Abstract

Quantitative detection of angiogenic biomarkers provides a powerful tool to diagnose cancers in early stages and to follow its progression during therapy. Conventional tests require trained personnel, dedicated laboratory equipment and are generally time-consuming. Herein, we propose our developed biosensing platform as a useful tool for a rapid determination of Angiopoietin-2 biomarker directly from patient plasma within 30 minutes, without any sample preparation or dilution. Bloch surface waves supported by one dimensional photonic crystal are exploited to enhance and redirect the fluorescence arising from a sandwich immunoassay that involves Angiopoietin-2. The sensing units consist of disposable and low-cost plastic biochips coated with the photonic crystal. The biosensing platform is demonstrated to detect Angiopoietin-2 in plasma samples at the clinically relevant concentration of 6 ng/mL, with an estimated limit of detection of approximately 1 ng/mL. This is the first Bloch surface wave based assay capable of detecting relevant concentrations of an angiogenic factor in plasma samples. The results obtained by the developed biosensing platform are in close agreement with enzyme-linked immunosorbent assays, demonstrating a good accuracy, and their repeatability showed acceptable relative variations.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Human heart failure biomarker immunosensor based on excessively tilted fiber gratings

Binbin Luo, Shengxi Wu, Zhonghao Zhang, Wengen Zou, Shenghui Shi, Mingfu Zhao, Nianbing Zhong, Yong Liu, Xue Zou, Lingling Wang, Weina Chai, Chuanmin Hu, and Lin Zhang
Biomed. Opt. Express 8(1) 57-67 (2017)

Smartphone instrument for portable enzyme- linked immunosorbent assays

Kenneth D. Long, Hojeong Yu, and Brian T. Cunningham
Biomed. Opt. Express 5(11) 3792-3806 (2014)

Sensitive surface enhanced Raman scattering multiplexed detection of matrix metalloproteinase 2 and 7 cancer markers

Tianxun Gong, Kien Voon Kong, Douglas Goh, Malini Olivo, and Ken-Tye Yong
Biomed. Opt. Express 6(6) 2076-2087 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Folkman, “Angiogenesis: an organizing principle for drug discovery?” Nat. Rev. Drug Discov. 6(4), 273–286 (2007).
    [Crossref] [PubMed]
  2. D. Hanahan and R. A. Weinberg, “Hallmarks of Cancer: The Next Generation,” Cell 144(5), 646–674 (2011).
    [Crossref] [PubMed]
  3. G. Bergers and L. E. Benjamin, “Tumorigenesis and the angiogenic switch,” Nat. Rev. Cancer 3(6), 401–410 (2003).
    [Crossref] [PubMed]
  4. L. Eklund and P. Saharinen, “Angiopoietin signaling in the vasculature,” Exp. Cell Res. 319(9), 1271–1280 (2013).
    [Crossref] [PubMed]
  5. J. H. Park, K. J. Park, Y. S. Kim, S. S. Sheen, K. S. Lee, H. N. Lee, Y. J. Oh, and S. C. Hwang, “Serum Angiopoietin-2 as a Clinical Marker for Lung Cancer,” Chest 132(1), 200–206 (2007).
    [Crossref] [PubMed]
  6. H. Engin, Y. Üstündağ, İ. Ö. Tekin, A. Gökmen, Ş. Ertop, and S. U. İlikhan, “Plasma concentrations of angiopoietin-1, angiopoietin-2 and Tie-2 in colon cancer,” Eur. Cytokine Netw. 23(2), 68–71 (2012).
    [PubMed]
  7. N. Rigamonti, E. Kadioglu, I. Keklikoglou, C. Wyser Rmili, C. C. Leow, and M. De Palma, “Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade,” Cell Reports 8(3), 696–706 (2014).
    [Crossref] [PubMed]
  8. I. Helfrich, L. Edler, A. Sucker, M. Thomas, S. Christian, D. Schadendorf, and H. G. Augustin, “Angiopoietin-2 Levels Are Associated with Disease Progression in Metastatic Malignant Melanoma,” Clin. Cancer Res. 15(4), 1384–1392 (2009).
    [Crossref] [PubMed]
  9. A. C. Teixeira, I. R. C. Brasil, A. F. C. Torres, and F. Tavora, “The Evaluation of Angiogenesis Markers in Hepatocellular Carcinoma and Precursor Lesions in Liver Explants From a Single Institution,” Appl. Immunohistochem. Mol. Morphol., (posted 23 August 2016).
  10. N. Danz, A. Sinibaldi, P. Munzert, A. Anopchenko, E. Förster, S. Schmieder, R. Chandrawati, R. Rizzo, R. Heller, F. Sonntag, A. Mascioletti, S. Rana, T. Schubert, M. M. Stevens, and F. Michelotti, “Biosensing platform combining label-free and labelled analysis using Bloch surface waves,” Proc. SPIE 9506, 95060V (2015).
  11. N. Yildirim, F. Long, C. Gao, M. He, H. C. Shi, and A. Z. Gu, “Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples,” Environ. Sci. Technol. 46(6), 3288–3294 (2012).
    [Crossref] [PubMed]
  12. J. Verbarg, O. Hadass, P. D. Olivo, and A. Danielli, “High sensitivity detection of a protein biomarker interleukin-8 utilizing a magnetic modulation biosensing system,” Sens. Actuators B Chem. 241, 614–618 (2017).
    [Crossref]
  13. Y. Zhao, X. Zhao, and Z. Gu, “Photonic Crystals in Bioassays,” Adv. Funct. Mater. 20(18), 2970–2988 (2010).
    [Crossref]
  14. M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B Chem. 105(2), 360–364 (2005).
    [Crossref]
  15. M. Liscidini and J. E. Sipe, “Analysis of Bloch-surface-wave assisted diffraction-based biosensors,” J. Opt. Soc. Am. B 26(2), 279–289 (2009).
    [Crossref]
  16. V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sens. Actuators B Chem. 157(1), 260–264 (2011).
    [Crossref]
  17. P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Actuators B Chem. 161(1), 1046–1052 (2012).
    [Crossref]
  18. A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
    [Crossref] [PubMed]
  19. V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic Crystal Biosensor Based on Optical Surface Waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
    [Crossref] [PubMed]
  20. F. Frascella, C. Petri, S. Ricciardi, L. Napione, P. Munzert, U. Jonas, J. Dostalek, F. Bussolino, C. Fabrizio Pirri, and E. Descrovi, “Hydrogel-Terminated Photonic Crystal for Label-Free Detection of Angiopoietin-1,” J. Lightwave Technol. 34(15), 3641–3645 (2016).
    [Crossref]
  21. F. Frascella, S. Ricciardi, L. Pasquardini, C. Potrich, A. Angelini, A. Chiadò, C. Pederzolli, N. De Leo, P. Rivolo, C. F. Pirri, and E. Descrovi, “Enhanced fluorescence detection of miRNA-16 on a photonic crystal,” Analyst (Lond.) 140(16), 5459–5463 (2015).
    [Crossref] [PubMed]
  22. S. Ricciardi, F. Frascella, A. Angelini, A. Lamberti, P. Munzert, L. Boarino, R. Rizzo, A. Tommasi, and E. Descrovi, “Optofluidic chip for surface wave-based fluorescence sensing,” Sens. Actuators B Chem. 215, 225–230 (2015).
    [Crossref]
  23. K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
    [Crossref] [PubMed]
  24. F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors (Basel) 13(2), 2011–2022 (2013).
    [Crossref] [PubMed]
  25. A. Sinibaldi, N. Danz, A. Anopchenko, P. Munzert, S. Schmieder, R. Chandrawati, R. Rizzo, S. Rana, F. Sonntag, A. Occhicone, L. Napione, S. De Panfilis, M. M. Stevens, and F. Michelotti, “Label-Free Detection of Tumor Angiogenesis Biomarker Angiopoietin 2 Using Bloch Surface Waves on One Dimensional Photonic Crystals,” J. Lightwave Technol. 33(16), 3385–3393 (2015).
    [Crossref]
  26. A. Sinibaldi, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free/fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
    [Crossref] [PubMed]
  27. R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, R. Chandrawati, S. Rana, P. Munzert, T. Schubert, E. Maillart, A. Anopchenko, P. Rivolo, A. Mascioletti, F. Sonntag, M. M. Stevens, F. Bussolino, and F. Michelotti, “Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices,” Sens. Actuators B Chem. 255, 2143–2150 (2018).
    [Crossref]
  28. D. J. Ehresman, J. W. Froehlich, G. W. Olsen, S.-C. Chang, and J. L. Butenhoff, “Comparison of human whole blood, plasma, and serum matrices for the determination of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and other fluorochemicals,” Environ. Res. 103(2), 176–184 (2007).
    [Crossref] [PubMed]
  29. J. Treviño, A. Calle, J. M. Rodríguez-Frade, M. Mellado, and L. M. Lechuga, “Determination of human growth hormone in human serum samples by surface plasmon resonance immunoassay,” Talanta 78(3), 1011–1016 (2009).
    [Crossref] [PubMed]
  30. M. Verstraete, A. Debucquoy, J. Dekervel, J. van Pelt, C. Verslype, E. Devos, G. Chiritescu, K. Dumon, A. D’Hoore, O. Gevaert, X. Sagaert, E. Van Cutsem, and K. Haustermans, “Combining bevacizumab and chemoradiation in rectal cancer. Translational results of the AXEBeam trial,” Br. J. Cancer 112(8), 1314–1325 (2015).
    [Crossref] [PubMed]
  31. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media I General theory*,” J. Opt. Soc. Am. 67(4), 423–438 (1977).
    [Crossref]
  32. E. Yablonovich, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 57, 8–11 (1986).
  33. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [Crossref] [PubMed]
  34. C. Wächter, R. Rizzo, F. Michelotti, P. Munzert, and N. Danz, “Leaky waveguides for low k-measurement: From structure design to loss evaluation,” Proc. SPIE 9750, 975019 (2016).
  35. P. Munzert, N. Danz, A. Sinibaldi, and F. Michelotti, “Multilayer coatings for Bloch surface wave optical biosensors,” Surf. Coat. Tech. 314, 79–84 (2017).
    [Crossref]
  36. A. Anopchenko, A. Occhicone, R. Rizzo, A. Sinibaldi, G. Figliozzi, N. Danz, P. Munzert, and F. Michelotti, “Effect of thickness disorder on the performance of photonic crystal surface wave sensors,” Opt. Express 24(7), 7728–7742 (2016).
    [Crossref] [PubMed]
  37. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [Crossref] [PubMed]
  38. R. Rizzo, N. Danz, F. Michelotti, E. Maillart, A. Anopchenko, and C. Wächter, “Optimization of angularly resolved Bloch surface wave biosensors,” Opt. Express 22(19), 23202–23214 (2014).
    [Crossref] [PubMed]
  39. A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
    [Crossref]
  40. T. Scientific, “Dylight 650,” https://www.thermofisher.com/it/en/home/life-science/protein-biology/protein-labeling-crosslinking/protein-labeling/fluorescent-protein-labeling/dylight-fluors-technology-product-guide.html .
  41. N. Danz, R. Waldhäusl, A. Bräuer, and R. Kowarschik, “Dipole lifetime in stratified media,” J. Opt. Soc. Am. B 19(3), 412–419 (2002).
    [Crossref]
  42. A. Sinibaldi, A. Fieramosca, R. Rizzo, A. Anopchenko, N. Danz, P. Munzert, C. Magistris, C. Barolo, and F. Michelotti, “Combining label-free and fluorescence operation of Bloch surface wave optical sensors,” Opt. Lett. 39(10), 2947–2950 (2014).
    [Crossref] [PubMed]
  43. S. Fiorilli, P. Rivolo, E. Descrovi, C. Ricciardi, L. Pasquardini, L. Lunelli, L. Vanzetti, C. Pederzolli, B. Onida, and E. Garrone, “Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates,” J. Colloid Interface Sci. 321(1), 235–241 (2008).
    [Crossref] [PubMed]
  44. M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
    [Crossref]
  45. I. Krämer and H.-P. Lipp, “Bevacizumab, a humanized anti-angiogenic monoclonal antibody for the treatment of colorectal cancer,” J. Clin. Pharm. Ther. 32(1), 1–14 (2007).
    [Crossref] [PubMed]
  46. G. J. Caine, A. D. Blann, P. S. Stonelake, P. Ryan, and G. Y. H. Lip, “Plasma angiopoietin-1, angiopoietin-2 and Tie-2 in breast and prostate cancer: a comparison with VEGF and Flt-1,” Eur. J. Clin. Invest. 33(10), 883–890 (2003).
    [Crossref] [PubMed]
  47. H. Engin, Y. Ustündağ, I. Ozel Tekin, and A. Gökmen, “Plasma concentrations of Ang-1, Ang-2 and Tie-2 in gastric cancer,” Eur. Cytokine Netw. 23(1), 21–24 (2012).
    [PubMed]
  48. D. J. O’Shannessy and D. J. Winzor, “Interpretation of deviations from pseudo-first-order kinetic behavior in the characterization of ligand binding by biosensor technology,” Anal. Biochem. 236(2), 275–283 (1996).
    [Crossref] [PubMed]
  49. Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81(23), 9625–9632 (2009).
    [Crossref] [PubMed]
  50. H. Vaisocherová, K. Mrkvová, M. Piliarik, P. Jinoch, M. Steinbachová, and J. Homola, “Surface plasmon resonance biosensor for direct detection of antibody against Epstein-Barr virus,” Biosens. Bioelectron. 22(6), 1020–1026 (2007).
    [Crossref] [PubMed]

2018 (1)

R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, R. Chandrawati, S. Rana, P. Munzert, T. Schubert, E. Maillart, A. Anopchenko, P. Rivolo, A. Mascioletti, F. Sonntag, M. M. Stevens, F. Bussolino, and F. Michelotti, “Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices,” Sens. Actuators B Chem. 255, 2143–2150 (2018).
[Crossref]

2017 (3)

A. Sinibaldi, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free/fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref] [PubMed]

P. Munzert, N. Danz, A. Sinibaldi, and F. Michelotti, “Multilayer coatings for Bloch surface wave optical biosensors,” Surf. Coat. Tech. 314, 79–84 (2017).
[Crossref]

J. Verbarg, O. Hadass, P. D. Olivo, and A. Danielli, “High sensitivity detection of a protein biomarker interleukin-8 utilizing a magnetic modulation biosensing system,” Sens. Actuators B Chem. 241, 614–618 (2017).
[Crossref]

2016 (3)

2015 (5)

A. Sinibaldi, N. Danz, A. Anopchenko, P. Munzert, S. Schmieder, R. Chandrawati, R. Rizzo, S. Rana, F. Sonntag, A. Occhicone, L. Napione, S. De Panfilis, M. M. Stevens, and F. Michelotti, “Label-Free Detection of Tumor Angiogenesis Biomarker Angiopoietin 2 Using Bloch Surface Waves on One Dimensional Photonic Crystals,” J. Lightwave Technol. 33(16), 3385–3393 (2015).
[Crossref]

N. Danz, A. Sinibaldi, P. Munzert, A. Anopchenko, E. Förster, S. Schmieder, R. Chandrawati, R. Rizzo, R. Heller, F. Sonntag, A. Mascioletti, S. Rana, T. Schubert, M. M. Stevens, and F. Michelotti, “Biosensing platform combining label-free and labelled analysis using Bloch surface waves,” Proc. SPIE 9506, 95060V (2015).

F. Frascella, S. Ricciardi, L. Pasquardini, C. Potrich, A. Angelini, A. Chiadò, C. Pederzolli, N. De Leo, P. Rivolo, C. F. Pirri, and E. Descrovi, “Enhanced fluorescence detection of miRNA-16 on a photonic crystal,” Analyst (Lond.) 140(16), 5459–5463 (2015).
[Crossref] [PubMed]

S. Ricciardi, F. Frascella, A. Angelini, A. Lamberti, P. Munzert, L. Boarino, R. Rizzo, A. Tommasi, and E. Descrovi, “Optofluidic chip for surface wave-based fluorescence sensing,” Sens. Actuators B Chem. 215, 225–230 (2015).
[Crossref]

M. Verstraete, A. Debucquoy, J. Dekervel, J. van Pelt, C. Verslype, E. Devos, G. Chiritescu, K. Dumon, A. D’Hoore, O. Gevaert, X. Sagaert, E. Van Cutsem, and K. Haustermans, “Combining bevacizumab and chemoradiation in rectal cancer. Translational results of the AXEBeam trial,” Br. J. Cancer 112(8), 1314–1325 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (5)

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref] [PubMed]

L. Eklund and P. Saharinen, “Angiopoietin signaling in the vasculature,” Exp. Cell Res. 319(9), 1271–1280 (2013).
[Crossref] [PubMed]

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors (Basel) 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic Crystal Biosensor Based on Optical Surface Waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

2012 (5)

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Actuators B Chem. 161(1), 1046–1052 (2012).
[Crossref]

H. Engin, Y. Ustündağ, I. Ozel Tekin, and A. Gökmen, “Plasma concentrations of Ang-1, Ang-2 and Tie-2 in gastric cancer,” Eur. Cytokine Netw. 23(1), 21–24 (2012).
[PubMed]

N. Yildirim, F. Long, C. Gao, M. He, H. C. Shi, and A. Z. Gu, “Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples,” Environ. Sci. Technol. 46(6), 3288–3294 (2012).
[Crossref] [PubMed]

H. Engin, Y. Üstündağ, İ. Ö. Tekin, A. Gökmen, Ş. Ertop, and S. U. İlikhan, “Plasma concentrations of angiopoietin-1, angiopoietin-2 and Tie-2 in colon cancer,” Eur. Cytokine Netw. 23(2), 68–71 (2012).
[PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

2011 (3)

D. Hanahan and R. A. Weinberg, “Hallmarks of Cancer: The Next Generation,” Cell 144(5), 646–674 (2011).
[Crossref] [PubMed]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sens. Actuators B Chem. 157(1), 260–264 (2011).
[Crossref]

2010 (1)

Y. Zhao, X. Zhao, and Z. Gu, “Photonic Crystals in Bioassays,” Adv. Funct. Mater. 20(18), 2970–2988 (2010).
[Crossref]

2009 (4)

I. Helfrich, L. Edler, A. Sucker, M. Thomas, S. Christian, D. Schadendorf, and H. G. Augustin, “Angiopoietin-2 Levels Are Associated with Disease Progression in Metastatic Malignant Melanoma,” Clin. Cancer Res. 15(4), 1384–1392 (2009).
[Crossref] [PubMed]

J. Treviño, A. Calle, J. M. Rodríguez-Frade, M. Mellado, and L. M. Lechuga, “Determination of human growth hormone in human serum samples by surface plasmon resonance immunoassay,” Talanta 78(3), 1011–1016 (2009).
[Crossref] [PubMed]

M. Liscidini and J. E. Sipe, “Analysis of Bloch-surface-wave assisted diffraction-based biosensors,” J. Opt. Soc. Am. B 26(2), 279–289 (2009).
[Crossref]

Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81(23), 9625–9632 (2009).
[Crossref] [PubMed]

2008 (2)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

S. Fiorilli, P. Rivolo, E. Descrovi, C. Ricciardi, L. Pasquardini, L. Lunelli, L. Vanzetti, C. Pederzolli, B. Onida, and E. Garrone, “Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates,” J. Colloid Interface Sci. 321(1), 235–241 (2008).
[Crossref] [PubMed]

2007 (5)

I. Krämer and H.-P. Lipp, “Bevacizumab, a humanized anti-angiogenic monoclonal antibody for the treatment of colorectal cancer,” J. Clin. Pharm. Ther. 32(1), 1–14 (2007).
[Crossref] [PubMed]

D. J. Ehresman, J. W. Froehlich, G. W. Olsen, S.-C. Chang, and J. L. Butenhoff, “Comparison of human whole blood, plasma, and serum matrices for the determination of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and other fluorochemicals,” Environ. Res. 103(2), 176–184 (2007).
[Crossref] [PubMed]

J. Folkman, “Angiogenesis: an organizing principle for drug discovery?” Nat. Rev. Drug Discov. 6(4), 273–286 (2007).
[Crossref] [PubMed]

J. H. Park, K. J. Park, Y. S. Kim, S. S. Sheen, K. S. Lee, H. N. Lee, Y. J. Oh, and S. C. Hwang, “Serum Angiopoietin-2 as a Clinical Marker for Lung Cancer,” Chest 132(1), 200–206 (2007).
[Crossref] [PubMed]

H. Vaisocherová, K. Mrkvová, M. Piliarik, P. Jinoch, M. Steinbachová, and J. Homola, “Surface plasmon resonance biosensor for direct detection of antibody against Epstein-Barr virus,” Biosens. Bioelectron. 22(6), 1020–1026 (2007).
[Crossref] [PubMed]

2005 (1)

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B Chem. 105(2), 360–364 (2005).
[Crossref]

2003 (2)

G. Bergers and L. E. Benjamin, “Tumorigenesis and the angiogenic switch,” Nat. Rev. Cancer 3(6), 401–410 (2003).
[Crossref] [PubMed]

G. J. Caine, A. D. Blann, P. S. Stonelake, P. Ryan, and G. Y. H. Lip, “Plasma angiopoietin-1, angiopoietin-2 and Tie-2 in breast and prostate cancer: a comparison with VEGF and Flt-1,” Eur. J. Clin. Invest. 33(10), 883–890 (2003).
[Crossref] [PubMed]

2002 (1)

1996 (1)

D. J. O’Shannessy and D. J. Winzor, “Interpretation of deviations from pseudo-first-order kinetic behavior in the characterization of ligand binding by biosensor technology,” Anal. Biochem. 236(2), 275–283 (1996).
[Crossref] [PubMed]

1987 (1)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

1986 (1)

E. Yablonovich, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 57, 8–11 (1986).

1977 (1)

Alieva, E. V.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic Crystal Biosensor Based on Optical Surface Waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

Alvaro, M.

R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, R. Chandrawati, S. Rana, P. Munzert, T. Schubert, E. Maillart, A. Anopchenko, P. Rivolo, A. Mascioletti, F. Sonntag, M. M. Stevens, F. Bussolino, and F. Michelotti, “Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices,” Sens. Actuators B Chem. 255, 2143–2150 (2018).
[Crossref]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors (Basel) 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

Angelini, A.

S. Ricciardi, F. Frascella, A. Angelini, A. Lamberti, P. Munzert, L. Boarino, R. Rizzo, A. Tommasi, and E. Descrovi, “Optofluidic chip for surface wave-based fluorescence sensing,” Sens. Actuators B Chem. 215, 225–230 (2015).
[Crossref]

F. Frascella, S. Ricciardi, L. Pasquardini, C. Potrich, A. Angelini, A. Chiadò, C. Pederzolli, N. De Leo, P. Rivolo, C. F. Pirri, and E. Descrovi, “Enhanced fluorescence detection of miRNA-16 on a photonic crystal,” Analyst (Lond.) 140(16), 5459–5463 (2015).
[Crossref] [PubMed]

Anopchenko, A.

R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, R. Chandrawati, S. Rana, P. Munzert, T. Schubert, E. Maillart, A. Anopchenko, P. Rivolo, A. Mascioletti, F. Sonntag, M. M. Stevens, F. Bussolino, and F. Michelotti, “Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices,” Sens. Actuators B Chem. 255, 2143–2150 (2018).
[Crossref]

A. Anopchenko, A. Occhicone, R. Rizzo, A. Sinibaldi, G. Figliozzi, N. Danz, P. Munzert, and F. Michelotti, “Effect of thickness disorder on the performance of photonic crystal surface wave sensors,” Opt. Express 24(7), 7728–7742 (2016).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, A. Anopchenko, P. Munzert, S. Schmieder, R. Chandrawati, R. Rizzo, S. Rana, F. Sonntag, A. Occhicone, L. Napione, S. De Panfilis, M. M. Stevens, and F. Michelotti, “Label-Free Detection of Tumor Angiogenesis Biomarker Angiopoietin 2 Using Bloch Surface Waves on One Dimensional Photonic Crystals,” J. Lightwave Technol. 33(16), 3385–3393 (2015).
[Crossref]

N. Danz, A. Sinibaldi, P. Munzert, A. Anopchenko, E. Förster, S. Schmieder, R. Chandrawati, R. Rizzo, R. Heller, F. Sonntag, A. Mascioletti, S. Rana, T. Schubert, M. M. Stevens, and F. Michelotti, “Biosensing platform combining label-free and labelled analysis using Bloch surface waves,” Proc. SPIE 9506, 95060V (2015).

R. Rizzo, N. Danz, F. Michelotti, E. Maillart, A. Anopchenko, and C. Wächter, “Optimization of angularly resolved Bloch surface wave biosensors,” Opt. Express 22(19), 23202–23214 (2014).
[Crossref] [PubMed]

A. Sinibaldi, A. Fieramosca, R. Rizzo, A. Anopchenko, N. Danz, P. Munzert, C. Magistris, C. Barolo, and F. Michelotti, “Combining label-free and fluorescence operation of Bloch surface wave optical sensors,” Opt. Lett. 39(10), 2947–2950 (2014).
[Crossref] [PubMed]

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref] [PubMed]

Augustin, H. G.

I. Helfrich, L. Edler, A. Sucker, M. Thomas, S. Christian, D. Schadendorf, and H. G. Augustin, “Angiopoietin-2 Levels Are Associated with Disease Progression in Metastatic Malignant Melanoma,” Clin. Cancer Res. 15(4), 1384–1392 (2009).
[Crossref] [PubMed]

Ballarini, M.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

Barolo, C.

Benjamin, L. E.

G. Bergers and L. E. Benjamin, “Tumorigenesis and the angiogenic switch,” Nat. Rev. Cancer 3(6), 401–410 (2003).
[Crossref] [PubMed]

Bergers, G.

G. Bergers and L. E. Benjamin, “Tumorigenesis and the angiogenic switch,” Nat. Rev. Cancer 3(6), 401–410 (2003).
[Crossref] [PubMed]

Blann, A. D.

G. J. Caine, A. D. Blann, P. S. Stonelake, P. Ryan, and G. Y. H. Lip, “Plasma angiopoietin-1, angiopoietin-2 and Tie-2 in breast and prostate cancer: a comparison with VEGF and Flt-1,” Eur. J. Clin. Invest. 33(10), 883–890 (2003).
[Crossref] [PubMed]

Boarino, L.

S. Ricciardi, F. Frascella, A. Angelini, A. Lamberti, P. Munzert, L. Boarino, R. Rizzo, A. Tommasi, and E. Descrovi, “Optofluidic chip for surface wave-based fluorescence sensing,” Sens. Actuators B Chem. 215, 225–230 (2015).
[Crossref]

Bräuer, A.

Brunsen, A.

Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81(23), 9625–9632 (2009).
[Crossref] [PubMed]

Bussolino, F.

R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, R. Chandrawati, S. Rana, P. Munzert, T. Schubert, E. Maillart, A. Anopchenko, P. Rivolo, A. Mascioletti, F. Sonntag, M. M. Stevens, F. Bussolino, and F. Michelotti, “Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices,” Sens. Actuators B Chem. 255, 2143–2150 (2018).
[Crossref]

F. Frascella, C. Petri, S. Ricciardi, L. Napione, P. Munzert, U. Jonas, J. Dostalek, F. Bussolino, C. Fabrizio Pirri, and E. Descrovi, “Hydrogel-Terminated Photonic Crystal for Label-Free Detection of Angiopoietin-1,” J. Lightwave Technol. 34(15), 3641–3645 (2016).
[Crossref]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors (Basel) 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

Butenhoff, J. L.

D. J. Ehresman, J. W. Froehlich, G. W. Olsen, S.-C. Chang, and J. L. Butenhoff, “Comparison of human whole blood, plasma, and serum matrices for the determination of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and other fluorochemicals,” Environ. Res. 103(2), 176–184 (2007).
[Crossref] [PubMed]

Caine, G. J.

G. J. Caine, A. D. Blann, P. S. Stonelake, P. Ryan, and G. Y. H. Lip, “Plasma angiopoietin-1, angiopoietin-2 and Tie-2 in breast and prostate cancer: a comparison with VEGF and Flt-1,” Eur. J. Clin. Invest. 33(10), 883–890 (2003).
[Crossref] [PubMed]

Calle, A.

J. Treviño, A. Calle, J. M. Rodríguez-Frade, M. Mellado, and L. M. Lechuga, “Determination of human growth hormone in human serum samples by surface plasmon resonance immunoassay,” Talanta 78(3), 1011–1016 (2009).
[Crossref] [PubMed]

Chandrawati, R.

R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, R. Chandrawati, S. Rana, P. Munzert, T. Schubert, E. Maillart, A. Anopchenko, P. Rivolo, A. Mascioletti, F. Sonntag, M. M. Stevens, F. Bussolino, and F. Michelotti, “Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices,” Sens. Actuators B Chem. 255, 2143–2150 (2018).
[Crossref]

N. Danz, A. Sinibaldi, P. Munzert, A. Anopchenko, E. Förster, S. Schmieder, R. Chandrawati, R. Rizzo, R. Heller, F. Sonntag, A. Mascioletti, S. Rana, T. Schubert, M. M. Stevens, and F. Michelotti, “Biosensing platform combining label-free and labelled analysis using Bloch surface waves,” Proc. SPIE 9506, 95060V (2015).

A. Sinibaldi, N. Danz, A. Anopchenko, P. Munzert, S. Schmieder, R. Chandrawati, R. Rizzo, S. Rana, F. Sonntag, A. Occhicone, L. Napione, S. De Panfilis, M. M. Stevens, and F. Michelotti, “Label-Free Detection of Tumor Angiogenesis Biomarker Angiopoietin 2 Using Bloch Surface Waves on One Dimensional Photonic Crystals,” J. Lightwave Technol. 33(16), 3385–3393 (2015).
[Crossref]

Chang, S.-C.

D. J. Ehresman, J. W. Froehlich, G. W. Olsen, S.-C. Chang, and J. L. Butenhoff, “Comparison of human whole blood, plasma, and serum matrices for the determination of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and other fluorochemicals,” Environ. Res. 103(2), 176–184 (2007).
[Crossref] [PubMed]

Chiadò, A.

F. Frascella, S. Ricciardi, L. Pasquardini, C. Potrich, A. Angelini, A. Chiadò, C. Pederzolli, N. De Leo, P. Rivolo, C. F. Pirri, and E. Descrovi, “Enhanced fluorescence detection of miRNA-16 on a photonic crystal,” Analyst (Lond.) 140(16), 5459–5463 (2015).
[Crossref] [PubMed]

Chiritescu, G.

M. Verstraete, A. Debucquoy, J. Dekervel, J. van Pelt, C. Verslype, E. Devos, G. Chiritescu, K. Dumon, A. D’Hoore, O. Gevaert, X. Sagaert, E. Van Cutsem, and K. Haustermans, “Combining bevacizumab and chemoradiation in rectal cancer. Translational results of the AXEBeam trial,” Br. J. Cancer 112(8), 1314–1325 (2015).
[Crossref] [PubMed]

Christian, S.

I. Helfrich, L. Edler, A. Sucker, M. Thomas, S. Christian, D. Schadendorf, and H. G. Augustin, “Angiopoietin-2 Levels Are Associated with Disease Progression in Metastatic Malignant Melanoma,” Clin. Cancer Res. 15(4), 1384–1392 (2009).
[Crossref] [PubMed]

D’Hoore, A.

M. Verstraete, A. Debucquoy, J. Dekervel, J. van Pelt, C. Verslype, E. Devos, G. Chiritescu, K. Dumon, A. D’Hoore, O. Gevaert, X. Sagaert, E. Van Cutsem, and K. Haustermans, “Combining bevacizumab and chemoradiation in rectal cancer. Translational results of the AXEBeam trial,” Br. J. Cancer 112(8), 1314–1325 (2015).
[Crossref] [PubMed]

Danielli, A.

J. Verbarg, O. Hadass, P. D. Olivo, and A. Danielli, “High sensitivity detection of a protein biomarker interleukin-8 utilizing a magnetic modulation biosensing system,” Sens. Actuators B Chem. 241, 614–618 (2017).
[Crossref]

Danz, N.

R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, R. Chandrawati, S. Rana, P. Munzert, T. Schubert, E. Maillart, A. Anopchenko, P. Rivolo, A. Mascioletti, F. Sonntag, M. M. Stevens, F. Bussolino, and F. Michelotti, “Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices,” Sens. Actuators B Chem. 255, 2143–2150 (2018).
[Crossref]

A. Sinibaldi, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free/fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref] [PubMed]

P. Munzert, N. Danz, A. Sinibaldi, and F. Michelotti, “Multilayer coatings for Bloch surface wave optical biosensors,” Surf. Coat. Tech. 314, 79–84 (2017).
[Crossref]

A. Anopchenko, A. Occhicone, R. Rizzo, A. Sinibaldi, G. Figliozzi, N. Danz, P. Munzert, and F. Michelotti, “Effect of thickness disorder on the performance of photonic crystal surface wave sensors,” Opt. Express 24(7), 7728–7742 (2016).
[Crossref] [PubMed]

C. Wächter, R. Rizzo, F. Michelotti, P. Munzert, and N. Danz, “Leaky waveguides for low k-measurement: From structure design to loss evaluation,” Proc. SPIE 9750, 975019 (2016).

N. Danz, A. Sinibaldi, P. Munzert, A. Anopchenko, E. Förster, S. Schmieder, R. Chandrawati, R. Rizzo, R. Heller, F. Sonntag, A. Mascioletti, S. Rana, T. Schubert, M. M. Stevens, and F. Michelotti, “Biosensing platform combining label-free and labelled analysis using Bloch surface waves,” Proc. SPIE 9506, 95060V (2015).

A. Sinibaldi, N. Danz, A. Anopchenko, P. Munzert, S. Schmieder, R. Chandrawati, R. Rizzo, S. Rana, F. Sonntag, A. Occhicone, L. Napione, S. De Panfilis, M. M. Stevens, and F. Michelotti, “Label-Free Detection of Tumor Angiogenesis Biomarker Angiopoietin 2 Using Bloch Surface Waves on One Dimensional Photonic Crystals,” J. Lightwave Technol. 33(16), 3385–3393 (2015).
[Crossref]

R. Rizzo, N. Danz, F. Michelotti, E. Maillart, A. Anopchenko, and C. Wächter, “Optimization of angularly resolved Bloch surface wave biosensors,” Opt. Express 22(19), 23202–23214 (2014).
[Crossref] [PubMed]

A. Sinibaldi, A. Fieramosca, R. Rizzo, A. Anopchenko, N. Danz, P. Munzert, C. Magistris, C. Barolo, and F. Michelotti, “Combining label-free and fluorescence operation of Bloch surface wave optical sensors,” Opt. Lett. 39(10), 2947–2950 (2014).
[Crossref] [PubMed]

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref] [PubMed]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors (Basel) 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

N. Danz, R. Waldhäusl, A. Bräuer, and R. Kowarschik, “Dipole lifetime in stratified media,” J. Opt. Soc. Am. B 19(3), 412–419 (2002).
[Crossref]

De Leo, N.

F. Frascella, S. Ricciardi, L. Pasquardini, C. Potrich, A. Angelini, A. Chiadò, C. Pederzolli, N. De Leo, P. Rivolo, C. F. Pirri, and E. Descrovi, “Enhanced fluorescence detection of miRNA-16 on a photonic crystal,” Analyst (Lond.) 140(16), 5459–5463 (2015).
[Crossref] [PubMed]

De Palma, M.

N. Rigamonti, E. Kadioglu, I. Keklikoglou, C. Wyser Rmili, C. C. Leow, and M. De Palma, “Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade,” Cell Reports 8(3), 696–706 (2014).
[Crossref] [PubMed]

De Panfilis, S.

Debucquoy, A.

M. Verstraete, A. Debucquoy, J. Dekervel, J. van Pelt, C. Verslype, E. Devos, G. Chiritescu, K. Dumon, A. D’Hoore, O. Gevaert, X. Sagaert, E. Van Cutsem, and K. Haustermans, “Combining bevacizumab and chemoradiation in rectal cancer. Translational results of the AXEBeam trial,” Br. J. Cancer 112(8), 1314–1325 (2015).
[Crossref] [PubMed]

Dekervel, J.

M. Verstraete, A. Debucquoy, J. Dekervel, J. van Pelt, C. Verslype, E. Devos, G. Chiritescu, K. Dumon, A. D’Hoore, O. Gevaert, X. Sagaert, E. Van Cutsem, and K. Haustermans, “Combining bevacizumab and chemoradiation in rectal cancer. Translational results of the AXEBeam trial,” Br. J. Cancer 112(8), 1314–1325 (2015).
[Crossref] [PubMed]

Descrovi, E.

R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, R. Chandrawati, S. Rana, P. Munzert, T. Schubert, E. Maillart, A. Anopchenko, P. Rivolo, A. Mascioletti, F. Sonntag, M. M. Stevens, F. Bussolino, and F. Michelotti, “Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices,” Sens. Actuators B Chem. 255, 2143–2150 (2018).
[Crossref]

F. Frascella, C. Petri, S. Ricciardi, L. Napione, P. Munzert, U. Jonas, J. Dostalek, F. Bussolino, C. Fabrizio Pirri, and E. Descrovi, “Hydrogel-Terminated Photonic Crystal for Label-Free Detection of Angiopoietin-1,” J. Lightwave Technol. 34(15), 3641–3645 (2016).
[Crossref]

S. Ricciardi, F. Frascella, A. Angelini, A. Lamberti, P. Munzert, L. Boarino, R. Rizzo, A. Tommasi, and E. Descrovi, “Optofluidic chip for surface wave-based fluorescence sensing,” Sens. Actuators B Chem. 215, 225–230 (2015).
[Crossref]

F. Frascella, S. Ricciardi, L. Pasquardini, C. Potrich, A. Angelini, A. Chiadò, C. Pederzolli, N. De Leo, P. Rivolo, C. F. Pirri, and E. Descrovi, “Enhanced fluorescence detection of miRNA-16 on a photonic crystal,” Analyst (Lond.) 140(16), 5459–5463 (2015).
[Crossref] [PubMed]

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors (Basel) 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Actuators B Chem. 161(1), 1046–1052 (2012).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

S. Fiorilli, P. Rivolo, E. Descrovi, C. Ricciardi, L. Pasquardini, L. Lunelli, L. Vanzetti, C. Pederzolli, B. Onida, and E. Garrone, “Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates,” J. Colloid Interface Sci. 321(1), 235–241 (2008).
[Crossref] [PubMed]

Devos, E.

M. Verstraete, A. Debucquoy, J. Dekervel, J. van Pelt, C. Verslype, E. Devos, G. Chiritescu, K. Dumon, A. D’Hoore, O. Gevaert, X. Sagaert, E. Van Cutsem, and K. Haustermans, “Combining bevacizumab and chemoradiation in rectal cancer. Translational results of the AXEBeam trial,” Br. J. Cancer 112(8), 1314–1325 (2015).
[Crossref] [PubMed]

Dietler, G.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic Crystal Biosensor Based on Optical Surface Waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

Digregorio, G.

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Actuators B Chem. 161(1), 1046–1052 (2012).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

Dominici, L.

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Actuators B Chem. 161(1), 1046–1052 (2012).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

Dostalek, J.

Dostálek, J.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81(23), 9625–9632 (2009).
[Crossref] [PubMed]

Dumon, K.

M. Verstraete, A. Debucquoy, J. Dekervel, J. van Pelt, C. Verslype, E. Devos, G. Chiritescu, K. Dumon, A. D’Hoore, O. Gevaert, X. Sagaert, E. Van Cutsem, and K. Haustermans, “Combining bevacizumab and chemoradiation in rectal cancer. Translational results of the AXEBeam trial,” Br. J. Cancer 112(8), 1314–1325 (2015).
[Crossref] [PubMed]

Edler, L.

I. Helfrich, L. Edler, A. Sucker, M. Thomas, S. Christian, D. Schadendorf, and H. G. Augustin, “Angiopoietin-2 Levels Are Associated with Disease Progression in Metastatic Malignant Melanoma,” Clin. Cancer Res. 15(4), 1384–1392 (2009).
[Crossref] [PubMed]

Ehresman, D. J.

D. J. Ehresman, J. W. Froehlich, G. W. Olsen, S.-C. Chang, and J. L. Butenhoff, “Comparison of human whole blood, plasma, and serum matrices for the determination of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and other fluorochemicals,” Environ. Res. 103(2), 176–184 (2007).
[Crossref] [PubMed]

Eklund, L.

L. Eklund and P. Saharinen, “Angiopoietin signaling in the vasculature,” Exp. Cell Res. 319(9), 1271–1280 (2013).
[Crossref] [PubMed]

Engin, H.

H. Engin, Y. Üstündağ, İ. Ö. Tekin, A. Gökmen, Ş. Ertop, and S. U. İlikhan, “Plasma concentrations of angiopoietin-1, angiopoietin-2 and Tie-2 in colon cancer,” Eur. Cytokine Netw. 23(2), 68–71 (2012).
[PubMed]

H. Engin, Y. Ustündağ, I. Ozel Tekin, and A. Gökmen, “Plasma concentrations of Ang-1, Ang-2 and Tie-2 in gastric cancer,” Eur. Cytokine Netw. 23(1), 21–24 (2012).
[PubMed]

Ertop, S.

H. Engin, Y. Üstündağ, İ. Ö. Tekin, A. Gökmen, Ş. Ertop, and S. U. İlikhan, “Plasma concentrations of angiopoietin-1, angiopoietin-2 and Tie-2 in colon cancer,” Eur. Cytokine Netw. 23(2), 68–71 (2012).
[PubMed]

Fabrizio Pirri, C.

Falvo, E.

A. Sinibaldi, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free/fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref] [PubMed]

Fieramosca, A.

Figliozzi, G.

Fiorilli, S.

S. Fiorilli, P. Rivolo, E. Descrovi, C. Ricciardi, L. Pasquardini, L. Lunelli, L. Vanzetti, C. Pederzolli, B. Onida, and E. Garrone, “Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates,” J. Colloid Interface Sci. 321(1), 235–241 (2008).
[Crossref] [PubMed]

Folkman, J.

J. Folkman, “Angiogenesis: an organizing principle for drug discovery?” Nat. Rev. Drug Discov. 6(4), 273–286 (2007).
[Crossref] [PubMed]

Förster, E.

N. Danz, A. Sinibaldi, P. Munzert, A. Anopchenko, E. Förster, S. Schmieder, R. Chandrawati, R. Rizzo, R. Heller, F. Sonntag, A. Mascioletti, S. Rana, T. Schubert, M. M. Stevens, and F. Michelotti, “Biosensing platform combining label-free and labelled analysis using Bloch surface waves,” Proc. SPIE 9506, 95060V (2015).

Frascella, F.

F. Frascella, C. Petri, S. Ricciardi, L. Napione, P. Munzert, U. Jonas, J. Dostalek, F. Bussolino, C. Fabrizio Pirri, and E. Descrovi, “Hydrogel-Terminated Photonic Crystal for Label-Free Detection of Angiopoietin-1,” J. Lightwave Technol. 34(15), 3641–3645 (2016).
[Crossref]

S. Ricciardi, F. Frascella, A. Angelini, A. Lamberti, P. Munzert, L. Boarino, R. Rizzo, A. Tommasi, and E. Descrovi, “Optofluidic chip for surface wave-based fluorescence sensing,” Sens. Actuators B Chem. 215, 225–230 (2015).
[Crossref]

F. Frascella, S. Ricciardi, L. Pasquardini, C. Potrich, A. Angelini, A. Chiadò, C. Pederzolli, N. De Leo, P. Rivolo, C. F. Pirri, and E. Descrovi, “Enhanced fluorescence detection of miRNA-16 on a photonic crystal,” Analyst (Lond.) 140(16), 5459–5463 (2015).
[Crossref] [PubMed]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors (Basel) 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Actuators B Chem. 161(1), 1046–1052 (2012).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

Froehlich, J. W.

D. J. Ehresman, J. W. Froehlich, G. W. Olsen, S.-C. Chang, and J. L. Butenhoff, “Comparison of human whole blood, plasma, and serum matrices for the determination of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and other fluorochemicals,” Environ. Res. 103(2), 176–184 (2007).
[Crossref] [PubMed]

Gao, C.

N. Yildirim, F. Long, C. Gao, M. He, H. C. Shi, and A. Z. Gu, “Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples,” Environ. Sci. Technol. 46(6), 3288–3294 (2012).
[Crossref] [PubMed]

Garrone, E.

S. Fiorilli, P. Rivolo, E. Descrovi, C. Ricciardi, L. Pasquardini, L. Lunelli, L. Vanzetti, C. Pederzolli, B. Onida, and E. Garrone, “Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates,” J. Colloid Interface Sci. 321(1), 235–241 (2008).
[Crossref] [PubMed]

Gevaert, O.

M. Verstraete, A. Debucquoy, J. Dekervel, J. van Pelt, C. Verslype, E. Devos, G. Chiritescu, K. Dumon, A. D’Hoore, O. Gevaert, X. Sagaert, E. Van Cutsem, and K. Haustermans, “Combining bevacizumab and chemoradiation in rectal cancer. Translational results of the AXEBeam trial,” Br. J. Cancer 112(8), 1314–1325 (2015).
[Crossref] [PubMed]

Giacomini, P.

A. Sinibaldi, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free/fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref] [PubMed]

Giorgis, F.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors (Basel) 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Actuators B Chem. 161(1), 1046–1052 (2012).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

Gökmen, A.

H. Engin, Y. Üstündağ, İ. Ö. Tekin, A. Gökmen, Ş. Ertop, and S. U. İlikhan, “Plasma concentrations of angiopoietin-1, angiopoietin-2 and Tie-2 in colon cancer,” Eur. Cytokine Netw. 23(2), 68–71 (2012).
[PubMed]

H. Engin, Y. Ustündağ, I. Ozel Tekin, and A. Gökmen, “Plasma concentrations of Ang-1, Ang-2 and Tie-2 in gastric cancer,” Eur. Cytokine Netw. 23(1), 21–24 (2012).
[PubMed]

Gu, A. Z.

N. Yildirim, F. Long, C. Gao, M. He, H. C. Shi, and A. Z. Gu, “Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples,” Environ. Sci. Technol. 46(6), 3288–3294 (2012).
[Crossref] [PubMed]

Gu, Z.

Y. Zhao, X. Zhao, and Z. Gu, “Photonic Crystals in Bioassays,” Adv. Funct. Mater. 20(18), 2970–2988 (2010).
[Crossref]

Hadass, O.

J. Verbarg, O. Hadass, P. D. Olivo, and A. Danielli, “High sensitivity detection of a protein biomarker interleukin-8 utilizing a magnetic modulation biosensing system,” Sens. Actuators B Chem. 241, 614–618 (2017).
[Crossref]

Hanahan, D.

D. Hanahan and R. A. Weinberg, “Hallmarks of Cancer: The Next Generation,” Cell 144(5), 646–674 (2011).
[Crossref] [PubMed]

Haustermans, K.

M. Verstraete, A. Debucquoy, J. Dekervel, J. van Pelt, C. Verslype, E. Devos, G. Chiritescu, K. Dumon, A. D’Hoore, O. Gevaert, X. Sagaert, E. Van Cutsem, and K. Haustermans, “Combining bevacizumab and chemoradiation in rectal cancer. Translational results of the AXEBeam trial,” Br. J. Cancer 112(8), 1314–1325 (2015).
[Crossref] [PubMed]

He, M.

N. Yildirim, F. Long, C. Gao, M. He, H. C. Shi, and A. Z. Gu, “Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples,” Environ. Sci. Technol. 46(6), 3288–3294 (2012).
[Crossref] [PubMed]

Helfrich, I.

I. Helfrich, L. Edler, A. Sucker, M. Thomas, S. Christian, D. Schadendorf, and H. G. Augustin, “Angiopoietin-2 Levels Are Associated with Disease Progression in Metastatic Malignant Melanoma,” Clin. Cancer Res. 15(4), 1384–1392 (2009).
[Crossref] [PubMed]

Heller, R.

N. Danz, A. Sinibaldi, P. Munzert, A. Anopchenko, E. Förster, S. Schmieder, R. Chandrawati, R. Rizzo, R. Heller, F. Sonntag, A. Mascioletti, S. Rana, T. Schubert, M. M. Stevens, and F. Michelotti, “Biosensing platform combining label-free and labelled analysis using Bloch surface waves,” Proc. SPIE 9506, 95060V (2015).

Herminjard, S.

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sens. Actuators B Chem. 157(1), 260–264 (2011).
[Crossref]

Herzig, H. P.

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sens. Actuators B Chem. 157(1), 260–264 (2011).
[Crossref]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

H. Vaisocherová, K. Mrkvová, M. Piliarik, P. Jinoch, M. Steinbachová, and J. Homola, “Surface plasmon resonance biosensor for direct detection of antibody against Epstein-Barr virus,” Biosens. Bioelectron. 22(6), 1020–1026 (2007).
[Crossref] [PubMed]

Hong, C.-S.

Hvozdara, L.

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sens. Actuators B Chem. 157(1), 260–264 (2011).
[Crossref]

Hwang, S. C.

J. H. Park, K. J. Park, Y. S. Kim, S. S. Sheen, K. S. Lee, H. N. Lee, Y. J. Oh, and S. C. Hwang, “Serum Angiopoietin-2 as a Clinical Marker for Lung Cancer,” Chest 132(1), 200–206 (2007).
[Crossref] [PubMed]

Ilikhan, S. U.

H. Engin, Y. Üstündağ, İ. Ö. Tekin, A. Gökmen, Ş. Ertop, and S. U. İlikhan, “Plasma concentrations of angiopoietin-1, angiopoietin-2 and Tie-2 in colon cancer,” Eur. Cytokine Netw. 23(2), 68–71 (2012).
[PubMed]

Jinoch, P.

H. Vaisocherová, K. Mrkvová, M. Piliarik, P. Jinoch, M. Steinbachová, and J. Homola, “Surface plasmon resonance biosensor for direct detection of antibody against Epstein-Barr virus,” Biosens. Bioelectron. 22(6), 1020–1026 (2007).
[Crossref] [PubMed]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Jonas, U.

F. Frascella, C. Petri, S. Ricciardi, L. Napione, P. Munzert, U. Jonas, J. Dostalek, F. Bussolino, C. Fabrizio Pirri, and E. Descrovi, “Hydrogel-Terminated Photonic Crystal for Label-Free Detection of Angiopoietin-1,” J. Lightwave Technol. 34(15), 3641–3645 (2016).
[Crossref]

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81(23), 9625–9632 (2009).
[Crossref] [PubMed]

Kadioglu, E.

N. Rigamonti, E. Kadioglu, I. Keklikoglou, C. Wyser Rmili, C. C. Leow, and M. De Palma, “Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade,” Cell Reports 8(3), 696–706 (2014).
[Crossref] [PubMed]

Karakouz, T.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic Crystal Biosensor Based on Optical Surface Waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

Keklikoglou, I.

N. Rigamonti, E. Kadioglu, I. Keklikoglou, C. Wyser Rmili, C. C. Leow, and M. De Palma, “Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade,” Cell Reports 8(3), 696–706 (2014).
[Crossref] [PubMed]

Kim, Y. S.

J. H. Park, K. J. Park, Y. S. Kim, S. S. Sheen, K. S. Lee, H. N. Lee, Y. J. Oh, and S. C. Hwang, “Serum Angiopoietin-2 as a Clinical Marker for Lung Cancer,” Chest 132(1), 200–206 (2007).
[Crossref] [PubMed]

Knoll, W.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81(23), 9625–9632 (2009).
[Crossref] [PubMed]

Konopsky, V. N.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic Crystal Biosensor Based on Optical Surface Waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

Kowarschik, R.

Krämer, I.

I. Krämer and H.-P. Lipp, “Bevacizumab, a humanized anti-angiogenic monoclonal antibody for the treatment of colorectal cancer,” J. Clin. Pharm. Ther. 32(1), 1–14 (2007).
[Crossref] [PubMed]

Lamberti, A.

S. Ricciardi, F. Frascella, A. Angelini, A. Lamberti, P. Munzert, L. Boarino, R. Rizzo, A. Tommasi, and E. Descrovi, “Optofluidic chip for surface wave-based fluorescence sensing,” Sens. Actuators B Chem. 215, 225–230 (2015).
[Crossref]

Lechuga, L. M.

J. Treviño, A. Calle, J. M. Rodríguez-Frade, M. Mellado, and L. M. Lechuga, “Determination of human growth hormone in human serum samples by surface plasmon resonance immunoassay,” Talanta 78(3), 1011–1016 (2009).
[Crossref] [PubMed]

Lee, H. N.

J. H. Park, K. J. Park, Y. S. Kim, S. S. Sheen, K. S. Lee, H. N. Lee, Y. J. Oh, and S. C. Hwang, “Serum Angiopoietin-2 as a Clinical Marker for Lung Cancer,” Chest 132(1), 200–206 (2007).
[Crossref] [PubMed]

Lee, K. S.

J. H. Park, K. J. Park, Y. S. Kim, S. S. Sheen, K. S. Lee, H. N. Lee, Y. J. Oh, and S. C. Hwang, “Serum Angiopoietin-2 as a Clinical Marker for Lung Cancer,” Chest 132(1), 200–206 (2007).
[Crossref] [PubMed]

Leow, C. C.

N. Rigamonti, E. Kadioglu, I. Keklikoglou, C. Wyser Rmili, C. C. Leow, and M. De Palma, “Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade,” Cell Reports 8(3), 696–706 (2014).
[Crossref] [PubMed]

Lip, G. Y. H.

G. J. Caine, A. D. Blann, P. S. Stonelake, P. Ryan, and G. Y. H. Lip, “Plasma angiopoietin-1, angiopoietin-2 and Tie-2 in breast and prostate cancer: a comparison with VEGF and Flt-1,” Eur. J. Clin. Invest. 33(10), 883–890 (2003).
[Crossref] [PubMed]

Lipp, H.-P.

I. Krämer and H.-P. Lipp, “Bevacizumab, a humanized anti-angiogenic monoclonal antibody for the treatment of colorectal cancer,” J. Clin. Pharm. Ther. 32(1), 1–14 (2007).
[Crossref] [PubMed]

Liscidini, M.

Long, F.

N. Yildirim, F. Long, C. Gao, M. He, H. C. Shi, and A. Z. Gu, “Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples,” Environ. Sci. Technol. 46(6), 3288–3294 (2012).
[Crossref] [PubMed]

Lunelli, L.

S. Fiorilli, P. Rivolo, E. Descrovi, C. Ricciardi, L. Pasquardini, L. Lunelli, L. Vanzetti, C. Pederzolli, B. Onida, and E. Garrone, “Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates,” J. Colloid Interface Sci. 321(1), 235–241 (2008).
[Crossref] [PubMed]

Magistris, C.

Maillart, E.

R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, R. Chandrawati, S. Rana, P. Munzert, T. Schubert, E. Maillart, A. Anopchenko, P. Rivolo, A. Mascioletti, F. Sonntag, M. M. Stevens, F. Bussolino, and F. Michelotti, “Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices,” Sens. Actuators B Chem. 255, 2143–2150 (2018).
[Crossref]

R. Rizzo, N. Danz, F. Michelotti, E. Maillart, A. Anopchenko, and C. Wächter, “Optimization of angularly resolved Bloch surface wave biosensors,” Opt. Express 22(19), 23202–23214 (2014).
[Crossref] [PubMed]

Mandracci, P.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Actuators B Chem. 161(1), 1046–1052 (2012).
[Crossref]

Mascioletti, A.

R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, R. Chandrawati, S. Rana, P. Munzert, T. Schubert, E. Maillart, A. Anopchenko, P. Rivolo, A. Mascioletti, F. Sonntag, M. M. Stevens, F. Bussolino, and F. Michelotti, “Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices,” Sens. Actuators B Chem. 255, 2143–2150 (2018).
[Crossref]

N. Danz, A. Sinibaldi, P. Munzert, A. Anopchenko, E. Förster, S. Schmieder, R. Chandrawati, R. Rizzo, R. Heller, F. Sonntag, A. Mascioletti, S. Rana, T. Schubert, M. M. Stevens, and F. Michelotti, “Biosensing platform combining label-free and labelled analysis using Bloch surface waves,” Proc. SPIE 9506, 95060V (2015).

Mateescu, A.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

Mellado, M.

J. Treviño, A. Calle, J. M. Rodríguez-Frade, M. Mellado, and L. M. Lechuga, “Determination of human growth hormone in human serum samples by surface plasmon resonance immunoassay,” Talanta 78(3), 1011–1016 (2009).
[Crossref] [PubMed]

Michelotti, F.

R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, R. Chandrawati, S. Rana, P. Munzert, T. Schubert, E. Maillart, A. Anopchenko, P. Rivolo, A. Mascioletti, F. Sonntag, M. M. Stevens, F. Bussolino, and F. Michelotti, “Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices,” Sens. Actuators B Chem. 255, 2143–2150 (2018).
[Crossref]

A. Sinibaldi, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free/fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref] [PubMed]

P. Munzert, N. Danz, A. Sinibaldi, and F. Michelotti, “Multilayer coatings for Bloch surface wave optical biosensors,” Surf. Coat. Tech. 314, 79–84 (2017).
[Crossref]

C. Wächter, R. Rizzo, F. Michelotti, P. Munzert, and N. Danz, “Leaky waveguides for low k-measurement: From structure design to loss evaluation,” Proc. SPIE 9750, 975019 (2016).

A. Anopchenko, A. Occhicone, R. Rizzo, A. Sinibaldi, G. Figliozzi, N. Danz, P. Munzert, and F. Michelotti, “Effect of thickness disorder on the performance of photonic crystal surface wave sensors,” Opt. Express 24(7), 7728–7742 (2016).
[Crossref] [PubMed]

N. Danz, A. Sinibaldi, P. Munzert, A. Anopchenko, E. Förster, S. Schmieder, R. Chandrawati, R. Rizzo, R. Heller, F. Sonntag, A. Mascioletti, S. Rana, T. Schubert, M. M. Stevens, and F. Michelotti, “Biosensing platform combining label-free and labelled analysis using Bloch surface waves,” Proc. SPIE 9506, 95060V (2015).

A. Sinibaldi, N. Danz, A. Anopchenko, P. Munzert, S. Schmieder, R. Chandrawati, R. Rizzo, S. Rana, F. Sonntag, A. Occhicone, L. Napione, S. De Panfilis, M. M. Stevens, and F. Michelotti, “Label-Free Detection of Tumor Angiogenesis Biomarker Angiopoietin 2 Using Bloch Surface Waves on One Dimensional Photonic Crystals,” J. Lightwave Technol. 33(16), 3385–3393 (2015).
[Crossref]

R. Rizzo, N. Danz, F. Michelotti, E. Maillart, A. Anopchenko, and C. Wächter, “Optimization of angularly resolved Bloch surface wave biosensors,” Opt. Express 22(19), 23202–23214 (2014).
[Crossref] [PubMed]

A. Sinibaldi, A. Fieramosca, R. Rizzo, A. Anopchenko, N. Danz, P. Munzert, C. Magistris, C. Barolo, and F. Michelotti, “Combining label-free and fluorescence operation of Bloch surface wave optical sensors,” Opt. Lett. 39(10), 2947–2950 (2014).
[Crossref] [PubMed]

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref] [PubMed]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors (Basel) 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Actuators B Chem. 161(1), 1046–1052 (2012).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

Moi, V.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors (Basel) 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

Mrkvová, K.

H. Vaisocherová, K. Mrkvová, M. Piliarik, P. Jinoch, M. Steinbachová, and J. Homola, “Surface plasmon resonance biosensor for direct detection of antibody against Epstein-Barr virus,” Biosens. Bioelectron. 22(6), 1020–1026 (2007).
[Crossref] [PubMed]

Munzert, P.

R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, R. Chandrawati, S. Rana, P. Munzert, T. Schubert, E. Maillart, A. Anopchenko, P. Rivolo, A. Mascioletti, F. Sonntag, M. M. Stevens, F. Bussolino, and F. Michelotti, “Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices,” Sens. Actuators B Chem. 255, 2143–2150 (2018).
[Crossref]

A. Sinibaldi, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free/fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref] [PubMed]

P. Munzert, N. Danz, A. Sinibaldi, and F. Michelotti, “Multilayer coatings for Bloch surface wave optical biosensors,” Surf. Coat. Tech. 314, 79–84 (2017).
[Crossref]

F. Frascella, C. Petri, S. Ricciardi, L. Napione, P. Munzert, U. Jonas, J. Dostalek, F. Bussolino, C. Fabrizio Pirri, and E. Descrovi, “Hydrogel-Terminated Photonic Crystal for Label-Free Detection of Angiopoietin-1,” J. Lightwave Technol. 34(15), 3641–3645 (2016).
[Crossref]

A. Anopchenko, A. Occhicone, R. Rizzo, A. Sinibaldi, G. Figliozzi, N. Danz, P. Munzert, and F. Michelotti, “Effect of thickness disorder on the performance of photonic crystal surface wave sensors,” Opt. Express 24(7), 7728–7742 (2016).
[Crossref] [PubMed]

C. Wächter, R. Rizzo, F. Michelotti, P. Munzert, and N. Danz, “Leaky waveguides for low k-measurement: From structure design to loss evaluation,” Proc. SPIE 9750, 975019 (2016).

S. Ricciardi, F. Frascella, A. Angelini, A. Lamberti, P. Munzert, L. Boarino, R. Rizzo, A. Tommasi, and E. Descrovi, “Optofluidic chip for surface wave-based fluorescence sensing,” Sens. Actuators B Chem. 215, 225–230 (2015).
[Crossref]

A. Sinibaldi, N. Danz, A. Anopchenko, P. Munzert, S. Schmieder, R. Chandrawati, R. Rizzo, S. Rana, F. Sonntag, A. Occhicone, L. Napione, S. De Panfilis, M. M. Stevens, and F. Michelotti, “Label-Free Detection of Tumor Angiogenesis Biomarker Angiopoietin 2 Using Bloch Surface Waves on One Dimensional Photonic Crystals,” J. Lightwave Technol. 33(16), 3385–3393 (2015).
[Crossref]

N. Danz, A. Sinibaldi, P. Munzert, A. Anopchenko, E. Förster, S. Schmieder, R. Chandrawati, R. Rizzo, R. Heller, F. Sonntag, A. Mascioletti, S. Rana, T. Schubert, M. M. Stevens, and F. Michelotti, “Biosensing platform combining label-free and labelled analysis using Bloch surface waves,” Proc. SPIE 9506, 95060V (2015).

A. Sinibaldi, A. Fieramosca, R. Rizzo, A. Anopchenko, N. Danz, P. Munzert, C. Magistris, C. Barolo, and F. Michelotti, “Combining label-free and fluorescence operation of Bloch surface wave optical sensors,” Opt. Lett. 39(10), 2947–2950 (2014).
[Crossref] [PubMed]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors (Basel) 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

Musi, V.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sens. Actuators B Chem. 157(1), 260–264 (2011).
[Crossref]

Napione, L.

R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, R. Chandrawati, S. Rana, P. Munzert, T. Schubert, E. Maillart, A. Anopchenko, P. Rivolo, A. Mascioletti, F. Sonntag, M. M. Stevens, F. Bussolino, and F. Michelotti, “Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices,” Sens. Actuators B Chem. 255, 2143–2150 (2018).
[Crossref]

F. Frascella, C. Petri, S. Ricciardi, L. Napione, P. Munzert, U. Jonas, J. Dostalek, F. Bussolino, C. Fabrizio Pirri, and E. Descrovi, “Hydrogel-Terminated Photonic Crystal for Label-Free Detection of Angiopoietin-1,” J. Lightwave Technol. 34(15), 3641–3645 (2016).
[Crossref]

A. Sinibaldi, N. Danz, A. Anopchenko, P. Munzert, S. Schmieder, R. Chandrawati, R. Rizzo, S. Rana, F. Sonntag, A. Occhicone, L. Napione, S. De Panfilis, M. M. Stevens, and F. Michelotti, “Label-Free Detection of Tumor Angiogenesis Biomarker Angiopoietin 2 Using Bloch Surface Waves on One Dimensional Photonic Crystals,” J. Lightwave Technol. 33(16), 3385–3393 (2015).
[Crossref]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors (Basel) 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

O’Shannessy, D. J.

D. J. O’Shannessy and D. J. Winzor, “Interpretation of deviations from pseudo-first-order kinetic behavior in the characterization of ligand binding by biosensor technology,” Anal. Biochem. 236(2), 275–283 (1996).
[Crossref] [PubMed]

Occhicone, A.

Oh, Y. J.

J. H. Park, K. J. Park, Y. S. Kim, S. S. Sheen, K. S. Lee, H. N. Lee, Y. J. Oh, and S. C. Hwang, “Serum Angiopoietin-2 as a Clinical Marker for Lung Cancer,” Chest 132(1), 200–206 (2007).
[Crossref] [PubMed]

Olivo, P. D.

J. Verbarg, O. Hadass, P. D. Olivo, and A. Danielli, “High sensitivity detection of a protein biomarker interleukin-8 utilizing a magnetic modulation biosensing system,” Sens. Actuators B Chem. 241, 614–618 (2017).
[Crossref]

Olsen, G. W.

D. J. Ehresman, J. W. Froehlich, G. W. Olsen, S.-C. Chang, and J. L. Butenhoff, “Comparison of human whole blood, plasma, and serum matrices for the determination of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and other fluorochemicals,” Environ. Res. 103(2), 176–184 (2007).
[Crossref] [PubMed]

Onida, B.

S. Fiorilli, P. Rivolo, E. Descrovi, C. Ricciardi, L. Pasquardini, L. Lunelli, L. Vanzetti, C. Pederzolli, B. Onida, and E. Garrone, “Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates,” J. Colloid Interface Sci. 321(1), 235–241 (2008).
[Crossref] [PubMed]

Ozel Tekin, I.

H. Engin, Y. Ustündağ, I. Ozel Tekin, and A. Gökmen, “Plasma concentrations of Ang-1, Ang-2 and Tie-2 in gastric cancer,” Eur. Cytokine Netw. 23(1), 21–24 (2012).
[PubMed]

Paeder, V.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sens. Actuators B Chem. 157(1), 260–264 (2011).
[Crossref]

Park, J. H.

J. H. Park, K. J. Park, Y. S. Kim, S. S. Sheen, K. S. Lee, H. N. Lee, Y. J. Oh, and S. C. Hwang, “Serum Angiopoietin-2 as a Clinical Marker for Lung Cancer,” Chest 132(1), 200–206 (2007).
[Crossref] [PubMed]

Park, K. J.

J. H. Park, K. J. Park, Y. S. Kim, S. S. Sheen, K. S. Lee, H. N. Lee, Y. J. Oh, and S. C. Hwang, “Serum Angiopoietin-2 as a Clinical Marker for Lung Cancer,” Chest 132(1), 200–206 (2007).
[Crossref] [PubMed]

Pasquardini, L.

F. Frascella, S. Ricciardi, L. Pasquardini, C. Potrich, A. Angelini, A. Chiadò, C. Pederzolli, N. De Leo, P. Rivolo, C. F. Pirri, and E. Descrovi, “Enhanced fluorescence detection of miRNA-16 on a photonic crystal,” Analyst (Lond.) 140(16), 5459–5463 (2015).
[Crossref] [PubMed]

S. Fiorilli, P. Rivolo, E. Descrovi, C. Ricciardi, L. Pasquardini, L. Lunelli, L. Vanzetti, C. Pederzolli, B. Onida, and E. Garrone, “Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates,” J. Colloid Interface Sci. 321(1), 235–241 (2008).
[Crossref] [PubMed]

Pederzolli, C.

F. Frascella, S. Ricciardi, L. Pasquardini, C. Potrich, A. Angelini, A. Chiadò, C. Pederzolli, N. De Leo, P. Rivolo, C. F. Pirri, and E. Descrovi, “Enhanced fluorescence detection of miRNA-16 on a photonic crystal,” Analyst (Lond.) 140(16), 5459–5463 (2015).
[Crossref] [PubMed]

S. Fiorilli, P. Rivolo, E. Descrovi, C. Ricciardi, L. Pasquardini, L. Lunelli, L. Vanzetti, C. Pederzolli, B. Onida, and E. Garrone, “Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates,” J. Colloid Interface Sci. 321(1), 235–241 (2008).
[Crossref] [PubMed]

Petri, C.

Piliarik, M.

H. Vaisocherová, K. Mrkvová, M. Piliarik, P. Jinoch, M. Steinbachová, and J. Homola, “Surface plasmon resonance biosensor for direct detection of antibody against Epstein-Barr virus,” Biosens. Bioelectron. 22(6), 1020–1026 (2007).
[Crossref] [PubMed]

Pirri, C. F.

F. Frascella, S. Ricciardi, L. Pasquardini, C. Potrich, A. Angelini, A. Chiadò, C. Pederzolli, N. De Leo, P. Rivolo, C. F. Pirri, and E. Descrovi, “Enhanced fluorescence detection of miRNA-16 on a photonic crystal,” Analyst (Lond.) 140(16), 5459–5463 (2015).
[Crossref] [PubMed]

Potrich, C.

F. Frascella, S. Ricciardi, L. Pasquardini, C. Potrich, A. Angelini, A. Chiadò, C. Pederzolli, N. De Leo, P. Rivolo, C. F. Pirri, and E. Descrovi, “Enhanced fluorescence detection of miRNA-16 on a photonic crystal,” Analyst (Lond.) 140(16), 5459–5463 (2015).
[Crossref] [PubMed]

Rana, S.

R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, R. Chandrawati, S. Rana, P. Munzert, T. Schubert, E. Maillart, A. Anopchenko, P. Rivolo, A. Mascioletti, F. Sonntag, M. M. Stevens, F. Bussolino, and F. Michelotti, “Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices,” Sens. Actuators B Chem. 255, 2143–2150 (2018).
[Crossref]

A. Sinibaldi, N. Danz, A. Anopchenko, P. Munzert, S. Schmieder, R. Chandrawati, R. Rizzo, S. Rana, F. Sonntag, A. Occhicone, L. Napione, S. De Panfilis, M. M. Stevens, and F. Michelotti, “Label-Free Detection of Tumor Angiogenesis Biomarker Angiopoietin 2 Using Bloch Surface Waves on One Dimensional Photonic Crystals,” J. Lightwave Technol. 33(16), 3385–3393 (2015).
[Crossref]

N. Danz, A. Sinibaldi, P. Munzert, A. Anopchenko, E. Förster, S. Schmieder, R. Chandrawati, R. Rizzo, R. Heller, F. Sonntag, A. Mascioletti, S. Rana, T. Schubert, M. M. Stevens, and F. Michelotti, “Biosensing platform combining label-free and labelled analysis using Bloch surface waves,” Proc. SPIE 9506, 95060V (2015).

Ricciardi, C.

S. Fiorilli, P. Rivolo, E. Descrovi, C. Ricciardi, L. Pasquardini, L. Lunelli, L. Vanzetti, C. Pederzolli, B. Onida, and E. Garrone, “Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates,” J. Colloid Interface Sci. 321(1), 235–241 (2008).
[Crossref] [PubMed]

Ricciardi, S.

F. Frascella, C. Petri, S. Ricciardi, L. Napione, P. Munzert, U. Jonas, J. Dostalek, F. Bussolino, C. Fabrizio Pirri, and E. Descrovi, “Hydrogel-Terminated Photonic Crystal for Label-Free Detection of Angiopoietin-1,” J. Lightwave Technol. 34(15), 3641–3645 (2016).
[Crossref]

S. Ricciardi, F. Frascella, A. Angelini, A. Lamberti, P. Munzert, L. Boarino, R. Rizzo, A. Tommasi, and E. Descrovi, “Optofluidic chip for surface wave-based fluorescence sensing,” Sens. Actuators B Chem. 215, 225–230 (2015).
[Crossref]

F. Frascella, S. Ricciardi, L. Pasquardini, C. Potrich, A. Angelini, A. Chiadò, C. Pederzolli, N. De Leo, P. Rivolo, C. F. Pirri, and E. Descrovi, “Enhanced fluorescence detection of miRNA-16 on a photonic crystal,” Analyst (Lond.) 140(16), 5459–5463 (2015).
[Crossref] [PubMed]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors (Basel) 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

Rigamonti, N.

N. Rigamonti, E. Kadioglu, I. Keklikoglou, C. Wyser Rmili, C. C. Leow, and M. De Palma, “Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade,” Cell Reports 8(3), 696–706 (2014).
[Crossref] [PubMed]

Rivolo, P.

R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, R. Chandrawati, S. Rana, P. Munzert, T. Schubert, E. Maillart, A. Anopchenko, P. Rivolo, A. Mascioletti, F. Sonntag, M. M. Stevens, F. Bussolino, and F. Michelotti, “Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices,” Sens. Actuators B Chem. 255, 2143–2150 (2018).
[Crossref]

F. Frascella, S. Ricciardi, L. Pasquardini, C. Potrich, A. Angelini, A. Chiadò, C. Pederzolli, N. De Leo, P. Rivolo, C. F. Pirri, and E. Descrovi, “Enhanced fluorescence detection of miRNA-16 on a photonic crystal,” Analyst (Lond.) 140(16), 5459–5463 (2015).
[Crossref] [PubMed]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors (Basel) 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Actuators B Chem. 161(1), 1046–1052 (2012).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

S. Fiorilli, P. Rivolo, E. Descrovi, C. Ricciardi, L. Pasquardini, L. Lunelli, L. Vanzetti, C. Pederzolli, B. Onida, and E. Garrone, “Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates,” J. Colloid Interface Sci. 321(1), 235–241 (2008).
[Crossref] [PubMed]

Rizzo, R.

R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, R. Chandrawati, S. Rana, P. Munzert, T. Schubert, E. Maillart, A. Anopchenko, P. Rivolo, A. Mascioletti, F. Sonntag, M. M. Stevens, F. Bussolino, and F. Michelotti, “Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices,” Sens. Actuators B Chem. 255, 2143–2150 (2018).
[Crossref]

A. Anopchenko, A. Occhicone, R. Rizzo, A. Sinibaldi, G. Figliozzi, N. Danz, P. Munzert, and F. Michelotti, “Effect of thickness disorder on the performance of photonic crystal surface wave sensors,” Opt. Express 24(7), 7728–7742 (2016).
[Crossref] [PubMed]

C. Wächter, R. Rizzo, F. Michelotti, P. Munzert, and N. Danz, “Leaky waveguides for low k-measurement: From structure design to loss evaluation,” Proc. SPIE 9750, 975019 (2016).

N. Danz, A. Sinibaldi, P. Munzert, A. Anopchenko, E. Förster, S. Schmieder, R. Chandrawati, R. Rizzo, R. Heller, F. Sonntag, A. Mascioletti, S. Rana, T. Schubert, M. M. Stevens, and F. Michelotti, “Biosensing platform combining label-free and labelled analysis using Bloch surface waves,” Proc. SPIE 9506, 95060V (2015).

A. Sinibaldi, N. Danz, A. Anopchenko, P. Munzert, S. Schmieder, R. Chandrawati, R. Rizzo, S. Rana, F. Sonntag, A. Occhicone, L. Napione, S. De Panfilis, M. M. Stevens, and F. Michelotti, “Label-Free Detection of Tumor Angiogenesis Biomarker Angiopoietin 2 Using Bloch Surface Waves on One Dimensional Photonic Crystals,” J. Lightwave Technol. 33(16), 3385–3393 (2015).
[Crossref]

S. Ricciardi, F. Frascella, A. Angelini, A. Lamberti, P. Munzert, L. Boarino, R. Rizzo, A. Tommasi, and E. Descrovi, “Optofluidic chip for surface wave-based fluorescence sensing,” Sens. Actuators B Chem. 215, 225–230 (2015).
[Crossref]

R. Rizzo, N. Danz, F. Michelotti, E. Maillart, A. Anopchenko, and C. Wächter, “Optimization of angularly resolved Bloch surface wave biosensors,” Opt. Express 22(19), 23202–23214 (2014).
[Crossref] [PubMed]

A. Sinibaldi, A. Fieramosca, R. Rizzo, A. Anopchenko, N. Danz, P. Munzert, C. Magistris, C. Barolo, and F. Michelotti, “Combining label-free and fluorescence operation of Bloch surface wave optical sensors,” Opt. Lett. 39(10), 2947–2950 (2014).
[Crossref] [PubMed]

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref] [PubMed]

Robertson, W. M.

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B Chem. 105(2), 360–364 (2005).
[Crossref]

Rodríguez-Frade, J. M.

J. Treviño, A. Calle, J. M. Rodríguez-Frade, M. Mellado, and L. M. Lechuga, “Determination of human growth hormone in human serum samples by surface plasmon resonance immunoassay,” Talanta 78(3), 1011–1016 (2009).
[Crossref] [PubMed]

Ryan, P.

G. J. Caine, A. D. Blann, P. S. Stonelake, P. Ryan, and G. Y. H. Lip, “Plasma angiopoietin-1, angiopoietin-2 and Tie-2 in breast and prostate cancer: a comparison with VEGF and Flt-1,” Eur. J. Clin. Invest. 33(10), 883–890 (2003).
[Crossref] [PubMed]

Sagaert, X.

M. Verstraete, A. Debucquoy, J. Dekervel, J. van Pelt, C. Verslype, E. Devos, G. Chiritescu, K. Dumon, A. D’Hoore, O. Gevaert, X. Sagaert, E. Van Cutsem, and K. Haustermans, “Combining bevacizumab and chemoradiation in rectal cancer. Translational results of the AXEBeam trial,” Br. J. Cancer 112(8), 1314–1325 (2015).
[Crossref] [PubMed]

Saharinen, P.

L. Eklund and P. Saharinen, “Angiopoietin signaling in the vasculature,” Exp. Cell Res. 319(9), 1271–1280 (2013).
[Crossref] [PubMed]

Sampaoli, C.

A. Sinibaldi, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free/fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref] [PubMed]

Schadendorf, D.

I. Helfrich, L. Edler, A. Sucker, M. Thomas, S. Christian, D. Schadendorf, and H. G. Augustin, “Angiopoietin-2 Levels Are Associated with Disease Progression in Metastatic Malignant Melanoma,” Clin. Cancer Res. 15(4), 1384–1392 (2009).
[Crossref] [PubMed]

Schmieder, S.

R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, R. Chandrawati, S. Rana, P. Munzert, T. Schubert, E. Maillart, A. Anopchenko, P. Rivolo, A. Mascioletti, F. Sonntag, M. M. Stevens, F. Bussolino, and F. Michelotti, “Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices,” Sens. Actuators B Chem. 255, 2143–2150 (2018).
[Crossref]

N. Danz, A. Sinibaldi, P. Munzert, A. Anopchenko, E. Förster, S. Schmieder, R. Chandrawati, R. Rizzo, R. Heller, F. Sonntag, A. Mascioletti, S. Rana, T. Schubert, M. M. Stevens, and F. Michelotti, “Biosensing platform combining label-free and labelled analysis using Bloch surface waves,” Proc. SPIE 9506, 95060V (2015).

A. Sinibaldi, N. Danz, A. Anopchenko, P. Munzert, S. Schmieder, R. Chandrawati, R. Rizzo, S. Rana, F. Sonntag, A. Occhicone, L. Napione, S. De Panfilis, M. M. Stevens, and F. Michelotti, “Label-Free Detection of Tumor Angiogenesis Biomarker Angiopoietin 2 Using Bloch Surface Waves on One Dimensional Photonic Crystals,” J. Lightwave Technol. 33(16), 3385–3393 (2015).
[Crossref]

Schubert, T.

R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, R. Chandrawati, S. Rana, P. Munzert, T. Schubert, E. Maillart, A. Anopchenko, P. Rivolo, A. Mascioletti, F. Sonntag, M. M. Stevens, F. Bussolino, and F. Michelotti, “Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices,” Sens. Actuators B Chem. 255, 2143–2150 (2018).
[Crossref]

N. Danz, A. Sinibaldi, P. Munzert, A. Anopchenko, E. Förster, S. Schmieder, R. Chandrawati, R. Rizzo, R. Heller, F. Sonntag, A. Mascioletti, S. Rana, T. Schubert, M. M. Stevens, and F. Michelotti, “Biosensing platform combining label-free and labelled analysis using Bloch surface waves,” Proc. SPIE 9506, 95060V (2015).

Schulz, U.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

Sekatskii, S. K.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic Crystal Biosensor Based on Optical Surface Waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

Sheen, S. S.

J. H. Park, K. J. Park, Y. S. Kim, S. S. Sheen, K. S. Lee, H. N. Lee, Y. J. Oh, and S. C. Hwang, “Serum Angiopoietin-2 as a Clinical Marker for Lung Cancer,” Chest 132(1), 200–206 (2007).
[Crossref] [PubMed]

Shi, H. C.

N. Yildirim, F. Long, C. Gao, M. He, H. C. Shi, and A. Z. Gu, “Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples,” Environ. Sci. Technol. 46(6), 3288–3294 (2012).
[Crossref] [PubMed]

Shinn, M.

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B Chem. 105(2), 360–364 (2005).
[Crossref]

Sibilio, L.

A. Sinibaldi, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free/fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref] [PubMed]

Sinibaldi, A.

R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, R. Chandrawati, S. Rana, P. Munzert, T. Schubert, E. Maillart, A. Anopchenko, P. Rivolo, A. Mascioletti, F. Sonntag, M. M. Stevens, F. Bussolino, and F. Michelotti, “Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices,” Sens. Actuators B Chem. 255, 2143–2150 (2018).
[Crossref]

A. Sinibaldi, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free/fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref] [PubMed]

P. Munzert, N. Danz, A. Sinibaldi, and F. Michelotti, “Multilayer coatings for Bloch surface wave optical biosensors,” Surf. Coat. Tech. 314, 79–84 (2017).
[Crossref]

A. Anopchenko, A. Occhicone, R. Rizzo, A. Sinibaldi, G. Figliozzi, N. Danz, P. Munzert, and F. Michelotti, “Effect of thickness disorder on the performance of photonic crystal surface wave sensors,” Opt. Express 24(7), 7728–7742 (2016).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, A. Anopchenko, P. Munzert, S. Schmieder, R. Chandrawati, R. Rizzo, S. Rana, F. Sonntag, A. Occhicone, L. Napione, S. De Panfilis, M. M. Stevens, and F. Michelotti, “Label-Free Detection of Tumor Angiogenesis Biomarker Angiopoietin 2 Using Bloch Surface Waves on One Dimensional Photonic Crystals,” J. Lightwave Technol. 33(16), 3385–3393 (2015).
[Crossref]

N. Danz, A. Sinibaldi, P. Munzert, A. Anopchenko, E. Förster, S. Schmieder, R. Chandrawati, R. Rizzo, R. Heller, F. Sonntag, A. Mascioletti, S. Rana, T. Schubert, M. M. Stevens, and F. Michelotti, “Biosensing platform combining label-free and labelled analysis using Bloch surface waves,” Proc. SPIE 9506, 95060V (2015).

A. Sinibaldi, A. Fieramosca, R. Rizzo, A. Anopchenko, N. Danz, P. Munzert, C. Magistris, C. Barolo, and F. Michelotti, “Combining label-free and fluorescence operation of Bloch surface wave optical sensors,” Opt. Lett. 39(10), 2947–2950 (2014).
[Crossref] [PubMed]

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

Sipe, J. E.

Sonntag, F.

R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, R. Chandrawati, S. Rana, P. Munzert, T. Schubert, E. Maillart, A. Anopchenko, P. Rivolo, A. Mascioletti, F. Sonntag, M. M. Stevens, F. Bussolino, and F. Michelotti, “Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices,” Sens. Actuators B Chem. 255, 2143–2150 (2018).
[Crossref]

A. Sinibaldi, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free/fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, A. Anopchenko, P. Munzert, S. Schmieder, R. Chandrawati, R. Rizzo, S. Rana, F. Sonntag, A. Occhicone, L. Napione, S. De Panfilis, M. M. Stevens, and F. Michelotti, “Label-Free Detection of Tumor Angiogenesis Biomarker Angiopoietin 2 Using Bloch Surface Waves on One Dimensional Photonic Crystals,” J. Lightwave Technol. 33(16), 3385–3393 (2015).
[Crossref]

N. Danz, A. Sinibaldi, P. Munzert, A. Anopchenko, E. Förster, S. Schmieder, R. Chandrawati, R. Rizzo, R. Heller, F. Sonntag, A. Mascioletti, S. Rana, T. Schubert, M. M. Stevens, and F. Michelotti, “Biosensing platform combining label-free and labelled analysis using Bloch surface waves,” Proc. SPIE 9506, 95060V (2015).

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

Steinbachová, M.

H. Vaisocherová, K. Mrkvová, M. Piliarik, P. Jinoch, M. Steinbachová, and J. Homola, “Surface plasmon resonance biosensor for direct detection of antibody against Epstein-Barr virus,” Biosens. Bioelectron. 22(6), 1020–1026 (2007).
[Crossref] [PubMed]

Stevens, M. M.

R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, R. Chandrawati, S. Rana, P. Munzert, T. Schubert, E. Maillart, A. Anopchenko, P. Rivolo, A. Mascioletti, F. Sonntag, M. M. Stevens, F. Bussolino, and F. Michelotti, “Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices,” Sens. Actuators B Chem. 255, 2143–2150 (2018).
[Crossref]

A. Sinibaldi, N. Danz, A. Anopchenko, P. Munzert, S. Schmieder, R. Chandrawati, R. Rizzo, S. Rana, F. Sonntag, A. Occhicone, L. Napione, S. De Panfilis, M. M. Stevens, and F. Michelotti, “Label-Free Detection of Tumor Angiogenesis Biomarker Angiopoietin 2 Using Bloch Surface Waves on One Dimensional Photonic Crystals,” J. Lightwave Technol. 33(16), 3385–3393 (2015).
[Crossref]

N. Danz, A. Sinibaldi, P. Munzert, A. Anopchenko, E. Förster, S. Schmieder, R. Chandrawati, R. Rizzo, R. Heller, F. Sonntag, A. Mascioletti, S. Rana, T. Schubert, M. M. Stevens, and F. Michelotti, “Biosensing platform combining label-free and labelled analysis using Bloch surface waves,” Proc. SPIE 9506, 95060V (2015).

Stonelake, P. S.

G. J. Caine, A. D. Blann, P. S. Stonelake, P. Ryan, and G. Y. H. Lip, “Plasma angiopoietin-1, angiopoietin-2 and Tie-2 in breast and prostate cancer: a comparison with VEGF and Flt-1,” Eur. J. Clin. Invest. 33(10), 883–890 (2003).
[Crossref] [PubMed]

Sucker, A.

I. Helfrich, L. Edler, A. Sucker, M. Thomas, S. Christian, D. Schadendorf, and H. G. Augustin, “Angiopoietin-2 Levels Are Associated with Disease Progression in Metastatic Malignant Melanoma,” Clin. Cancer Res. 15(4), 1384–1392 (2009).
[Crossref] [PubMed]

Tekin, I. Ö.

H. Engin, Y. Üstündağ, İ. Ö. Tekin, A. Gökmen, Ş. Ertop, and S. U. İlikhan, “Plasma concentrations of angiopoietin-1, angiopoietin-2 and Tie-2 in colon cancer,” Eur. Cytokine Netw. 23(2), 68–71 (2012).
[PubMed]

Thomas, M.

I. Helfrich, L. Edler, A. Sucker, M. Thomas, S. Christian, D. Schadendorf, and H. G. Augustin, “Angiopoietin-2 Levels Are Associated with Disease Progression in Metastatic Malignant Melanoma,” Clin. Cancer Res. 15(4), 1384–1392 (2009).
[Crossref] [PubMed]

Toma, K.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

Toma, M.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

Tommasi, A.

S. Ricciardi, F. Frascella, A. Angelini, A. Lamberti, P. Munzert, L. Boarino, R. Rizzo, A. Tommasi, and E. Descrovi, “Optofluidic chip for surface wave-based fluorescence sensing,” Sens. Actuators B Chem. 215, 225–230 (2015).
[Crossref]

Tremante, E.

A. Sinibaldi, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free/fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref] [PubMed]

Treviño, J.

J. Treviño, A. Calle, J. M. Rodríguez-Frade, M. Mellado, and L. M. Lechuga, “Determination of human growth hormone in human serum samples by surface plasmon resonance immunoassay,” Talanta 78(3), 1011–1016 (2009).
[Crossref] [PubMed]

Ustündag, Y.

H. Engin, Y. Ustündağ, I. Ozel Tekin, and A. Gökmen, “Plasma concentrations of Ang-1, Ang-2 and Tie-2 in gastric cancer,” Eur. Cytokine Netw. 23(1), 21–24 (2012).
[PubMed]

Üstündag, Y.

H. Engin, Y. Üstündağ, İ. Ö. Tekin, A. Gökmen, Ş. Ertop, and S. U. İlikhan, “Plasma concentrations of angiopoietin-1, angiopoietin-2 and Tie-2 in colon cancer,” Eur. Cytokine Netw. 23(2), 68–71 (2012).
[PubMed]

Vaisocherová, H.

H. Vaisocherová, K. Mrkvová, M. Piliarik, P. Jinoch, M. Steinbachová, and J. Homola, “Surface plasmon resonance biosensor for direct detection of antibody against Epstein-Barr virus,” Biosens. Bioelectron. 22(6), 1020–1026 (2007).
[Crossref] [PubMed]

Van Cutsem, E.

M. Verstraete, A. Debucquoy, J. Dekervel, J. van Pelt, C. Verslype, E. Devos, G. Chiritescu, K. Dumon, A. D’Hoore, O. Gevaert, X. Sagaert, E. Van Cutsem, and K. Haustermans, “Combining bevacizumab and chemoradiation in rectal cancer. Translational results of the AXEBeam trial,” Br. J. Cancer 112(8), 1314–1325 (2015).
[Crossref] [PubMed]

van Pelt, J.

M. Verstraete, A. Debucquoy, J. Dekervel, J. van Pelt, C. Verslype, E. Devos, G. Chiritescu, K. Dumon, A. D’Hoore, O. Gevaert, X. Sagaert, E. Van Cutsem, and K. Haustermans, “Combining bevacizumab and chemoradiation in rectal cancer. Translational results of the AXEBeam trial,” Br. J. Cancer 112(8), 1314–1325 (2015).
[Crossref] [PubMed]

Vanzetti, L.

S. Fiorilli, P. Rivolo, E. Descrovi, C. Ricciardi, L. Pasquardini, L. Lunelli, L. Vanzetti, C. Pederzolli, B. Onida, and E. Garrone, “Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates,” J. Colloid Interface Sci. 321(1), 235–241 (2008).
[Crossref] [PubMed]

Verbarg, J.

J. Verbarg, O. Hadass, P. D. Olivo, and A. Danielli, “High sensitivity detection of a protein biomarker interleukin-8 utilizing a magnetic modulation biosensing system,” Sens. Actuators B Chem. 241, 614–618 (2017).
[Crossref]

Verslype, C.

M. Verstraete, A. Debucquoy, J. Dekervel, J. van Pelt, C. Verslype, E. Devos, G. Chiritescu, K. Dumon, A. D’Hoore, O. Gevaert, X. Sagaert, E. Van Cutsem, and K. Haustermans, “Combining bevacizumab and chemoradiation in rectal cancer. Translational results of the AXEBeam trial,” Br. J. Cancer 112(8), 1314–1325 (2015).
[Crossref] [PubMed]

Verstraete, M.

M. Verstraete, A. Debucquoy, J. Dekervel, J. van Pelt, C. Verslype, E. Devos, G. Chiritescu, K. Dumon, A. D’Hoore, O. Gevaert, X. Sagaert, E. Van Cutsem, and K. Haustermans, “Combining bevacizumab and chemoradiation in rectal cancer. Translational results of the AXEBeam trial,” Br. J. Cancer 112(8), 1314–1325 (2015).
[Crossref] [PubMed]

Vicario, C.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic Crystal Biosensor Based on Optical Surface Waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

Wächter, C.

C. Wächter, R. Rizzo, F. Michelotti, P. Munzert, and N. Danz, “Leaky waveguides for low k-measurement: From structure design to loss evaluation,” Proc. SPIE 9750, 975019 (2016).

R. Rizzo, N. Danz, F. Michelotti, E. Maillart, A. Anopchenko, and C. Wächter, “Optimization of angularly resolved Bloch surface wave biosensors,” Opt. Express 22(19), 23202–23214 (2014).
[Crossref] [PubMed]

Waldhäusl, R.

Wang, Y.

Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81(23), 9625–9632 (2009).
[Crossref] [PubMed]

Weinberg, R. A.

D. Hanahan and R. A. Weinberg, “Hallmarks of Cancer: The Next Generation,” Cell 144(5), 646–674 (2011).
[Crossref] [PubMed]

Winzor, D. J.

D. J. O’Shannessy and D. J. Winzor, “Interpretation of deviations from pseudo-first-order kinetic behavior in the characterization of ligand binding by biosensor technology,” Anal. Biochem. 236(2), 275–283 (1996).
[Crossref] [PubMed]

Wyser Rmili, C.

N. Rigamonti, E. Kadioglu, I. Keklikoglou, C. Wyser Rmili, C. C. Leow, and M. De Palma, “Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade,” Cell Reports 8(3), 696–706 (2014).
[Crossref] [PubMed]

Yablonovich, E.

E. Yablonovich, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 57, 8–11 (1986).

Yariv, A.

Yeh, P.

Yildirim, N.

N. Yildirim, F. Long, C. Gao, M. He, H. C. Shi, and A. Z. Gu, “Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples,” Environ. Sci. Technol. 46(6), 3288–3294 (2012).
[Crossref] [PubMed]

Zhao, X.

Y. Zhao, X. Zhao, and Z. Gu, “Photonic Crystals in Bioassays,” Adv. Funct. Mater. 20(18), 2970–2988 (2010).
[Crossref]

Zhao, Y.

Y. Zhao, X. Zhao, and Z. Gu, “Photonic Crystals in Bioassays,” Adv. Funct. Mater. 20(18), 2970–2988 (2010).
[Crossref]

Adv. Funct. Mater. (1)

Y. Zhao, X. Zhao, and Z. Gu, “Photonic Crystals in Bioassays,” Adv. Funct. Mater. 20(18), 2970–2988 (2010).
[Crossref]

Anal. Biochem. (1)

D. J. O’Shannessy and D. J. Winzor, “Interpretation of deviations from pseudo-first-order kinetic behavior in the characterization of ligand binding by biosensor technology,” Anal. Biochem. 236(2), 275–283 (1996).
[Crossref] [PubMed]

Anal. Chem. (1)

Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81(23), 9625–9632 (2009).
[Crossref] [PubMed]

Analyst (Lond.) (1)

F. Frascella, S. Ricciardi, L. Pasquardini, C. Potrich, A. Angelini, A. Chiadò, C. Pederzolli, N. De Leo, P. Rivolo, C. F. Pirri, and E. Descrovi, “Enhanced fluorescence detection of miRNA-16 on a photonic crystal,” Analyst (Lond.) 140(16), 5459–5463 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

Biosens. Bioelectron. (3)

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

A. Sinibaldi, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free/fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref] [PubMed]

H. Vaisocherová, K. Mrkvová, M. Piliarik, P. Jinoch, M. Steinbachová, and J. Homola, “Surface plasmon resonance biosensor for direct detection of antibody against Epstein-Barr virus,” Biosens. Bioelectron. 22(6), 1020–1026 (2007).
[Crossref] [PubMed]

Br. J. Cancer (1)

M. Verstraete, A. Debucquoy, J. Dekervel, J. van Pelt, C. Verslype, E. Devos, G. Chiritescu, K. Dumon, A. D’Hoore, O. Gevaert, X. Sagaert, E. Van Cutsem, and K. Haustermans, “Combining bevacizumab and chemoradiation in rectal cancer. Translational results of the AXEBeam trial,” Br. J. Cancer 112(8), 1314–1325 (2015).
[Crossref] [PubMed]

Cell (1)

D. Hanahan and R. A. Weinberg, “Hallmarks of Cancer: The Next Generation,” Cell 144(5), 646–674 (2011).
[Crossref] [PubMed]

Cell Reports (1)

N. Rigamonti, E. Kadioglu, I. Keklikoglou, C. Wyser Rmili, C. C. Leow, and M. De Palma, “Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade,” Cell Reports 8(3), 696–706 (2014).
[Crossref] [PubMed]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

Chest (1)

J. H. Park, K. J. Park, Y. S. Kim, S. S. Sheen, K. S. Lee, H. N. Lee, Y. J. Oh, and S. C. Hwang, “Serum Angiopoietin-2 as a Clinical Marker for Lung Cancer,” Chest 132(1), 200–206 (2007).
[Crossref] [PubMed]

Clin. Cancer Res. (1)

I. Helfrich, L. Edler, A. Sucker, M. Thomas, S. Christian, D. Schadendorf, and H. G. Augustin, “Angiopoietin-2 Levels Are Associated with Disease Progression in Metastatic Malignant Melanoma,” Clin. Cancer Res. 15(4), 1384–1392 (2009).
[Crossref] [PubMed]

Environ. Res. (1)

D. J. Ehresman, J. W. Froehlich, G. W. Olsen, S.-C. Chang, and J. L. Butenhoff, “Comparison of human whole blood, plasma, and serum matrices for the determination of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and other fluorochemicals,” Environ. Res. 103(2), 176–184 (2007).
[Crossref] [PubMed]

Environ. Sci. Technol. (1)

N. Yildirim, F. Long, C. Gao, M. He, H. C. Shi, and A. Z. Gu, “Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples,” Environ. Sci. Technol. 46(6), 3288–3294 (2012).
[Crossref] [PubMed]

Eur. Cytokine Netw. (2)

H. Engin, Y. Üstündağ, İ. Ö. Tekin, A. Gökmen, Ş. Ertop, and S. U. İlikhan, “Plasma concentrations of angiopoietin-1, angiopoietin-2 and Tie-2 in colon cancer,” Eur. Cytokine Netw. 23(2), 68–71 (2012).
[PubMed]

H. Engin, Y. Ustündağ, I. Ozel Tekin, and A. Gökmen, “Plasma concentrations of Ang-1, Ang-2 and Tie-2 in gastric cancer,” Eur. Cytokine Netw. 23(1), 21–24 (2012).
[PubMed]

Eur. J. Clin. Invest. (1)

G. J. Caine, A. D. Blann, P. S. Stonelake, P. Ryan, and G. Y. H. Lip, “Plasma angiopoietin-1, angiopoietin-2 and Tie-2 in breast and prostate cancer: a comparison with VEGF and Flt-1,” Eur. J. Clin. Invest. 33(10), 883–890 (2003).
[Crossref] [PubMed]

Exp. Cell Res. (1)

L. Eklund and P. Saharinen, “Angiopoietin signaling in the vasculature,” Exp. Cell Res. 319(9), 1271–1280 (2013).
[Crossref] [PubMed]

J. Clin. Pharm. Ther. (1)

I. Krämer and H.-P. Lipp, “Bevacizumab, a humanized anti-angiogenic monoclonal antibody for the treatment of colorectal cancer,” J. Clin. Pharm. Ther. 32(1), 1–14 (2007).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

S. Fiorilli, P. Rivolo, E. Descrovi, C. Ricciardi, L. Pasquardini, L. Lunelli, L. Vanzetti, C. Pederzolli, B. Onida, and E. Garrone, “Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates,” J. Colloid Interface Sci. 321(1), 235–241 (2008).
[Crossref] [PubMed]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Nat. Rev. Cancer (1)

G. Bergers and L. E. Benjamin, “Tumorigenesis and the angiogenic switch,” Nat. Rev. Cancer 3(6), 401–410 (2003).
[Crossref] [PubMed]

Nat. Rev. Drug Discov. (1)

J. Folkman, “Angiogenesis: an organizing principle for drug discovery?” Nat. Rev. Drug Discov. 6(4), 273–286 (2007).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

E. Yablonovich, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 57, 8–11 (1986).

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Proc. SPIE (2)

C. Wächter, R. Rizzo, F. Michelotti, P. Munzert, and N. Danz, “Leaky waveguides for low k-measurement: From structure design to loss evaluation,” Proc. SPIE 9750, 975019 (2016).

N. Danz, A. Sinibaldi, P. Munzert, A. Anopchenko, E. Förster, S. Schmieder, R. Chandrawati, R. Rizzo, R. Heller, F. Sonntag, A. Mascioletti, S. Rana, T. Schubert, M. M. Stevens, and F. Michelotti, “Biosensing platform combining label-free and labelled analysis using Bloch surface waves,” Proc. SPIE 9506, 95060V (2015).

Sens. Actuators B Chem. (7)

R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, R. Chandrawati, S. Rana, P. Munzert, T. Schubert, E. Maillart, A. Anopchenko, P. Rivolo, A. Mascioletti, F. Sonntag, M. M. Stevens, F. Bussolino, and F. Michelotti, “Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices,” Sens. Actuators B Chem. 255, 2143–2150 (2018).
[Crossref]

J. Verbarg, O. Hadass, P. D. Olivo, and A. Danielli, “High sensitivity detection of a protein biomarker interleukin-8 utilizing a magnetic modulation biosensing system,” Sens. Actuators B Chem. 241, 614–618 (2017).
[Crossref]

S. Ricciardi, F. Frascella, A. Angelini, A. Lamberti, P. Munzert, L. Boarino, R. Rizzo, A. Tommasi, and E. Descrovi, “Optofluidic chip for surface wave-based fluorescence sensing,” Sens. Actuators B Chem. 215, 225–230 (2015).
[Crossref]

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B Chem. 105(2), 360–364 (2005).
[Crossref]

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sens. Actuators B Chem. 157(1), 260–264 (2011).
[Crossref]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Actuators B Chem. 161(1), 1046–1052 (2012).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

Sensors (Basel) (2)

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic Crystal Biosensor Based on Optical Surface Waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors (Basel) 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

Surf. Coat. Tech. (1)

P. Munzert, N. Danz, A. Sinibaldi, and F. Michelotti, “Multilayer coatings for Bloch surface wave optical biosensors,” Surf. Coat. Tech. 314, 79–84 (2017).
[Crossref]

Talanta (1)

J. Treviño, A. Calle, J. M. Rodríguez-Frade, M. Mellado, and L. M. Lechuga, “Determination of human growth hormone in human serum samples by surface plasmon resonance immunoassay,” Talanta 78(3), 1011–1016 (2009).
[Crossref] [PubMed]

Other (2)

A. C. Teixeira, I. R. C. Brasil, A. F. C. Torres, and F. Tavora, “The Evaluation of Angiogenesis Markers in Hepatocellular Carcinoma and Precursor Lesions in Liver Explants From a Single Institution,” Appl. Immunohistochem. Mol. Morphol., (posted 23 August 2016).

T. Scientific, “Dylight 650,” https://www.thermofisher.com/it/en/home/life-science/protein-biology/protein-labeling-crosslinking/protein-labeling/fluorescent-protein-labeling/dylight-fluors-technology-product-guide.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Picture of the plastic biochip with integrated micro-optics and polymeric microfluidic cover, the deposited PC appears as a greenish square. (b) Normalized |E|2 field distribution in log scale associated to a resonantly excited TE BSW (solid) compared to the substrate/water interface (dashed). The curves are calculated at λ1 = 670 nm (red) and λ2 = 635 nm (blue). The 1DPC structure is shown in the background of the figure. (c) Angular reflectance spectra for the TE (solid) and TM (dashed) polarization, calculated at λ1 (red) and λ2 (blue). (d) Angular emission patterns in log scale integrated over the DyLight 650 spectrum and over the two TE and TM polarizations. The curves are for molecules isotropically oriented and located at the interface between: (dot) substrate/external medium, (solid) 1DPC/external medium, (dashed) 1DPC/external medium and taking into account the effect of the intensity enhancement on the excitation rate.

Fig. 2
Fig. 2

Sketch of the fluorescence mode optical system without plotting laser diode collimation. Fluorescence excitation (blue) and emission (red) are shown with an arrangement of five spots along the illuminated line. The positive (Anti-Ang2) and negative regions (Anti-VEGF and BSA) were obtained with the five-channel functionalization flow cell on top of the biochip. The two axes of the CCD detector represent the position along the illuminated line on the chip as well as the angular spectrum of emission.

Fig. 3
Fig. 3

Schematic of the sandwich assay for the detection of Ang2 biomarker using the fluorescence mode.

Fig. 4
Fig. 4

(a) Fluorescence emission recorded by the CCD camera at the end of an assay, where Ang2 was detected; (b) Angular emission profiles along the dashed lines.

Fig. 5
Fig. 5

Fluorescence intensities recorded for the standard Ang2 solutions at different concentrations in D-PBS. (a) Fluorescence intensities recorded by the CCD at the end of the assay. (b) Integrated and averaged intensities for each group of spots on the BSW biochip; the error bars represent the standard deviation associated with the integrated and averaged values.

Fig. 6
Fig. 6

Calibration curve of Ang2 in D-PBS. Each point represents the difference between the averaged intensities recorded in the Anti-Ang2 spots and in the reference spots averaged on two replicate measurements. The coefficient of variation (CV) of the data points is 18%, 6.5%, 7.3%, 4.5%, 4.4%, from the lowest to the highest concentration respectively.

Tables (2)

Tables Icon

Table 1 Ang2 concentrations in plasma samples from metastatic colorectal cancer patients as estimated by both the ELISA and the BSW platform. For the BSW system, each calculated value is the mean of two duplicate experiments.

Tables Icon

Table 2 Assay percent variations in plasma samples measurements and in the calibration procedure.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F= A 1 + A 2 A 1 1+ A 3 /c