Abstract

Femtosecond laser microsurgery has become an advanced method for clinical procedures and biological research. The tissue treated by femtosecond laser can become highly fluorescent, indicating the formation of new fluorescent compounds that can naturally label the treated tissue site. We systematically characterized the fluorescence signals produced by femtosecond laser ablation in biological tissues in vivo. Our findings showed that they possess unique fluorescence properties and can be clearly differentiated from endogenous signals and major fluorescent proteins. We further demonstrated that the new fluorescent compounds can be used as in vivo labelling agent for biological imaging and guided laser microsurgery.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
New fluorescent compounds produced by femtosecond laser surgery in biological tissues: the mechanisms

Zhongya Qin, Qiqi Sun, Yue Lin, Sicong He, Xuesong Li, Congping Chen, Wanjie Wu, Yi Luo, and Jianan Y. Qu
Biomed. Opt. Express 9(7) 3373-3390 (2018)

Three-dimensional laser microsurgery in light-sheet based microscopy (SPIM)

Christoph J. Engelbrecht, Klaus Greger, Emmanuel G. Reynaud, Uroš Kržic, Julien Colombelli, and Ernst H. K. Stelzer
Opt. Express 15(10) 6420-6430 (2007)

Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence

Chunqiang Li, Riikka K. Pastila, Costas Pitsillides, Judith M. Runnels, Mehron Puoris’haag, Daniel Côté, and Charles P. Lin
Opt. Express 18(2) 988-999 (2010)

References

  • View by:
  • |
  • |
  • |

  1. E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
    [Crossref] [PubMed]
  2. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [Crossref] [PubMed]
  3. B.-G. Wang, I. Riemann, H. Schubert, K.-J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007).
    [Crossref] [PubMed]
  4. K. König, I. Riemann, and W. Fritzsche, “Nanodissection of human chromosomes with near-infrared femtosecond laser pulses,” Opt. Lett. 26(11), 819–821 (2001).
    [Crossref] [PubMed]
  5. B.-G. Wang and K.-J. Halbhuber, “Corneal multiphoton microscopy and intratissue optical nanosurgery by nanojoule femtosecond near-infrared pulsed lasers,” Ann. Anat. 188(5), 395–409 (2006).
    [Crossref] [PubMed]
  6. S. Zhuo, J. Chen, G. Wu, X. Zhu, X. Jiang, and S. Xie, “Label-free multiphoton imaging and photoablation of preinvasive cancer cells,” Appl. Phys. Lett. 100(2), 023703 (2012).
    [Crossref]
  7. W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J. L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. U.S.A. 102(4), 1047–1052 (2005).
    [Crossref] [PubMed]
  8. I. Maxwell, “Application of femtosecond lasers for subcellular nanosurgery,” PhD Thesis (2006).
  9. P. S. Tsai and D. Kleinfeld, “In Vivo Two-Photon Laser Scanning Microscopy with Concurrent Plasma-Mediated Ablation Principles and Hardware Realization,” in R. D. Frostig, ed., 2nd ed., In Vivo Optical Imaging of Brain Function (Taylor & Francis Group, LLC, 2009).
  10. K. Koenig, O. Krauss, and I. Riemann, “Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared,” Opt. Express 10(3), 171–176 (2002).
    [Crossref] [PubMed]
  11. J. A. Galbraith and M. Terasaki, “Controlled damage in thick specimens by multiphoton excitation,” Mol. Biol. Cell 14(5), 1808–1817 (2003).
    [Crossref] [PubMed]
  12. A. K. N. Thayil, A. Pereira, M. Mathew, D. Artigas, E. M. Blanco, and P. Loza-Alvarez, “Decrease in laser ablation threshold for epithelial tissue microsurgery in a living Drosophila embryo during dorsal closure,” J. Microsc. 232(2), 362–368 (2008).
    [Crossref] [PubMed]
  13. V. Hovhannisyan, W. Lo, C. Hu, S.-J. Chen, and C. Y. Dong, “Dynamics of femtosecond laser photo-modification of collagen fibers,” Opt. Express 16(11), 7958–7968 (2008).
    [Crossref] [PubMed]
  14. R. Milo, “What is the total number of protein molecules per cell volume? A call to rethink some published values,” BioEssays 35(12), 1050–1055 (2013).
    [Crossref] [PubMed]
  15. J. E. P. Jr and M. T. Murray, Textbook of Natural Medicine (Elsevier Health Sciences, 2012).
  16. D. Li, W. Zheng, and J. Y. Qu, “Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence,” Opt. Lett. 33(20), 2365–2367 (2008).
    [Crossref] [PubMed]
  17. S. Zhu, J. Zhang, L. Wang, Y. Song, G. Zhang, H. Wang, and B. Yang, “A general route to make non-conjugated linear polymers luminescent,” Chem. Commun. (Camb.) 48(88), 10889–10891 (2012).
    [Crossref] [PubMed]
  18. M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
    [Crossref] [PubMed]
  19. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [Crossref]
  20. C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. Mater. Sci. Process. 76(3), 351–354 (2003).
    [Crossref]
  21. M. J. Farrar, I. M. Bernstein, D. H. Schlafer, T. A. Cleland, J. R. Fetcho, and C. B. Schaffer, “Chronic in vivo imaging in the mouse spinal cord using an implanted chamber,” Nat. Methods 9(3), 297–302 (2012).
    [Crossref] [PubMed]
  22. G. Yang, F. Pan, C. N. Parkhurst, J. Grutzendler, and W.-B. Gan, “Thinned-skull cranial window technique for long-term imaging of the cortex in live mice,” Nat. Protoc. 5(2), 201–208 (2010).
    [Crossref] [PubMed]
  23. D. Davalos, J. Grutzendler, G. Yang, J. V. Kim, Y. Zuo, S. Jung, D. R. Littman, M. L. Dustin, and W.-B. Gan, “ATP mediates rapid microglial response to local brain injury in vivo,” Nat. Neurosci. 8(6), 752–758 (2005).
    [Crossref] [PubMed]
  24. Q. Yang, L. Wei, X. Zheng, and L. Xiao, “Single Particle Dynamic Imaging and Fe3+ Sensing with Bright Carbon Dots Derived from Bovine Serum Albumin Proteins,” Sci. Rep. 5(1), 17727 (2015).
    [Crossref] [PubMed]
  25. X. Wang, K. Qu, B. Xu, J. Ren, and X. Qu, “Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents,” J. Mater. Chem. 21(8), 2445 (2011).
    [Crossref]

2015 (1)

Q. Yang, L. Wei, X. Zheng, and L. Xiao, “Single Particle Dynamic Imaging and Fe3+ Sensing with Bright Carbon Dots Derived from Bovine Serum Albumin Proteins,” Sci. Rep. 5(1), 17727 (2015).
[Crossref] [PubMed]

2013 (2)

R. Milo, “What is the total number of protein molecules per cell volume? A call to rethink some published values,” BioEssays 35(12), 1050–1055 (2013).
[Crossref] [PubMed]

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

2012 (3)

S. Zhu, J. Zhang, L. Wang, Y. Song, G. Zhang, H. Wang, and B. Yang, “A general route to make non-conjugated linear polymers luminescent,” Chem. Commun. (Camb.) 48(88), 10889–10891 (2012).
[Crossref] [PubMed]

S. Zhuo, J. Chen, G. Wu, X. Zhu, X. Jiang, and S. Xie, “Label-free multiphoton imaging and photoablation of preinvasive cancer cells,” Appl. Phys. Lett. 100(2), 023703 (2012).
[Crossref]

M. J. Farrar, I. M. Bernstein, D. H. Schlafer, T. A. Cleland, J. R. Fetcho, and C. B. Schaffer, “Chronic in vivo imaging in the mouse spinal cord using an implanted chamber,” Nat. Methods 9(3), 297–302 (2012).
[Crossref] [PubMed]

2011 (2)

X. Wang, K. Qu, B. Xu, J. Ren, and X. Qu, “Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents,” J. Mater. Chem. 21(8), 2445 (2011).
[Crossref]

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

2010 (1)

G. Yang, F. Pan, C. N. Parkhurst, J. Grutzendler, and W.-B. Gan, “Thinned-skull cranial window technique for long-term imaging of the cortex in live mice,” Nat. Protoc. 5(2), 201–208 (2010).
[Crossref] [PubMed]

2008 (3)

2007 (1)

B.-G. Wang, I. Riemann, H. Schubert, K.-J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007).
[Crossref] [PubMed]

2006 (1)

B.-G. Wang and K.-J. Halbhuber, “Corneal multiphoton microscopy and intratissue optical nanosurgery by nanojoule femtosecond near-infrared pulsed lasers,” Ann. Anat. 188(5), 395–409 (2006).
[Crossref] [PubMed]

2005 (4)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

D. Davalos, J. Grutzendler, G. Yang, J. V. Kim, Y. Zuo, S. Jung, D. R. Littman, M. L. Dustin, and W.-B. Gan, “ATP mediates rapid microglial response to local brain injury in vivo,” Nat. Neurosci. 8(6), 752–758 (2005).
[Crossref] [PubMed]

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J. L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. U.S.A. 102(4), 1047–1052 (2005).
[Crossref] [PubMed]

2003 (2)

J. A. Galbraith and M. Terasaki, “Controlled damage in thick specimens by multiphoton excitation,” Mol. Biol. Cell 14(5), 1808–1817 (2003).
[Crossref] [PubMed]

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

2002 (1)

2001 (1)

Artigas, D.

A. K. N. Thayil, A. Pereira, M. Mathew, D. Artigas, E. M. Blanco, and P. Loza-Alvarez, “Decrease in laser ablation threshold for epithelial tissue microsurgery in a living Drosophila embryo during dorsal closure,” J. Microsc. 232(2), 362–368 (2008).
[Crossref] [PubMed]

Beaurepaire, E.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J. L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. U.S.A. 102(4), 1047–1052 (2005).
[Crossref] [PubMed]

Bernstein, I. M.

M. J. Farrar, I. M. Bernstein, D. H. Schlafer, T. A. Cleland, J. R. Fetcho, and C. B. Schaffer, “Chronic in vivo imaging in the mouse spinal cord using an implanted chamber,” Nat. Methods 9(3), 297–302 (2012).
[Crossref] [PubMed]

Blanco, E. M.

A. K. N. Thayil, A. Pereira, M. Mathew, D. Artigas, E. M. Blanco, and P. Loza-Alvarez, “Decrease in laser ablation threshold for epithelial tissue microsurgery in a living Drosophila embryo during dorsal closure,” J. Microsc. 232(2), 362–368 (2008).
[Crossref] [PubMed]

Brouzés, E.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J. L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. U.S.A. 102(4), 1047–1052 (2005).
[Crossref] [PubMed]

Chen, J.

S. Zhuo, J. Chen, G. Wu, X. Zhu, X. Jiang, and S. Xie, “Label-free multiphoton imaging and photoablation of preinvasive cancer cells,” Appl. Phys. Lett. 100(2), 023703 (2012).
[Crossref]

Chen, S.-J.

Cleland, T. A.

M. J. Farrar, I. M. Bernstein, D. H. Schlafer, T. A. Cleland, J. R. Fetcho, and C. B. Schaffer, “Chronic in vivo imaging in the mouse spinal cord using an implanted chamber,” Nat. Methods 9(3), 297–302 (2012).
[Crossref] [PubMed]

Davalos, D.

D. Davalos, J. Grutzendler, G. Yang, J. V. Kim, Y. Zuo, S. Jung, D. R. Littman, M. L. Dustin, and W.-B. Gan, “ATP mediates rapid microglial response to local brain injury in vivo,” Nat. Neurosci. 8(6), 752–758 (2005).
[Crossref] [PubMed]

Débarre, D.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J. L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. U.S.A. 102(4), 1047–1052 (2005).
[Crossref] [PubMed]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Dong, C. Y.

Drobizhev, M.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

Dustin, M. L.

D. Davalos, J. Grutzendler, G. Yang, J. V. Kim, Y. Zuo, S. Jung, D. R. Littman, M. L. Dustin, and W.-B. Gan, “ATP mediates rapid microglial response to local brain injury in vivo,” Nat. Neurosci. 8(6), 752–758 (2005).
[Crossref] [PubMed]

Farge, E.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J. L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. U.S.A. 102(4), 1047–1052 (2005).
[Crossref] [PubMed]

Farrar, M. J.

M. J. Farrar, I. M. Bernstein, D. H. Schlafer, T. A. Cleland, J. R. Fetcho, and C. B. Schaffer, “Chronic in vivo imaging in the mouse spinal cord using an implanted chamber,” Nat. Methods 9(3), 297–302 (2012).
[Crossref] [PubMed]

Fetcho, J. R.

M. J. Farrar, I. M. Bernstein, D. H. Schlafer, T. A. Cleland, J. R. Fetcho, and C. B. Schaffer, “Chronic in vivo imaging in the mouse spinal cord using an implanted chamber,” Nat. Methods 9(3), 297–302 (2012).
[Crossref] [PubMed]

Fritzsche, W.

Galbraith, J. A.

J. A. Galbraith and M. Terasaki, “Controlled damage in thick specimens by multiphoton excitation,” Mol. Biol. Cell 14(5), 1808–1817 (2003).
[Crossref] [PubMed]

Gan, W.-B.

G. Yang, F. Pan, C. N. Parkhurst, J. Grutzendler, and W.-B. Gan, “Thinned-skull cranial window technique for long-term imaging of the cortex in live mice,” Nat. Protoc. 5(2), 201–208 (2010).
[Crossref] [PubMed]

D. Davalos, J. Grutzendler, G. Yang, J. V. Kim, Y. Zuo, S. Jung, D. R. Littman, M. L. Dustin, and W.-B. Gan, “ATP mediates rapid microglial response to local brain injury in vivo,” Nat. Neurosci. 8(6), 752–758 (2005).
[Crossref] [PubMed]

García, J. F.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Grutzendler, J.

G. Yang, F. Pan, C. N. Parkhurst, J. Grutzendler, and W.-B. Gan, “Thinned-skull cranial window technique for long-term imaging of the cortex in live mice,” Nat. Protoc. 5(2), 201–208 (2010).
[Crossref] [PubMed]

D. Davalos, J. Grutzendler, G. Yang, J. V. Kim, Y. Zuo, S. Jung, D. R. Littman, M. L. Dustin, and W.-B. Gan, “ATP mediates rapid microglial response to local brain injury in vivo,” Nat. Neurosci. 8(6), 752–758 (2005).
[Crossref] [PubMed]

Halbhuber, K.-J.

B.-G. Wang, I. Riemann, H. Schubert, K.-J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007).
[Crossref] [PubMed]

B.-G. Wang and K.-J. Halbhuber, “Corneal multiphoton microscopy and intratissue optical nanosurgery by nanojoule femtosecond near-infrared pulsed lasers,” Ann. Anat. 188(5), 395–409 (2006).
[Crossref] [PubMed]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Hoover, E. E.

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

Hovhannisyan, V.

Hu, C.

Hughes, T. E.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Jiang, X.

S. Zhuo, J. Chen, G. Wu, X. Zhu, X. Jiang, and S. Xie, “Label-free multiphoton imaging and photoablation of preinvasive cancer cells,” Appl. Phys. Lett. 100(2), 023703 (2012).
[Crossref]

Jung, S.

D. Davalos, J. Grutzendler, G. Yang, J. V. Kim, Y. Zuo, S. Jung, D. R. Littman, M. L. Dustin, and W.-B. Gan, “ATP mediates rapid microglial response to local brain injury in vivo,” Nat. Neurosci. 8(6), 752–758 (2005).
[Crossref] [PubMed]

Kim, J. V.

D. Davalos, J. Grutzendler, G. Yang, J. V. Kim, Y. Zuo, S. Jung, D. R. Littman, M. L. Dustin, and W.-B. Gan, “ATP mediates rapid microglial response to local brain injury in vivo,” Nat. Neurosci. 8(6), 752–758 (2005).
[Crossref] [PubMed]

Koenig, K.

B.-G. Wang, I. Riemann, H. Schubert, K.-J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007).
[Crossref] [PubMed]

K. Koenig, O. Krauss, and I. Riemann, “Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared,” Opt. Express 10(3), 171–176 (2002).
[Crossref] [PubMed]

König, K.

Krauss, O.

Li, D.

Littman, D. R.

D. Davalos, J. Grutzendler, G. Yang, J. V. Kim, Y. Zuo, S. Jung, D. R. Littman, M. L. Dustin, and W.-B. Gan, “ATP mediates rapid microglial response to local brain injury in vivo,” Nat. Neurosci. 8(6), 752–758 (2005).
[Crossref] [PubMed]

Lo, W.

Loza-Alvarez, P.

A. K. N. Thayil, A. Pereira, M. Mathew, D. Artigas, E. M. Blanco, and P. Loza-Alvarez, “Decrease in laser ablation threshold for epithelial tissue microsurgery in a living Drosophila embryo during dorsal closure,” J. Microsc. 232(2), 362–368 (2008).
[Crossref] [PubMed]

Makarov, N. S.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

Martin, J. L.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J. L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. U.S.A. 102(4), 1047–1052 (2005).
[Crossref] [PubMed]

Mathew, M.

A. K. N. Thayil, A. Pereira, M. Mathew, D. Artigas, E. M. Blanco, and P. Loza-Alvarez, “Decrease in laser ablation threshold for epithelial tissue microsurgery in a living Drosophila embryo during dorsal closure,” J. Microsc. 232(2), 362–368 (2008).
[Crossref] [PubMed]

Mazur, E.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Milo, R.

R. Milo, “What is the total number of protein molecules per cell volume? A call to rethink some published values,” BioEssays 35(12), 1050–1055 (2013).
[Crossref] [PubMed]

Moulia, B.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J. L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. U.S.A. 102(4), 1047–1052 (2005).
[Crossref] [PubMed]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Pan, F.

G. Yang, F. Pan, C. N. Parkhurst, J. Grutzendler, and W.-B. Gan, “Thinned-skull cranial window technique for long-term imaging of the cortex in live mice,” Nat. Protoc. 5(2), 201–208 (2010).
[Crossref] [PubMed]

Parkhurst, C. N.

G. Yang, F. Pan, C. N. Parkhurst, J. Grutzendler, and W.-B. Gan, “Thinned-skull cranial window technique for long-term imaging of the cortex in live mice,” Nat. Protoc. 5(2), 201–208 (2010).
[Crossref] [PubMed]

Pereira, A.

A. K. N. Thayil, A. Pereira, M. Mathew, D. Artigas, E. M. Blanco, and P. Loza-Alvarez, “Decrease in laser ablation threshold for epithelial tissue microsurgery in a living Drosophila embryo during dorsal closure,” J. Microsc. 232(2), 362–368 (2008).
[Crossref] [PubMed]

Qu, J. Y.

Qu, K.

X. Wang, K. Qu, B. Xu, J. Ren, and X. Qu, “Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents,” J. Mater. Chem. 21(8), 2445 (2011).
[Crossref]

Qu, X.

X. Wang, K. Qu, B. Xu, J. Ren, and X. Qu, “Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents,” J. Mater. Chem. 21(8), 2445 (2011).
[Crossref]

Rebane, A.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

Ren, J.

X. Wang, K. Qu, B. Xu, J. Ren, and X. Qu, “Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents,” J. Mater. Chem. 21(8), 2445 (2011).
[Crossref]

Riemann, I.

Schaffer, C. B.

M. J. Farrar, I. M. Bernstein, D. H. Schlafer, T. A. Cleland, J. R. Fetcho, and C. B. Schaffer, “Chronic in vivo imaging in the mouse spinal cord using an implanted chamber,” Nat. Methods 9(3), 297–302 (2012).
[Crossref] [PubMed]

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Schlafer, D. H.

M. J. Farrar, I. M. Bernstein, D. H. Schlafer, T. A. Cleland, J. R. Fetcho, and C. B. Schaffer, “Chronic in vivo imaging in the mouse spinal cord using an implanted chamber,” Nat. Methods 9(3), 297–302 (2012).
[Crossref] [PubMed]

Schubert, H.

B.-G. Wang, I. Riemann, H. Schubert, K.-J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007).
[Crossref] [PubMed]

Song, Y.

S. Zhu, J. Zhang, L. Wang, Y. Song, G. Zhang, H. Wang, and B. Yang, “A general route to make non-conjugated linear polymers luminescent,” Chem. Commun. (Camb.) 48(88), 10889–10891 (2012).
[Crossref] [PubMed]

Squier, J. A.

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

Supatto, W.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J. L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. U.S.A. 102(4), 1047–1052 (2005).
[Crossref] [PubMed]

Terasaki, M.

J. A. Galbraith and M. Terasaki, “Controlled damage in thick specimens by multiphoton excitation,” Mol. Biol. Cell 14(5), 1808–1817 (2003).
[Crossref] [PubMed]

Thayil, A. K. N.

A. K. N. Thayil, A. Pereira, M. Mathew, D. Artigas, E. M. Blanco, and P. Loza-Alvarez, “Decrease in laser ablation threshold for epithelial tissue microsurgery in a living Drosophila embryo during dorsal closure,” J. Microsc. 232(2), 362–368 (2008).
[Crossref] [PubMed]

Tillo, S. E.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Wang, B.-G.

B.-G. Wang, I. Riemann, H. Schubert, K.-J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007).
[Crossref] [PubMed]

B.-G. Wang and K.-J. Halbhuber, “Corneal multiphoton microscopy and intratissue optical nanosurgery by nanojoule femtosecond near-infrared pulsed lasers,” Ann. Anat. 188(5), 395–409 (2006).
[Crossref] [PubMed]

Wang, H.

S. Zhu, J. Zhang, L. Wang, Y. Song, G. Zhang, H. Wang, and B. Yang, “A general route to make non-conjugated linear polymers luminescent,” Chem. Commun. (Camb.) 48(88), 10889–10891 (2012).
[Crossref] [PubMed]

Wang, L.

S. Zhu, J. Zhang, L. Wang, Y. Song, G. Zhang, H. Wang, and B. Yang, “A general route to make non-conjugated linear polymers luminescent,” Chem. Commun. (Camb.) 48(88), 10889–10891 (2012).
[Crossref] [PubMed]

Wang, X.

X. Wang, K. Qu, B. Xu, J. Ren, and X. Qu, “Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents,” J. Mater. Chem. 21(8), 2445 (2011).
[Crossref]

Wei, L.

Q. Yang, L. Wei, X. Zheng, and L. Xiao, “Single Particle Dynamic Imaging and Fe3+ Sensing with Bright Carbon Dots Derived from Bovine Serum Albumin Proteins,” Sci. Rep. 5(1), 17727 (2015).
[Crossref] [PubMed]

Wu, G.

S. Zhuo, J. Chen, G. Wu, X. Zhu, X. Jiang, and S. Xie, “Label-free multiphoton imaging and photoablation of preinvasive cancer cells,” Appl. Phys. Lett. 100(2), 023703 (2012).
[Crossref]

Xiao, L.

Q. Yang, L. Wei, X. Zheng, and L. Xiao, “Single Particle Dynamic Imaging and Fe3+ Sensing with Bright Carbon Dots Derived from Bovine Serum Albumin Proteins,” Sci. Rep. 5(1), 17727 (2015).
[Crossref] [PubMed]

Xie, S.

S. Zhuo, J. Chen, G. Wu, X. Zhu, X. Jiang, and S. Xie, “Label-free multiphoton imaging and photoablation of preinvasive cancer cells,” Appl. Phys. Lett. 100(2), 023703 (2012).
[Crossref]

Xu, B.

X. Wang, K. Qu, B. Xu, J. Ren, and X. Qu, “Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents,” J. Mater. Chem. 21(8), 2445 (2011).
[Crossref]

Yang, B.

S. Zhu, J. Zhang, L. Wang, Y. Song, G. Zhang, H. Wang, and B. Yang, “A general route to make non-conjugated linear polymers luminescent,” Chem. Commun. (Camb.) 48(88), 10889–10891 (2012).
[Crossref] [PubMed]

Yang, G.

G. Yang, F. Pan, C. N. Parkhurst, J. Grutzendler, and W.-B. Gan, “Thinned-skull cranial window technique for long-term imaging of the cortex in live mice,” Nat. Protoc. 5(2), 201–208 (2010).
[Crossref] [PubMed]

D. Davalos, J. Grutzendler, G. Yang, J. V. Kim, Y. Zuo, S. Jung, D. R. Littman, M. L. Dustin, and W.-B. Gan, “ATP mediates rapid microglial response to local brain injury in vivo,” Nat. Neurosci. 8(6), 752–758 (2005).
[Crossref] [PubMed]

Yang, Q.

Q. Yang, L. Wei, X. Zheng, and L. Xiao, “Single Particle Dynamic Imaging and Fe3+ Sensing with Bright Carbon Dots Derived from Bovine Serum Albumin Proteins,” Sci. Rep. 5(1), 17727 (2015).
[Crossref] [PubMed]

Zhang, G.

S. Zhu, J. Zhang, L. Wang, Y. Song, G. Zhang, H. Wang, and B. Yang, “A general route to make non-conjugated linear polymers luminescent,” Chem. Commun. (Camb.) 48(88), 10889–10891 (2012).
[Crossref] [PubMed]

Zhang, J.

S. Zhu, J. Zhang, L. Wang, Y. Song, G. Zhang, H. Wang, and B. Yang, “A general route to make non-conjugated linear polymers luminescent,” Chem. Commun. (Camb.) 48(88), 10889–10891 (2012).
[Crossref] [PubMed]

Zheng, W.

Zheng, X.

Q. Yang, L. Wei, X. Zheng, and L. Xiao, “Single Particle Dynamic Imaging and Fe3+ Sensing with Bright Carbon Dots Derived from Bovine Serum Albumin Proteins,” Sci. Rep. 5(1), 17727 (2015).
[Crossref] [PubMed]

Zhu, S.

S. Zhu, J. Zhang, L. Wang, Y. Song, G. Zhang, H. Wang, and B. Yang, “A general route to make non-conjugated linear polymers luminescent,” Chem. Commun. (Camb.) 48(88), 10889–10891 (2012).
[Crossref] [PubMed]

Zhu, X.

S. Zhuo, J. Chen, G. Wu, X. Zhu, X. Jiang, and S. Xie, “Label-free multiphoton imaging and photoablation of preinvasive cancer cells,” Appl. Phys. Lett. 100(2), 023703 (2012).
[Crossref]

Zhuo, S.

S. Zhuo, J. Chen, G. Wu, X. Zhu, X. Jiang, and S. Xie, “Label-free multiphoton imaging and photoablation of preinvasive cancer cells,” Appl. Phys. Lett. 100(2), 023703 (2012).
[Crossref]

Zuo, Y.

D. Davalos, J. Grutzendler, G. Yang, J. V. Kim, Y. Zuo, S. Jung, D. R. Littman, M. L. Dustin, and W.-B. Gan, “ATP mediates rapid microglial response to local brain injury in vivo,” Nat. Neurosci. 8(6), 752–758 (2005).
[Crossref] [PubMed]

Ann. Anat. (1)

B.-G. Wang and K.-J. Halbhuber, “Corneal multiphoton microscopy and intratissue optical nanosurgery by nanojoule femtosecond near-infrared pulsed lasers,” Ann. Anat. 188(5), 395–409 (2006).
[Crossref] [PubMed]

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Appl. Phys. Lett. (1)

S. Zhuo, J. Chen, G. Wu, X. Zhu, X. Jiang, and S. Xie, “Label-free multiphoton imaging and photoablation of preinvasive cancer cells,” Appl. Phys. Lett. 100(2), 023703 (2012).
[Crossref]

Appl. Phys. Mater. Sci. Process. (1)

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

BioEssays (1)

R. Milo, “What is the total number of protein molecules per cell volume? A call to rethink some published values,” BioEssays 35(12), 1050–1055 (2013).
[Crossref] [PubMed]

Cell Tissue Res. (1)

B.-G. Wang, I. Riemann, H. Schubert, K.-J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

S. Zhu, J. Zhang, L. Wang, Y. Song, G. Zhang, H. Wang, and B. Yang, “A general route to make non-conjugated linear polymers luminescent,” Chem. Commun. (Camb.) 48(88), 10889–10891 (2012).
[Crossref] [PubMed]

J. Mater. Chem. (1)

X. Wang, K. Qu, B. Xu, J. Ren, and X. Qu, “Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents,” J. Mater. Chem. 21(8), 2445 (2011).
[Crossref]

J. Microsc. (1)

A. K. N. Thayil, A. Pereira, M. Mathew, D. Artigas, E. M. Blanco, and P. Loza-Alvarez, “Decrease in laser ablation threshold for epithelial tissue microsurgery in a living Drosophila embryo during dorsal closure,” J. Microsc. 232(2), 362–368 (2008).
[Crossref] [PubMed]

Mol. Biol. Cell (1)

J. A. Galbraith and M. Terasaki, “Controlled damage in thick specimens by multiphoton excitation,” Mol. Biol. Cell 14(5), 1808–1817 (2003).
[Crossref] [PubMed]

Nat. Methods (3)

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

M. J. Farrar, I. M. Bernstein, D. H. Schlafer, T. A. Cleland, J. R. Fetcho, and C. B. Schaffer, “Chronic in vivo imaging in the mouse spinal cord using an implanted chamber,” Nat. Methods 9(3), 297–302 (2012).
[Crossref] [PubMed]

Nat. Neurosci. (1)

D. Davalos, J. Grutzendler, G. Yang, J. V. Kim, Y. Zuo, S. Jung, D. R. Littman, M. L. Dustin, and W.-B. Gan, “ATP mediates rapid microglial response to local brain injury in vivo,” Nat. Neurosci. 8(6), 752–758 (2005).
[Crossref] [PubMed]

Nat. Photonics (1)

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

Nat. Protoc. (1)

G. Yang, F. Pan, C. N. Parkhurst, J. Grutzendler, and W.-B. Gan, “Thinned-skull cranial window technique for long-term imaging of the cortex in live mice,” Nat. Protoc. 5(2), 201–208 (2010).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J. L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. U.S.A. 102(4), 1047–1052 (2005).
[Crossref] [PubMed]

Sci. Rep. (1)

Q. Yang, L. Wei, X. Zheng, and L. Xiao, “Single Particle Dynamic Imaging and Fe3+ Sensing with Bright Carbon Dots Derived from Bovine Serum Albumin Proteins,” Sci. Rep. 5(1), 17727 (2015).
[Crossref] [PubMed]

Other (3)

I. Maxwell, “Application of femtosecond lasers for subcellular nanosurgery,” PhD Thesis (2006).

P. S. Tsai and D. Kleinfeld, “In Vivo Two-Photon Laser Scanning Microscopy with Concurrent Plasma-Mediated Ablation Principles and Hardware Realization,” in R. D. Frostig, ed., 2nd ed., In Vivo Optical Imaging of Brain Function (Taylor & Francis Group, LLC, 2009).

J. E. P. Jr and M. T. Murray, Textbook of Natural Medicine (Elsevier Health Sciences, 2012).

Supplementary Material (3)

NameDescription
» Visualization 1       Visualization 1. In vivo spectral-coded video of muscle fiber degenerating caused by femtosecond laser ablation through 920 nm excitation. The SHG (460 nm) of myosin is colored in green and the laser produced fluorescence (525 nm) is colored in red.
» Visualization 2       Visualization 2. In vivo lifetime-coded video of muscle fiber degenerating caused by femtosecond laser ablation through 920 nm excitation. The SHG (short lifetime) of myosin is colored in green and the laser produced fluorescence (long lifetime) is c
» Visualization 3       Visualization 3. In vivo spectral-coded video of immune response to brain damage through 920 nm excitation. The GFP-labelled microglia (525 nm) colored in green and the laser produced fluorescence (593 nm) is colored in red. Field of view: 150 µm×150

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of single- and two-photon fluorescence spectroscopy imaging system. M: mirror; BS: 50/50 beam splitter; DM: dichroic mirror; BBO: Beta Barium Borate crystal; M-PMT: 16 channels photomultiplier tube array; TCSPC: time-correlated single photon counting.
Fig. 2
Fig. 2 Imaging-guided fluorescence spectroscopy in biological tissue in vivo (740 nm excitation and 400-600 nm detection). (a) Fluorescence image of mouse ear skin tissue before laser ablation; (b) fluorescence image after laser ablation; (c) color-coded fluorescence intensity image (8-bit) after laser ablation, and (d) binary mask for extraction of signals from laser produced fluorescent compounds in tissue (red arrows indicate laser ablation sites). Scale bar: 20 μm.
Fig. 3
Fig. 3 Spectral and temporal properties of femtosecond laser produced fluorescent compounds in (a) mouse skin, (b) muscle, (c) brain tissue and (d) albumin. Left column: single-photon excited (370 nm to 440 nm) fluorescence emission spectra; middle column: two-photon excited (740 nm to 880 nm) fluorescence emission spectra; right column: single- and two-photon excited fluorescence lifetimes. Each fluorescence spectrum and lifetime were obtained based on the integration of fluorescence over the ablated site. Error bars represent ± SD of three measurements.
Fig. 4
Fig. 4 In vivo application of femtosecond laser produced fluorescence in label-free imaging-guided microsurgery in mouse muscle. (a-c) Spectral-coded images of fine laser cutting in muscle fibers at two depths separated by 10 µm (a-b) and cutting of three muscle fibers (c). The SHG signal of myosin detected at 447 nm channel is colored in green and the laser produced fluorescence detected at 525 nm channel is colored in red; (d-f) corresponding lifetime-coded images. The SHG signal of myosin (short lifetime) is colored in green and the laser produced fluorescence (long lifetime) is colored in red. Scale bar: (a-b, d-e) 20 μm, (c, f) 100 μm.
Fig. 5
Fig. 5 Application of femtosecond laser produced fluorescence in laser axotomy. (a) Home-made spinal chamber; (b) mouse mounting scheme for in vivo imaging of spinal cord; (c) bright field image through the spinal cord window; (d-e) spectral-coded two-photon images of laser axotomy in mouse spinal cord with small damage (d) and large damage (e). Green: signals from GFP labelled spinal cord detected at 525 nm channel, red: signals from laser ablation site detected at 593 nm channel; (f-g) corresponding lifetime-coded images. Green: lifetime of > 1.4 ns, red: lifetime of < 1.4 ns. Scale bar in (d-g): 50 μm.
Fig. 6
Fig. 6 Application of femtosecond laser produced fluorescence in the study of immune response to the injury in brain. (a) Mouse mounting scheme for brain imaging; (b) bright field image of thinned-skull window; (c-d) two-photon images of GFP-labelled microglia (green) and laser damaged tissue (red) in mouse brain at 2 min after injury (c) and 40 min after injury (d) (details in Visualization 3). Green: signals detected at 525 nm channel; red: signals detected at 593 nm channel. Scale bar in (c-d): 20 μm.

Metrics