Other (1)

S. Penn, R. Cromer, M. Sha, B. Doering, B. Brown, S. Norton, and I. Walton, “Nanoplex® biotags: Near-IR excited, highly multiplexed nanoparticulate optical detection tags for diagnostic assays,” http://nsti.org/publications/Nanotech/2007/pdf/741.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 UV-visible extinction spectrum (a) (Hitachi UV-vis spectrophotometer U-2001) and SERS spectrum (b) of the construct as received, diluted 20 times in PBS 1X (Sigma), which corresponds to an approximate concentration of 6.1012 nanoparticles per mL (c) Streptavidin conjugated NPs markers for immuno-labeling. SERS measuremements were obtained with 785 nm line excitation, 60 mW total power at the sample plane and 1 s integration. The SERS spectrum of the label A features a sharp and intense characteristic mode at 590 cm−1 (red arrow on b).
Fig. 2
Fig. 2 Validation pre-expansion of the SERS nanoparticles labeling of NeuN in mouse brain coronal 10 μm sections. a) Dark-field mosaic microphotograph. Bright-field (b), DAPI (c) and SERS (d) detail of the dentate gyrus granule cell layer and pyramidal layer. Close-up dark-field (e,f) photographs and corresponding SERS (g,h) maps of the densely packed granule cells with larger pyramidal cells in between. Raw SERS spectrum (i) collected from the circled area in (d). The SERS images are mapping the total integrated intensity of the 590 cm−1 peak. SERS spectras acquisition 1 s, 60 mW total power incident at the sample plane.
Fig. 3
Fig. 3 Expansion of the brain sections stained for NeuN with the SERS nanoparticles. Dark-field (a) and SERS (590 cm−1 band) (b) images of the expanded isocortex. (c) SERS spectrum collected from the circled area, total incident power at the sample plane 630 mW, integration 0.5 s.
Fig. 4
Fig. 4 Dark-field (a) and UV-vis total integrated extinction map (b) of the dentate gyrus pre-expansion. UV-vis extinction spectra (c) collected at the circled areas in (b) and average extinction spectrum over the whole image. Dark-field (d) and UV-vis total integrated extinction map (e) of neurons in the cerebral cortex after expansion. UV-vis extinction spectra (f) collected at the circled areas in (e) and average extinction spectrum over the whole image. For images taken through the eyepiece port, the black lines are the measuring graticules inside the eyepiece.
Fig. 5
Fig. 5 Dark-field colorimetric discrimination of the aggregation state of the NPs labels. Dark-field detail (a) of a picture of the pure nanoparticles (1.2 × 1014 particles per mL) drop-dried on a glass slide. Note the visible color difference between aggregated and non-aggregated areas. Simulation results (b) for the extinction of two 10 nm gold nanospheres with spacing varying between 0.5 nm and 20 nm. Dark-field images of NeuN-NPs structures in expanded brain section before (c) and after (d) hue correction.

Metrics