Abstract

We propose a high speed all-optic dual-modal system that combines spectral domain optical coherence tomography (SDOCT) and photoacoustic imaging (PAI) to evaluate microvasculature flow states. A homodyne interferometer was used to remotely detect the surface vibration caused by photoacoustic (PA) waves. The PA excitation, PA probing and SDOCT probing beams share the same X-Y galvanometer scanner to perform fast two-dimensional scanning. In addition, we introduced multi-excitation, dual-channel acquisition and sensitivity compensation to improve the imaging speed of the PAI sub-system. The total time for imaging a sample with 256 × 256 pixels is less than 1 minute. The performance of the proposed system was verified by in vivo imaging of the vascular system in a mouse pinna with normal and then blocked blood circulations. The experimental results indicate that the proposed system is capable of revealing different blood flow states (static and moving) and is useful for the study of diseases related to functional blood supply.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical coherence tomography based angiography [Invited]

Chieh-Li Chen and Ruikang K. Wang
Biomed. Opt. Express 8(2) 1056-1082 (2017)

Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source

Jingjiang Xu, Shaozhen Song, Wei Wei, and Ruikang K. Wang
Biomed. Opt. Express 8(1) 420-435 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000).
    [Crossref] [PubMed]
  2. P. Carmeliet and D. Collen, “Molecular analysis of blood vessel formation and disease,” Am. J. Physiol. 273(5), H2091–H2104 (1997).
    [PubMed]
  3. L. Pascarella, G. W. Schönbein, and J. J. Bergan, “Microcirculation and venous ulcers: a review,” Ann. Vasc. Surg. 19(6), 921–927 (2005).
    [Crossref] [PubMed]
  4. D. L. Crandall, G. J. Hausman, and J. G. Kral, “A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives,” Microcirculation 4(2), 211–232 (1997).
    [Crossref] [PubMed]
  5. D. De Backer, J. Creteur, J. C. Preiser, M. J. Dubois, and J. L. Vincent, “Microvascular blood flow is altered in patients with sepsis,” Am. J. Respir. Crit. Care Med. 166(1), 98–104 (2002).
    [Crossref] [PubMed]
  6. Y. Jia, M. R. Grafe, A. Gruber, N. J. Alkayed, and R. K. Wang, “In vivo optical imaging of revascularization after brain trauma in mice,” Microvasc. Res. 81(1), 73–80 (2011).
    [Crossref] [PubMed]
  7. K. M. Poole, D. R. McCormack, C. A. Patil, C. L. Duvall, and M. C. Skala, “Quantifying the vascular response to ischemia with speckle variance optical coherence tomography,” Biomed. Opt. Express 5(12), 4118–4130 (2014).
    [Crossref] [PubMed]
  8. C. A. Park, C. K. Kang, Y. B. Kim, and Z. H. Cho, “Advances in MR angiography with 7T MRI: From microvascular imaging to functional angiography,” Neuroimage 168, 269–278 (2018).
    [Crossref] [PubMed]
  9. D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
    [Crossref] [PubMed]
  10. S. Bash, J. P. Villablanca, R. Jahan, G. Duckwiler, M. Tillis, C. Kidwell, J. Saver, and J. Sayre, “Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography,” AJNR Am. J. Neuroradiol. 26(5), 1012–1021 (2005).
    [PubMed]
  11. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  12. R. K. Wang, “Three-dimensional optical micro-angiography maps directional blood perfusion deep within microcirculation tissue beds in vivo,” Phys. Med. Biol. 52(23), N531–N537 (2007).
    [Crossref] [PubMed]
  13. U. Baran, E. Swanson, J. E. Sanders, and R. K. Wang, “OCT-based microangiography for reactive hyperaemia assessment within residual limb skin of people with lower limb loss,” Skin Res. Technol. 24(1), 152–155 (2018).
    [Crossref] [PubMed]
  14. G. L. Su, D. M. Baughman, Q. Zhang, K. Rezaei, A. Y. Lee, and C. S. Lee, “Comparison of retina specialist preferences regarding spectral-domain and swept-source optical coherence tomography angiography,” Clin. Ophthalmol. 11, 889–895 (2017).
    [Crossref] [PubMed]
  15. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
    [Crossref] [PubMed]
  16. T. Liu, Q. Wei, J. Wang, S. Jiao, and H. F. Zhang, “Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen,” Biomed. Opt. Express 2(5), 1359–1365 (2011).
    [Crossref] [PubMed]
  17. Y. Yang, X. Li, T. Wang, P. D. Kumavor, A. Aguirre, K. K. Shung, Q. Zhou, M. Sanders, M. Brewer, and Q. Zhu, “Integrated optical coherence tomography, ultrasound and photoacoustic imaging for ovarian tissue characterization,” Biomed. Opt. Express 2(9), 2551–2561 (2011).
    [Crossref] [PubMed]
  18. L. Li, K. Maslov, G. Ku, and L. V. Wang, “Three-dimensional combined photoacoustic and optical coherence microscopy for in vivo microcirculation studies,” Opt. Express 17(19), 16450–16455 (2009).
    [Crossref] [PubMed]
  19. M. Jeon and C. Kim, “Multimodal photoacoustic tomography,” IEEE Trans. Multimed. 15(5), 975–982 (2013).
    [Crossref]
  20. C. Lee, S. Han, S. Kim, M. Jeon, M. Y. Jeon, C. Kim, and J. Kim, “Combined photoacoustic and optical coherence tomography using a single near-infrared supercontinuum laser source,” Appl. Opt. 52(9), 1824–1828 (2013).
    [Crossref] [PubMed]
  21. S. Jiao, Z. Xie, H. F. Zhang, and C. A. Puliafito, “Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography,” Opt. Lett. 34(19), 2961–2963 (2009).
    [Crossref] [PubMed]
  22. M. Liu, B. Maurer, B. Hermann, B. Zabihian, M. G. Sandrian, A. Unterhuber, B. Baumann, E. Z. Zhang, P. C. Beard, W. J. Weninger, and W. Drexler, “Dual modality optical coherence and whole-body photoacoustic tomography imaging of chick embryos in multiple development stages,” Biomed. Opt. Express 5(9), 3150–3159 (2014).
    [Crossref] [PubMed]
  23. S. A. Carp and V. Venugopalan, “Optoacoustic imaging based on the interferometric measurement of surface displacement,” J. Biomed. Opt. 12(6), 064001 (2007).
    [Crossref] [PubMed]
  24. S. A. Carp, A. Guerra, S. Q. Duque, and V. Venugopalan, “Optoacoustic imaging using interferometric measurement of surface displacement,” Appl. Phys. Lett. 85(23), 5772–5774 (2004).
    [Crossref]
  25. A. Hochreiner, J. Bauer-Marschallinger, P. Burgholzer, B. Jakoby, and T. Berer, “Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification,” Biomed. Opt. Express 4(11), 2322–2331 (2013).
    [Crossref] [PubMed]
  26. G. Rousseau, A. Blouin, and J. P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3(1), 16–25 (2012).
    [Crossref] [PubMed]
  27. P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(6), 1575–1582 (1999).
    [Crossref] [PubMed]
  28. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
    [Crossref] [PubMed]
  29. M. Liu, Z. Chen, E. Rank, B. Zabihian, E. Z. Zhang, P.C. Beard, H. Kittler, and W. Drexler, “Combined multimodal photoacoustic tomography, optical coherence tomography (OCT) and OCT based angiography system for in vivo imaging of multiple skin disorders in human (Conference Presentation),” SPIE BiOS, 100370T (2017).
  30. Y. Wang, C. Li, and R. K. Wang, “Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector,” Opt. Lett. 36(20), 3975–3977 (2011).
    [Crossref] [PubMed]
  31. J. Lu, Y. Gao, Z. Ma, H. Zhou, R. K. Wang, and Y. Wang, “In vivo photoacoustic imaging of blood vessels using a homodyne interferometer with zero-crossing triggering,” J. Biomed. Opt. 22(3), 036002 (2017).
    [Crossref] [PubMed]
  32. S. J. Park, J. Eom, Y. H. Kim, C. S. Lee, and B. H. Lee, “Noncontact photoacoustic imaging based on all-fiber heterodyne interferometer,” Opt. Lett. 39(16), 4903–4906 (2014).
    [Crossref] [PubMed]
  33. Z. Chen, S. Yang, and D. Xing, “Optically integrated trimodality imaging system: combined all-optical photoacoustic microscopy, optical coherence tomography, and fluorescence imaging,” Opt. Lett. 41(7), 1636–1639 (2016).
    [Crossref] [PubMed]
  34. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
    [Crossref] [PubMed]
  35. L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013 (2011).
    [Crossref] [PubMed]
  36. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express 18(3), 2477–2494 (2010).
    [Crossref] [PubMed]
  37. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009).
    [Crossref] [PubMed]
  38. D. Royer and E. Dieulesaint, Elastic Waves in Solids I: Freeand Guided Propagation (Springer, 2000).
  39. L. Lipiainen, K. Kokkonen, and M. Kaivola, “Phase sensitive absolute amplitude detection of surface vibrations using homodyne interferometry without active stabilization,” J. Appl. Phys. 108(11), 114510 (2010).
    [Crossref]
  40. F. Lärmer, A. Schilp, K. Funk, and C. Burrer, “Experimental characterization of dynamic micromechanical transducers,” J. Micromech. Microeng. 6(1), 177–186 (1996).
    [Crossref]
  41. R. G. White and D. C. Emmony, “Active feedback stabilisation of a michelson interferometer using a flexure element,” J. Phys. E Sci. Instrum. 18(18), 658–663 (1985).
    [Crossref]
  42. Z. Ma, Z. He, S. Wang, M. Li, Q. Wang, J. Lv, F. Wang, and Y. Wang, “Practical approach for dispersion compensation in spectral-domain optical coherence tomography,” Opt. Eng. 51(6), 063203 (2012).
    [Crossref]
  43. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
    [Crossref] [PubMed]
  44. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
    [Crossref] [PubMed]
  45. L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging (John Wiley & Sons, 2012).
  46. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  47. S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
    [Crossref] [PubMed]
  48. R. J. Thomas, B. A. Rockwell, W. J. Marshall, R. C. Aldrich, S. A. Zimmerman, and R. J. Rockwell, “A procedure for multiple-pulse maximum permissible exposure determination under the Z136. 1-2000 American National Standard for Safe Use of Lasers,” J. Laser Appl. 13(4), 134–140 (2001).
    [Crossref]
  49. G. Rousseau, B. Gauthier, A. Blouin, and J. P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17(6), 061217 (2012).
    [Crossref] [PubMed]
  50. J. Eom, S. J. Park, and B. H. Lee, “Noncontact photoacoustic tomography of in vivo chicken chorioallantoic membrane based on all-fiber heterodyne interferometry,” J. Biomed. Opt. 20(10), 106007 (2015).
    [Crossref] [PubMed]
  51. Z. Chen, S. Yang, Y. Wang, and D. Xing, “All-optically integrated photo-acoustic microscopy and optical coherence tomography based on a single Michelson detector,” Opt. Lett. 40(12), 2838–2841 (2015).
    [Crossref] [PubMed]
  52. Z. Chen, S. Yang, Y. Wang, and D. Xing, “Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer,” Appl. Phys. Lett. 106(4), 043701 (2015).
    [Crossref]
  53. P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6(6), e16278 (2017).
    [Crossref] [PubMed]
  54. P. H. Reza, K. Bell, W. Shi, J. Shapiro, and R. J. Zemp, “Deep non-contact photoacoustic initial pressure imaging,” Optica 5(7), 814–820 (2018).
    [Crossref]

2018 (3)

C. A. Park, C. K. Kang, Y. B. Kim, and Z. H. Cho, “Advances in MR angiography with 7T MRI: From microvascular imaging to functional angiography,” Neuroimage 168, 269–278 (2018).
[Crossref] [PubMed]

U. Baran, E. Swanson, J. E. Sanders, and R. K. Wang, “OCT-based microangiography for reactive hyperaemia assessment within residual limb skin of people with lower limb loss,” Skin Res. Technol. 24(1), 152–155 (2018).
[Crossref] [PubMed]

P. H. Reza, K. Bell, W. Shi, J. Shapiro, and R. J. Zemp, “Deep non-contact photoacoustic initial pressure imaging,” Optica 5(7), 814–820 (2018).
[Crossref]

2017 (3)

P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6(6), e16278 (2017).
[Crossref] [PubMed]

G. L. Su, D. M. Baughman, Q. Zhang, K. Rezaei, A. Y. Lee, and C. S. Lee, “Comparison of retina specialist preferences regarding spectral-domain and swept-source optical coherence tomography angiography,” Clin. Ophthalmol. 11, 889–895 (2017).
[Crossref] [PubMed]

J. Lu, Y. Gao, Z. Ma, H. Zhou, R. K. Wang, and Y. Wang, “In vivo photoacoustic imaging of blood vessels using a homodyne interferometer with zero-crossing triggering,” J. Biomed. Opt. 22(3), 036002 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (3)

J. Eom, S. J. Park, and B. H. Lee, “Noncontact photoacoustic tomography of in vivo chicken chorioallantoic membrane based on all-fiber heterodyne interferometry,” J. Biomed. Opt. 20(10), 106007 (2015).
[Crossref] [PubMed]

Z. Chen, S. Yang, Y. Wang, and D. Xing, “All-optically integrated photo-acoustic microscopy and optical coherence tomography based on a single Michelson detector,” Opt. Lett. 40(12), 2838–2841 (2015).
[Crossref] [PubMed]

Z. Chen, S. Yang, Y. Wang, and D. Xing, “Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer,” Appl. Phys. Lett. 106(4), 043701 (2015).
[Crossref]

2014 (3)

2013 (4)

2012 (3)

Z. Ma, Z. He, S. Wang, M. Li, Q. Wang, J. Lv, F. Wang, and Y. Wang, “Practical approach for dispersion compensation in spectral-domain optical coherence tomography,” Opt. Eng. 51(6), 063203 (2012).
[Crossref]

G. Rousseau, B. Gauthier, A. Blouin, and J. P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17(6), 061217 (2012).
[Crossref] [PubMed]

G. Rousseau, A. Blouin, and J. P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3(1), 16–25 (2012).
[Crossref] [PubMed]

2011 (7)

Y. Wang, C. Li, and R. K. Wang, “Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector,” Opt. Lett. 36(20), 3975–3977 (2011).
[Crossref] [PubMed]

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013 (2011).
[Crossref] [PubMed]

T. Liu, Q. Wei, J. Wang, S. Jiao, and H. F. Zhang, “Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen,” Biomed. Opt. Express 2(5), 1359–1365 (2011).
[Crossref] [PubMed]

Y. Yang, X. Li, T. Wang, P. D. Kumavor, A. Aguirre, K. K. Shung, Q. Zhou, M. Sanders, M. Brewer, and Q. Zhu, “Integrated optical coherence tomography, ultrasound and photoacoustic imaging for ovarian tissue characterization,” Biomed. Opt. Express 2(9), 2551–2561 (2011).
[Crossref] [PubMed]

Y. Jia, M. R. Grafe, A. Gruber, N. J. Alkayed, and R. K. Wang, “In vivo optical imaging of revascularization after brain trauma in mice,” Microvasc. Res. 81(1), 73–80 (2011).
[Crossref] [PubMed]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
[Crossref] [PubMed]

2010 (2)

V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express 18(3), 2477–2494 (2010).
[Crossref] [PubMed]

L. Lipiainen, K. Kokkonen, and M. Kaivola, “Phase sensitive absolute amplitude detection of surface vibrations using homodyne interferometry without active stabilization,” J. Appl. Phys. 108(11), 114510 (2010).
[Crossref]

2009 (4)

2008 (2)

2007 (3)

S. A. Carp and V. Venugopalan, “Optoacoustic imaging based on the interferometric measurement of surface displacement,” J. Biomed. Opt. 12(6), 064001 (2007).
[Crossref] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
[Crossref] [PubMed]

R. K. Wang, “Three-dimensional optical micro-angiography maps directional blood perfusion deep within microcirculation tissue beds in vivo,” Phys. Med. Biol. 52(23), N531–N537 (2007).
[Crossref] [PubMed]

2005 (2)

S. Bash, J. P. Villablanca, R. Jahan, G. Duckwiler, M. Tillis, C. Kidwell, J. Saver, and J. Sayre, “Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography,” AJNR Am. J. Neuroradiol. 26(5), 1012–1021 (2005).
[PubMed]

L. Pascarella, G. W. Schönbein, and J. J. Bergan, “Microcirculation and venous ulcers: a review,” Ann. Vasc. Surg. 19(6), 921–927 (2005).
[Crossref] [PubMed]

2004 (1)

S. A. Carp, A. Guerra, S. Q. Duque, and V. Venugopalan, “Optoacoustic imaging using interferometric measurement of surface displacement,” Appl. Phys. Lett. 85(23), 5772–5774 (2004).
[Crossref]

2003 (1)

D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
[Crossref] [PubMed]

2002 (1)

D. De Backer, J. Creteur, J. C. Preiser, M. J. Dubois, and J. L. Vincent, “Microvascular blood flow is altered in patients with sepsis,” Am. J. Respir. Crit. Care Med. 166(1), 98–104 (2002).
[Crossref] [PubMed]

2001 (1)

R. J. Thomas, B. A. Rockwell, W. J. Marshall, R. C. Aldrich, S. A. Zimmerman, and R. J. Rockwell, “A procedure for multiple-pulse maximum permissible exposure determination under the Z136. 1-2000 American National Standard for Safe Use of Lasers,” J. Laser Appl. 13(4), 134–140 (2001).
[Crossref]

2000 (1)

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000).
[Crossref] [PubMed]

1999 (1)

P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(6), 1575–1582 (1999).
[Crossref] [PubMed]

1997 (2)

P. Carmeliet and D. Collen, “Molecular analysis of blood vessel formation and disease,” Am. J. Physiol. 273(5), H2091–H2104 (1997).
[PubMed]

D. L. Crandall, G. J. Hausman, and J. G. Kral, “A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives,” Microcirculation 4(2), 211–232 (1997).
[Crossref] [PubMed]

1996 (1)

F. Lärmer, A. Schilp, K. Funk, and C. Burrer, “Experimental characterization of dynamic micromechanical transducers,” J. Micromech. Microeng. 6(1), 177–186 (1996).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1985 (1)

R. G. White and D. C. Emmony, “Active feedback stabilisation of a michelson interferometer using a flexure element,” J. Phys. E Sci. Instrum. 18(18), 658–663 (1985).
[Crossref]

Aguirre, A.

Aldrich, R. C.

R. J. Thomas, B. A. Rockwell, W. J. Marshall, R. C. Aldrich, S. A. Zimmerman, and R. J. Rockwell, “A procedure for multiple-pulse maximum permissible exposure determination under the Z136. 1-2000 American National Standard for Safe Use of Lasers,” J. Laser Appl. 13(4), 134–140 (2001).
[Crossref]

Alkayed, N. J.

Y. Jia, M. R. Grafe, A. Gruber, N. J. Alkayed, and R. K. Wang, “In vivo optical imaging of revascularization after brain trauma in mice,” Microvasc. Res. 81(1), 73–80 (2011).
[Crossref] [PubMed]

An, L.

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013 (2011).
[Crossref] [PubMed]

Baran, U.

U. Baran, E. Swanson, J. E. Sanders, and R. K. Wang, “OCT-based microangiography for reactive hyperaemia assessment within residual limb skin of people with lower limb loss,” Skin Res. Technol. 24(1), 152–155 (2018).
[Crossref] [PubMed]

Bash, S.

S. Bash, J. P. Villablanca, R. Jahan, G. Duckwiler, M. Tillis, C. Kidwell, J. Saver, and J. Sayre, “Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography,” AJNR Am. J. Neuroradiol. 26(5), 1012–1021 (2005).
[PubMed]

Bauer-Marschallinger, J.

Baughman, D. M.

G. L. Su, D. M. Baughman, Q. Zhang, K. Rezaei, A. Y. Lee, and C. S. Lee, “Comparison of retina specialist preferences regarding spectral-domain and swept-source optical coherence tomography angiography,” Clin. Ophthalmol. 11, 889–895 (2017).
[Crossref] [PubMed]

Baumann, B.

Beard, P.

Beard, P. C.

Beard, P.C.

M. Liu, Z. Chen, E. Rank, B. Zabihian, E. Z. Zhang, P.C. Beard, H. Kittler, and W. Drexler, “Combined multimodal photoacoustic tomography, optical coherence tomography (OCT) and OCT based angiography system for in vivo imaging of multiple skin disorders in human (Conference Presentation),” SPIE BiOS, 100370T (2017).

Bell, K.

P. H. Reza, K. Bell, W. Shi, J. Shapiro, and R. J. Zemp, “Deep non-contact photoacoustic initial pressure imaging,” Optica 5(7), 814–820 (2018).
[Crossref]

P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6(6), e16278 (2017).
[Crossref] [PubMed]

Berer, T.

Bergan, J. J.

L. Pascarella, G. W. Schönbein, and J. J. Bergan, “Microcirculation and venous ulcers: a review,” Ann. Vasc. Surg. 19(6), 921–927 (2005).
[Crossref] [PubMed]

Blouin, A.

G. Rousseau, B. Gauthier, A. Blouin, and J. P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17(6), 061217 (2012).
[Crossref] [PubMed]

G. Rousseau, A. Blouin, and J. P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3(1), 16–25 (2012).
[Crossref] [PubMed]

Boas, D. A.

Brewer, M.

Burgholzer, P.

Burrer, C.

F. Lärmer, A. Schilp, K. Funk, and C. Burrer, “Experimental characterization of dynamic micromechanical transducers,” J. Micromech. Microeng. 6(1), 177–186 (1996).
[Crossref]

Carmeliet, P.

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000).
[Crossref] [PubMed]

P. Carmeliet and D. Collen, “Molecular analysis of blood vessel formation and disease,” Am. J. Physiol. 273(5), H2091–H2104 (1997).
[PubMed]

Carp, S. A.

S. A. Carp and V. Venugopalan, “Optoacoustic imaging based on the interferometric measurement of surface displacement,” J. Biomed. Opt. 12(6), 064001 (2007).
[Crossref] [PubMed]

S. A. Carp, A. Guerra, S. Q. Duque, and V. Venugopalan, “Optoacoustic imaging using interferometric measurement of surface displacement,” Appl. Phys. Lett. 85(23), 5772–5774 (2004).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, Z.

Z. Chen, S. Yang, and D. Xing, “Optically integrated trimodality imaging system: combined all-optical photoacoustic microscopy, optical coherence tomography, and fluorescence imaging,” Opt. Lett. 41(7), 1636–1639 (2016).
[Crossref] [PubMed]

Z. Chen, S. Yang, Y. Wang, and D. Xing, “All-optically integrated photo-acoustic microscopy and optical coherence tomography based on a single Michelson detector,” Opt. Lett. 40(12), 2838–2841 (2015).
[Crossref] [PubMed]

Z. Chen, S. Yang, Y. Wang, and D. Xing, “Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer,” Appl. Phys. Lett. 106(4), 043701 (2015).
[Crossref]

M. Liu, Z. Chen, E. Rank, B. Zabihian, E. Z. Zhang, P.C. Beard, H. Kittler, and W. Drexler, “Combined multimodal photoacoustic tomography, optical coherence tomography (OCT) and OCT based angiography system for in vivo imaging of multiple skin disorders in human (Conference Presentation),” SPIE BiOS, 100370T (2017).

Cho, Z. H.

C. A. Park, C. K. Kang, Y. B. Kim, and Z. H. Cho, “Advances in MR angiography with 7T MRI: From microvascular imaging to functional angiography,” Neuroimage 168, 269–278 (2018).
[Crossref] [PubMed]

Choyke, P. L.

D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
[Crossref] [PubMed]

Collen, D.

P. Carmeliet and D. Collen, “Molecular analysis of blood vessel formation and disease,” Am. J. Physiol. 273(5), H2091–H2104 (1997).
[PubMed]

Crandall, D. L.

D. L. Crandall, G. J. Hausman, and J. G. Kral, “A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives,” Microcirculation 4(2), 211–232 (1997).
[Crossref] [PubMed]

Creteur, J.

D. De Backer, J. Creteur, J. C. Preiser, M. J. Dubois, and J. L. Vincent, “Microvascular blood flow is altered in patients with sepsis,” Am. J. Respir. Crit. Care Med. 166(1), 98–104 (2002).
[Crossref] [PubMed]

De Backer, D.

D. De Backer, J. Creteur, J. C. Preiser, M. J. Dubois, and J. L. Vincent, “Microvascular blood flow is altered in patients with sepsis,” Am. J. Respir. Crit. Care Med. 166(1), 98–104 (2002).
[Crossref] [PubMed]

Drexler, W.

M. Liu, B. Maurer, B. Hermann, B. Zabihian, M. G. Sandrian, A. Unterhuber, B. Baumann, E. Z. Zhang, P. C. Beard, W. J. Weninger, and W. Drexler, “Dual modality optical coherence and whole-body photoacoustic tomography imaging of chick embryos in multiple development stages,” Biomed. Opt. Express 5(9), 3150–3159 (2014).
[Crossref] [PubMed]

M. Liu, Z. Chen, E. Rank, B. Zabihian, E. Z. Zhang, P.C. Beard, H. Kittler, and W. Drexler, “Combined multimodal photoacoustic tomography, optical coherence tomography (OCT) and OCT based angiography system for in vivo imaging of multiple skin disorders in human (Conference Presentation),” SPIE BiOS, 100370T (2017).

Dubois, M. J.

D. De Backer, J. Creteur, J. C. Preiser, M. J. Dubois, and J. L. Vincent, “Microvascular blood flow is altered in patients with sepsis,” Am. J. Respir. Crit. Care Med. 166(1), 98–104 (2002).
[Crossref] [PubMed]

Duckwiler, G.

S. Bash, J. P. Villablanca, R. Jahan, G. Duckwiler, M. Tillis, C. Kidwell, J. Saver, and J. Sayre, “Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography,” AJNR Am. J. Neuroradiol. 26(5), 1012–1021 (2005).
[PubMed]

Duque, S. Q.

S. A. Carp, A. Guerra, S. Q. Duque, and V. Venugopalan, “Optoacoustic imaging using interferometric measurement of surface displacement,” Appl. Phys. Lett. 85(23), 5772–5774 (2004).
[Crossref]

Duvall, C. L.

Emmony, D. C.

R. G. White and D. C. Emmony, “Active feedback stabilisation of a michelson interferometer using a flexure element,” J. Phys. E Sci. Instrum. 18(18), 658–663 (1985).
[Crossref]

Eom, J.

J. Eom, S. J. Park, and B. H. Lee, “Noncontact photoacoustic tomography of in vivo chicken chorioallantoic membrane based on all-fiber heterodyne interferometry,” J. Biomed. Opt. 20(10), 106007 (2015).
[Crossref] [PubMed]

S. J. Park, J. Eom, Y. H. Kim, C. S. Lee, and B. H. Lee, “Noncontact photoacoustic imaging based on all-fiber heterodyne interferometer,” Opt. Lett. 39(16), 4903–4906 (2014).
[Crossref] [PubMed]

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

Funk, K.

F. Lärmer, A. Schilp, K. Funk, and C. Burrer, “Experimental characterization of dynamic micromechanical transducers,” J. Micromech. Microeng. 6(1), 177–186 (1996).
[Crossref]

Gao, Y.

J. Lu, Y. Gao, Z. Ma, H. Zhou, R. K. Wang, and Y. Wang, “In vivo photoacoustic imaging of blood vessels using a homodyne interferometer with zero-crossing triggering,” J. Biomed. Opt. 22(3), 036002 (2017).
[Crossref] [PubMed]

Gauthier, B.

G. Rousseau, B. Gauthier, A. Blouin, and J. P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17(6), 061217 (2012).
[Crossref] [PubMed]

Gorczynska, I.

Grafe, M. R.

Y. Jia, M. R. Grafe, A. Gruber, N. J. Alkayed, and R. K. Wang, “In vivo optical imaging of revascularization after brain trauma in mice,” Microvasc. Res. 81(1), 73–80 (2011).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gruber, A.

Y. Jia, M. R. Grafe, A. Gruber, N. J. Alkayed, and R. K. Wang, “In vivo optical imaging of revascularization after brain trauma in mice,” Microvasc. Res. 81(1), 73–80 (2011).
[Crossref] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
[Crossref] [PubMed]

Grulkowski, I.

Guerra, A.

S. A. Carp, A. Guerra, S. Q. Duque, and V. Venugopalan, “Optoacoustic imaging using interferometric measurement of surface displacement,” Appl. Phys. Lett. 85(23), 5772–5774 (2004).
[Crossref]

Hajireza, P.

P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6(6), e16278 (2017).
[Crossref] [PubMed]

Han, S.

Hanson, S. R.

Hausman, G. J.

D. L. Crandall, G. J. Hausman, and J. G. Kral, “A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives,” Microcirculation 4(2), 211–232 (1997).
[Crossref] [PubMed]

He, Z.

Z. Ma, Z. He, S. Wang, M. Li, Q. Wang, J. Lv, F. Wang, and Y. Wang, “Practical approach for dispersion compensation in spectral-domain optical coherence tomography,” Opt. Eng. 51(6), 063203 (2012).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hermann, B.

Hochreiner, A.

Hu, S.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hurst, S.

Jacques, S. L.

Jahan, R.

S. Bash, J. P. Villablanca, R. Jahan, G. Duckwiler, M. Tillis, C. Kidwell, J. Saver, and J. Sayre, “Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography,” AJNR Am. J. Neuroradiol. 26(5), 1012–1021 (2005).
[PubMed]

Jain, R. K.

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000).
[Crossref] [PubMed]

Jakoby, B.

Jeon, M.

Jeon, M. Y.

Jia, Y.

Y. Jia, M. R. Grafe, A. Gruber, N. J. Alkayed, and R. K. Wang, “In vivo optical imaging of revascularization after brain trauma in mice,” Microvasc. Res. 81(1), 73–80 (2011).
[Crossref] [PubMed]

Jiao, S.

Kaivola, M.

L. Lipiainen, K. Kokkonen, and M. Kaivola, “Phase sensitive absolute amplitude detection of surface vibrations using homodyne interferometry without active stabilization,” J. Appl. Phys. 108(11), 114510 (2010).
[Crossref]

Kang, C. K.

C. A. Park, C. K. Kang, Y. B. Kim, and Z. H. Cho, “Advances in MR angiography with 7T MRI: From microvascular imaging to functional angiography,” Neuroimage 168, 269–278 (2018).
[Crossref] [PubMed]

Kidwell, C.

S. Bash, J. P. Villablanca, R. Jahan, G. Duckwiler, M. Tillis, C. Kidwell, J. Saver, and J. Sayre, “Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography,” AJNR Am. J. Neuroradiol. 26(5), 1012–1021 (2005).
[PubMed]

Kim, C.

Kim, J.

Kim, S.

Kim, Y. B.

C. A. Park, C. K. Kang, Y. B. Kim, and Z. H. Cho, “Advances in MR angiography with 7T MRI: From microvascular imaging to functional angiography,” Neuroimage 168, 269–278 (2018).
[Crossref] [PubMed]

Kim, Y. H.

Kittler, H.

M. Liu, Z. Chen, E. Rank, B. Zabihian, E. Z. Zhang, P.C. Beard, H. Kittler, and W. Drexler, “Combined multimodal photoacoustic tomography, optical coherence tomography (OCT) and OCT based angiography system for in vivo imaging of multiple skin disorders in human (Conference Presentation),” SPIE BiOS, 100370T (2017).

Kokkonen, K.

L. Lipiainen, K. Kokkonen, and M. Kaivola, “Phase sensitive absolute amplitude detection of surface vibrations using homodyne interferometry without active stabilization,” J. Appl. Phys. 108(11), 114510 (2010).
[Crossref]

Kowalczyk, A.

Kral, J. G.

D. L. Crandall, G. J. Hausman, and J. G. Kral, “A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives,” Microcirculation 4(2), 211–232 (1997).
[Crossref] [PubMed]

Ku, G.

Kumavor, P. D.

Lärmer, F.

F. Lärmer, A. Schilp, K. Funk, and C. Burrer, “Experimental characterization of dynamic micromechanical transducers,” J. Micromech. Microeng. 6(1), 177–186 (1996).
[Crossref]

Laufer, J.

Lee, A. Y.

G. L. Su, D. M. Baughman, Q. Zhang, K. Rezaei, A. Y. Lee, and C. S. Lee, “Comparison of retina specialist preferences regarding spectral-domain and swept-source optical coherence tomography angiography,” Clin. Ophthalmol. 11, 889–895 (2017).
[Crossref] [PubMed]

Lee, B. H.

J. Eom, S. J. Park, and B. H. Lee, “Noncontact photoacoustic tomography of in vivo chicken chorioallantoic membrane based on all-fiber heterodyne interferometry,” J. Biomed. Opt. 20(10), 106007 (2015).
[Crossref] [PubMed]

S. J. Park, J. Eom, Y. H. Kim, C. S. Lee, and B. H. Lee, “Noncontact photoacoustic imaging based on all-fiber heterodyne interferometer,” Opt. Lett. 39(16), 4903–4906 (2014).
[Crossref] [PubMed]

Lee, C.

Lee, C. S.

G. L. Su, D. M. Baughman, Q. Zhang, K. Rezaei, A. Y. Lee, and C. S. Lee, “Comparison of retina specialist preferences regarding spectral-domain and swept-source optical coherence tomography angiography,” Clin. Ophthalmol. 11, 889–895 (2017).
[Crossref] [PubMed]

S. J. Park, J. Eom, Y. H. Kim, C. S. Lee, and B. H. Lee, “Noncontact photoacoustic imaging based on all-fiber heterodyne interferometer,” Opt. Lett. 39(16), 4903–4906 (2014).
[Crossref] [PubMed]

Leitgeb, R. A.

Li, C.

Li, L.

Li, M.

Z. Ma, Z. He, S. Wang, M. Li, Q. Wang, J. Lv, F. Wang, and Y. Wang, “Practical approach for dispersion compensation in spectral-domain optical coherence tomography,” Opt. Eng. 51(6), 063203 (2012).
[Crossref]

Li, X.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lipiainen, L.

L. Lipiainen, K. Kokkonen, and M. Kaivola, “Phase sensitive absolute amplitude detection of surface vibrations using homodyne interferometry without active stabilization,” J. Appl. Phys. 108(11), 114510 (2010).
[Crossref]

Liu, H.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

Liu, M.

M. Liu, B. Maurer, B. Hermann, B. Zabihian, M. G. Sandrian, A. Unterhuber, B. Baumann, E. Z. Zhang, P. C. Beard, W. J. Weninger, and W. Drexler, “Dual modality optical coherence and whole-body photoacoustic tomography imaging of chick embryos in multiple development stages,” Biomed. Opt. Express 5(9), 3150–3159 (2014).
[Crossref] [PubMed]

M. Liu, Z. Chen, E. Rank, B. Zabihian, E. Z. Zhang, P.C. Beard, H. Kittler, and W. Drexler, “Combined multimodal photoacoustic tomography, optical coherence tomography (OCT) and OCT based angiography system for in vivo imaging of multiple skin disorders in human (Conference Presentation),” SPIE BiOS, 100370T (2017).

Liu, T.

Lu, J.

J. Lu, Y. Gao, Z. Ma, H. Zhou, R. K. Wang, and Y. Wang, “In vivo photoacoustic imaging of blood vessels using a homodyne interferometer with zero-crossing triggering,” J. Biomed. Opt. 22(3), 036002 (2017).
[Crossref] [PubMed]

Lv, J.

Z. Ma, Z. He, S. Wang, M. Li, Q. Wang, J. Lv, F. Wang, and Y. Wang, “Practical approach for dispersion compensation in spectral-domain optical coherence tomography,” Opt. Eng. 51(6), 063203 (2012).
[Crossref]

Ma, Z.

J. Lu, Y. Gao, Z. Ma, H. Zhou, R. K. Wang, and Y. Wang, “In vivo photoacoustic imaging of blood vessels using a homodyne interferometer with zero-crossing triggering,” J. Biomed. Opt. 22(3), 036002 (2017).
[Crossref] [PubMed]

Z. Ma, Z. He, S. Wang, M. Li, Q. Wang, J. Lv, F. Wang, and Y. Wang, “Practical approach for dispersion compensation in spectral-domain optical coherence tomography,” Opt. Eng. 51(6), 063203 (2012).
[Crossref]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
[Crossref] [PubMed]

Marshall, W. J.

R. J. Thomas, B. A. Rockwell, W. J. Marshall, R. C. Aldrich, S. A. Zimmerman, and R. J. Rockwell, “A procedure for multiple-pulse maximum permissible exposure determination under the Z136. 1-2000 American National Standard for Safe Use of Lasers,” J. Laser Appl. 13(4), 134–140 (2001).
[Crossref]

Maslov, K.

Maurer, B.

McCormack, D. R.

McDonald, D. M.

D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
[Crossref] [PubMed]

Mills, T. N.

P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(6), 1575–1582 (1999).
[Crossref] [PubMed]

Monchalin, J. P.

G. Rousseau, B. Gauthier, A. Blouin, and J. P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17(6), 061217 (2012).
[Crossref] [PubMed]

G. Rousseau, A. Blouin, and J. P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3(1), 16–25 (2012).
[Crossref] [PubMed]

Paproski, R. J.

P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6(6), e16278 (2017).
[Crossref] [PubMed]

Park, C. A.

C. A. Park, C. K. Kang, Y. B. Kim, and Z. H. Cho, “Advances in MR angiography with 7T MRI: From microvascular imaging to functional angiography,” Neuroimage 168, 269–278 (2018).
[Crossref] [PubMed]

Park, S. J.

J. Eom, S. J. Park, and B. H. Lee, “Noncontact photoacoustic tomography of in vivo chicken chorioallantoic membrane based on all-fiber heterodyne interferometry,” J. Biomed. Opt. 20(10), 106007 (2015).
[Crossref] [PubMed]

S. J. Park, J. Eom, Y. H. Kim, C. S. Lee, and B. H. Lee, “Noncontact photoacoustic imaging based on all-fiber heterodyne interferometer,” Opt. Lett. 39(16), 4903–4906 (2014).
[Crossref] [PubMed]

Pascarella, L.

L. Pascarella, G. W. Schönbein, and J. J. Bergan, “Microcirculation and venous ulcers: a review,” Ann. Vasc. Surg. 19(6), 921–927 (2005).
[Crossref] [PubMed]

Patil, C. A.

Perennes, F.

P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(6), 1575–1582 (1999).
[Crossref] [PubMed]

Poole, K. M.

Preiser, J. C.

D. De Backer, J. Creteur, J. C. Preiser, M. J. Dubois, and J. L. Vincent, “Microvascular blood flow is altered in patients with sepsis,” Am. J. Respir. Crit. Care Med. 166(1), 98–104 (2002).
[Crossref] [PubMed]

Puliafito, C. A.

S. Jiao, Z. Xie, H. F. Zhang, and C. A. Puliafito, “Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography,” Opt. Lett. 34(19), 2961–2963 (2009).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Rank, E.

M. Liu, Z. Chen, E. Rank, B. Zabihian, E. Z. Zhang, P.C. Beard, H. Kittler, and W. Drexler, “Combined multimodal photoacoustic tomography, optical coherence tomography (OCT) and OCT based angiography system for in vivo imaging of multiple skin disorders in human (Conference Presentation),” SPIE BiOS, 100370T (2017).

Reza, P. H.

Rezaei, K.

G. L. Su, D. M. Baughman, Q. Zhang, K. Rezaei, A. Y. Lee, and C. S. Lee, “Comparison of retina specialist preferences regarding spectral-domain and swept-source optical coherence tomography angiography,” Clin. Ophthalmol. 11, 889–895 (2017).
[Crossref] [PubMed]

Rockwell, B. A.

R. J. Thomas, B. A. Rockwell, W. J. Marshall, R. C. Aldrich, S. A. Zimmerman, and R. J. Rockwell, “A procedure for multiple-pulse maximum permissible exposure determination under the Z136. 1-2000 American National Standard for Safe Use of Lasers,” J. Laser Appl. 13(4), 134–140 (2001).
[Crossref]

Rockwell, R. J.

R. J. Thomas, B. A. Rockwell, W. J. Marshall, R. C. Aldrich, S. A. Zimmerman, and R. J. Rockwell, “A procedure for multiple-pulse maximum permissible exposure determination under the Z136. 1-2000 American National Standard for Safe Use of Lasers,” J. Laser Appl. 13(4), 134–140 (2001).
[Crossref]

Rousseau, G.

G. Rousseau, B. Gauthier, A. Blouin, and J. P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17(6), 061217 (2012).
[Crossref] [PubMed]

G. Rousseau, A. Blouin, and J. P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3(1), 16–25 (2012).
[Crossref] [PubMed]

Ruvinskaya, S.

Sakadzic, S.

Sanders, J. E.

U. Baran, E. Swanson, J. E. Sanders, and R. K. Wang, “OCT-based microangiography for reactive hyperaemia assessment within residual limb skin of people with lower limb loss,” Skin Res. Technol. 24(1), 152–155 (2018).
[Crossref] [PubMed]

Sanders, M.

Sandrian, M. G.

Saver, J.

S. Bash, J. P. Villablanca, R. Jahan, G. Duckwiler, M. Tillis, C. Kidwell, J. Saver, and J. Sayre, “Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography,” AJNR Am. J. Neuroradiol. 26(5), 1012–1021 (2005).
[PubMed]

Sayre, J.

S. Bash, J. P. Villablanca, R. Jahan, G. Duckwiler, M. Tillis, C. Kidwell, J. Saver, and J. Sayre, “Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography,” AJNR Am. J. Neuroradiol. 26(5), 1012–1021 (2005).
[PubMed]

Schilp, A.

F. Lärmer, A. Schilp, K. Funk, and C. Burrer, “Experimental characterization of dynamic micromechanical transducers,” J. Micromech. Microeng. 6(1), 177–186 (1996).
[Crossref]

Schönbein, G. W.

L. Pascarella, G. W. Schönbein, and J. J. Bergan, “Microcirculation and venous ulcers: a review,” Ann. Vasc. Surg. 19(6), 921–927 (2005).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Shapiro, J.

Shen, T. T.

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013 (2011).
[Crossref] [PubMed]

Shi, W.

P. H. Reza, K. Bell, W. Shi, J. Shapiro, and R. J. Zemp, “Deep non-contact photoacoustic initial pressure imaging,” Optica 5(7), 814–820 (2018).
[Crossref]

P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6(6), e16278 (2017).
[Crossref] [PubMed]

Shung, K. K.

Skala, M. C.

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Su, G. L.

G. L. Su, D. M. Baughman, Q. Zhang, K. Rezaei, A. Y. Lee, and C. S. Lee, “Comparison of retina specialist preferences regarding spectral-domain and swept-source optical coherence tomography angiography,” Clin. Ophthalmol. 11, 889–895 (2017).
[Crossref] [PubMed]

Swanson, E.

U. Baran, E. Swanson, J. E. Sanders, and R. K. Wang, “OCT-based microangiography for reactive hyperaemia assessment within residual limb skin of people with lower limb loss,” Skin Res. Technol. 24(1), 152–155 (2018).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Thomas, R. J.

R. J. Thomas, B. A. Rockwell, W. J. Marshall, R. C. Aldrich, S. A. Zimmerman, and R. J. Rockwell, “A procedure for multiple-pulse maximum permissible exposure determination under the Z136. 1-2000 American National Standard for Safe Use of Lasers,” J. Laser Appl. 13(4), 134–140 (2001).
[Crossref]

Tillis, M.

S. Bash, J. P. Villablanca, R. Jahan, G. Duckwiler, M. Tillis, C. Kidwell, J. Saver, and J. Sayre, “Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography,” AJNR Am. J. Neuroradiol. 26(5), 1012–1021 (2005).
[PubMed]

Unterhuber, A.

Venugopalan, V.

S. A. Carp and V. Venugopalan, “Optoacoustic imaging based on the interferometric measurement of surface displacement,” J. Biomed. Opt. 12(6), 064001 (2007).
[Crossref] [PubMed]

S. A. Carp, A. Guerra, S. Q. Duque, and V. Venugopalan, “Optoacoustic imaging using interferometric measurement of surface displacement,” Appl. Phys. Lett. 85(23), 5772–5774 (2004).
[Crossref]

Villablanca, J. P.

S. Bash, J. P. Villablanca, R. Jahan, G. Duckwiler, M. Tillis, C. Kidwell, J. Saver, and J. Sayre, “Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography,” AJNR Am. J. Neuroradiol. 26(5), 1012–1021 (2005).
[PubMed]

Vincent, J. L.

D. De Backer, J. Creteur, J. C. Preiser, M. J. Dubois, and J. L. Vincent, “Microvascular blood flow is altered in patients with sepsis,” Am. J. Respir. Crit. Care Med. 166(1), 98–104 (2002).
[Crossref] [PubMed]

Wang, F.

Z. Ma, Z. He, S. Wang, M. Li, Q. Wang, J. Lv, F. Wang, and Y. Wang, “Practical approach for dispersion compensation in spectral-domain optical coherence tomography,” Opt. Eng. 51(6), 063203 (2012).
[Crossref]

Wang, J.

Wang, L. V.

Wang, Q.

Z. Ma, Z. He, S. Wang, M. Li, Q. Wang, J. Lv, F. Wang, and Y. Wang, “Practical approach for dispersion compensation in spectral-domain optical coherence tomography,” Opt. Eng. 51(6), 063203 (2012).
[Crossref]

Wang, R. K.

U. Baran, E. Swanson, J. E. Sanders, and R. K. Wang, “OCT-based microangiography for reactive hyperaemia assessment within residual limb skin of people with lower limb loss,” Skin Res. Technol. 24(1), 152–155 (2018).
[Crossref] [PubMed]

J. Lu, Y. Gao, Z. Ma, H. Zhou, R. K. Wang, and Y. Wang, “In vivo photoacoustic imaging of blood vessels using a homodyne interferometer with zero-crossing triggering,” J. Biomed. Opt. 22(3), 036002 (2017).
[Crossref] [PubMed]

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013 (2011).
[Crossref] [PubMed]

Y. Jia, M. R. Grafe, A. Gruber, N. J. Alkayed, and R. K. Wang, “In vivo optical imaging of revascularization after brain trauma in mice,” Microvasc. Res. 81(1), 73–80 (2011).
[Crossref] [PubMed]

Y. Wang, C. Li, and R. K. Wang, “Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector,” Opt. Lett. 36(20), 3975–3977 (2011).
[Crossref] [PubMed]

R. K. Wang, “Three-dimensional optical micro-angiography maps directional blood perfusion deep within microcirculation tissue beds in vivo,” Phys. Med. Biol. 52(23), N531–N537 (2007).
[Crossref] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
[Crossref] [PubMed]

Wang, S.

Z. Ma, Z. He, S. Wang, M. Li, Q. Wang, J. Lv, F. Wang, and Y. Wang, “Practical approach for dispersion compensation in spectral-domain optical coherence tomography,” Opt. Eng. 51(6), 063203 (2012).
[Crossref]

Wang, T.

Wang, Y.

J. Lu, Y. Gao, Z. Ma, H. Zhou, R. K. Wang, and Y. Wang, “In vivo photoacoustic imaging of blood vessels using a homodyne interferometer with zero-crossing triggering,” J. Biomed. Opt. 22(3), 036002 (2017).
[Crossref] [PubMed]

Z. Chen, S. Yang, Y. Wang, and D. Xing, “Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer,” Appl. Phys. Lett. 106(4), 043701 (2015).
[Crossref]

Z. Chen, S. Yang, Y. Wang, and D. Xing, “All-optically integrated photo-acoustic microscopy and optical coherence tomography based on a single Michelson detector,” Opt. Lett. 40(12), 2838–2841 (2015).
[Crossref] [PubMed]

Z. Ma, Z. He, S. Wang, M. Li, Q. Wang, J. Lv, F. Wang, and Y. Wang, “Practical approach for dispersion compensation in spectral-domain optical coherence tomography,” Opt. Eng. 51(6), 063203 (2012).
[Crossref]

Y. Wang, C. Li, and R. K. Wang, “Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector,” Opt. Lett. 36(20), 3975–3977 (2011).
[Crossref] [PubMed]

Wei, Q.

Weninger, W. J.

White, R. G.

R. G. White and D. C. Emmony, “Active feedback stabilisation of a michelson interferometer using a flexure element,” J. Phys. E Sci. Instrum. 18(18), 658–663 (1985).
[Crossref]

Wojtkowski, M.

Wu, W.

Xie, Z.

Xing, D.

Xu, X.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

Yang, S.

Yang, Y.

Zabihian, B.

M. Liu, B. Maurer, B. Hermann, B. Zabihian, M. G. Sandrian, A. Unterhuber, B. Baumann, E. Z. Zhang, P. C. Beard, W. J. Weninger, and W. Drexler, “Dual modality optical coherence and whole-body photoacoustic tomography imaging of chick embryos in multiple development stages,” Biomed. Opt. Express 5(9), 3150–3159 (2014).
[Crossref] [PubMed]

M. Liu, Z. Chen, E. Rank, B. Zabihian, E. Z. Zhang, P.C. Beard, H. Kittler, and W. Drexler, “Combined multimodal photoacoustic tomography, optical coherence tomography (OCT) and OCT based angiography system for in vivo imaging of multiple skin disorders in human (Conference Presentation),” SPIE BiOS, 100370T (2017).

Zemp, R. J.

P. H. Reza, K. Bell, W. Shi, J. Shapiro, and R. J. Zemp, “Deep non-contact photoacoustic initial pressure imaging,” Optica 5(7), 814–820 (2018).
[Crossref]

P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6(6), e16278 (2017).
[Crossref] [PubMed]

Zhang, E.

Zhang, E. Z.

M. Liu, B. Maurer, B. Hermann, B. Zabihian, M. G. Sandrian, A. Unterhuber, B. Baumann, E. Z. Zhang, P. C. Beard, W. J. Weninger, and W. Drexler, “Dual modality optical coherence and whole-body photoacoustic tomography imaging of chick embryos in multiple development stages,” Biomed. Opt. Express 5(9), 3150–3159 (2014).
[Crossref] [PubMed]

M. Liu, Z. Chen, E. Rank, B. Zabihian, E. Z. Zhang, P.C. Beard, H. Kittler, and W. Drexler, “Combined multimodal photoacoustic tomography, optical coherence tomography (OCT) and OCT based angiography system for in vivo imaging of multiple skin disorders in human (Conference Presentation),” SPIE BiOS, 100370T (2017).

Zhang, H. F.

Zhang, Q.

G. L. Su, D. M. Baughman, Q. Zhang, K. Rezaei, A. Y. Lee, and C. S. Lee, “Comparison of retina specialist preferences regarding spectral-domain and swept-source optical coherence tomography angiography,” Clin. Ophthalmol. 11, 889–895 (2017).
[Crossref] [PubMed]

Zhou, H.

J. Lu, Y. Gao, Z. Ma, H. Zhou, R. K. Wang, and Y. Wang, “In vivo photoacoustic imaging of blood vessels using a homodyne interferometer with zero-crossing triggering,” J. Biomed. Opt. 22(3), 036002 (2017).
[Crossref] [PubMed]

Zhou, Q.

Zhu, Q.

Zimmerman, S. A.

R. J. Thomas, B. A. Rockwell, W. J. Marshall, R. C. Aldrich, S. A. Zimmerman, and R. J. Rockwell, “A procedure for multiple-pulse maximum permissible exposure determination under the Z136. 1-2000 American National Standard for Safe Use of Lasers,” J. Laser Appl. 13(4), 134–140 (2001).
[Crossref]

AJNR Am. J. Neuroradiol. (1)

S. Bash, J. P. Villablanca, R. Jahan, G. Duckwiler, M. Tillis, C. Kidwell, J. Saver, and J. Sayre, “Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography,” AJNR Am. J. Neuroradiol. 26(5), 1012–1021 (2005).
[PubMed]

Am. J. Physiol. (1)

P. Carmeliet and D. Collen, “Molecular analysis of blood vessel formation and disease,” Am. J. Physiol. 273(5), H2091–H2104 (1997).
[PubMed]

Am. J. Respir. Crit. Care Med. (1)

D. De Backer, J. Creteur, J. C. Preiser, M. J. Dubois, and J. L. Vincent, “Microvascular blood flow is altered in patients with sepsis,” Am. J. Respir. Crit. Care Med. 166(1), 98–104 (2002).
[Crossref] [PubMed]

Ann. Vasc. Surg. (1)

L. Pascarella, G. W. Schönbein, and J. J. Bergan, “Microcirculation and venous ulcers: a review,” Ann. Vasc. Surg. 19(6), 921–927 (2005).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

S. A. Carp, A. Guerra, S. Q. Duque, and V. Venugopalan, “Optoacoustic imaging using interferometric measurement of surface displacement,” Appl. Phys. Lett. 85(23), 5772–5774 (2004).
[Crossref]

Z. Chen, S. Yang, Y. Wang, and D. Xing, “Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer,” Appl. Phys. Lett. 106(4), 043701 (2015).
[Crossref]

Biomed. Opt. Express (6)

A. Hochreiner, J. Bauer-Marschallinger, P. Burgholzer, B. Jakoby, and T. Berer, “Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification,” Biomed. Opt. Express 4(11), 2322–2331 (2013).
[Crossref] [PubMed]

G. Rousseau, A. Blouin, and J. P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3(1), 16–25 (2012).
[Crossref] [PubMed]

M. Liu, B. Maurer, B. Hermann, B. Zabihian, M. G. Sandrian, A. Unterhuber, B. Baumann, E. Z. Zhang, P. C. Beard, W. J. Weninger, and W. Drexler, “Dual modality optical coherence and whole-body photoacoustic tomography imaging of chick embryos in multiple development stages,” Biomed. Opt. Express 5(9), 3150–3159 (2014).
[Crossref] [PubMed]

K. M. Poole, D. R. McCormack, C. A. Patil, C. L. Duvall, and M. C. Skala, “Quantifying the vascular response to ischemia with speckle variance optical coherence tomography,” Biomed. Opt. Express 5(12), 4118–4130 (2014).
[Crossref] [PubMed]

T. Liu, Q. Wei, J. Wang, S. Jiao, and H. F. Zhang, “Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen,” Biomed. Opt. Express 2(5), 1359–1365 (2011).
[Crossref] [PubMed]

Y. Yang, X. Li, T. Wang, P. D. Kumavor, A. Aguirre, K. K. Shung, Q. Zhou, M. Sanders, M. Brewer, and Q. Zhu, “Integrated optical coherence tomography, ultrasound and photoacoustic imaging for ovarian tissue characterization,” Biomed. Opt. Express 2(9), 2551–2561 (2011).
[Crossref] [PubMed]

Clin. Ophthalmol. (1)

G. L. Su, D. M. Baughman, Q. Zhang, K. Rezaei, A. Y. Lee, and C. S. Lee, “Comparison of retina specialist preferences regarding spectral-domain and swept-source optical coherence tomography angiography,” Clin. Ophthalmol. 11, 889–895 (2017).
[Crossref] [PubMed]

IEEE Trans. Multimed. (1)

M. Jeon and C. Kim, “Multimodal photoacoustic tomography,” IEEE Trans. Multimed. 15(5), 975–982 (2013).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(6), 1575–1582 (1999).
[Crossref] [PubMed]

J. Appl. Phys. (1)

L. Lipiainen, K. Kokkonen, and M. Kaivola, “Phase sensitive absolute amplitude detection of surface vibrations using homodyne interferometry without active stabilization,” J. Appl. Phys. 108(11), 114510 (2010).
[Crossref]

J. Biomed. Opt. (5)

J. Lu, Y. Gao, Z. Ma, H. Zhou, R. K. Wang, and Y. Wang, “In vivo photoacoustic imaging of blood vessels using a homodyne interferometer with zero-crossing triggering,” J. Biomed. Opt. 22(3), 036002 (2017).
[Crossref] [PubMed]

G. Rousseau, B. Gauthier, A. Blouin, and J. P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17(6), 061217 (2012).
[Crossref] [PubMed]

J. Eom, S. J. Park, and B. H. Lee, “Noncontact photoacoustic tomography of in vivo chicken chorioallantoic membrane based on all-fiber heterodyne interferometry,” J. Biomed. Opt. 20(10), 106007 (2015).
[Crossref] [PubMed]

S. A. Carp and V. Venugopalan, “Optoacoustic imaging based on the interferometric measurement of surface displacement,” J. Biomed. Opt. 12(6), 064001 (2007).
[Crossref] [PubMed]

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013 (2011).
[Crossref] [PubMed]

J. Laser Appl. (1)

R. J. Thomas, B. A. Rockwell, W. J. Marshall, R. C. Aldrich, S. A. Zimmerman, and R. J. Rockwell, “A procedure for multiple-pulse maximum permissible exposure determination under the Z136. 1-2000 American National Standard for Safe Use of Lasers,” J. Laser Appl. 13(4), 134–140 (2001).
[Crossref]

J. Micromech. Microeng. (1)

F. Lärmer, A. Schilp, K. Funk, and C. Burrer, “Experimental characterization of dynamic micromechanical transducers,” J. Micromech. Microeng. 6(1), 177–186 (1996).
[Crossref]

J. Phys. E Sci. Instrum. (1)

R. G. White and D. C. Emmony, “Active feedback stabilisation of a michelson interferometer using a flexure element,” J. Phys. E Sci. Instrum. 18(18), 658–663 (1985).
[Crossref]

Light Sci. Appl. (1)

P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6(6), e16278 (2017).
[Crossref] [PubMed]

Microcirculation (1)

D. L. Crandall, G. J. Hausman, and J. G. Kral, “A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives,” Microcirculation 4(2), 211–232 (1997).
[Crossref] [PubMed]

Microvasc. Res. (1)

Y. Jia, M. R. Grafe, A. Gruber, N. J. Alkayed, and R. K. Wang, “In vivo optical imaging of revascularization after brain trauma in mice,” Microvasc. Res. 81(1), 73–80 (2011).
[Crossref] [PubMed]

Nat. Med. (1)

D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
[Crossref] [PubMed]

Nat. Photonics (2)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

Nature (1)

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000).
[Crossref] [PubMed]

Neuroimage (1)

C. A. Park, C. K. Kang, Y. B. Kim, and Z. H. Cho, “Advances in MR angiography with 7T MRI: From microvascular imaging to functional angiography,” Neuroimage 168, 269–278 (2018).
[Crossref] [PubMed]

Opt. Eng. (1)

Z. Ma, Z. He, S. Wang, M. Li, Q. Wang, J. Lv, F. Wang, and Y. Wang, “Practical approach for dispersion compensation in spectral-domain optical coherence tomography,” Opt. Eng. 51(6), 063203 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (7)

Y. Wang, C. Li, and R. K. Wang, “Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector,” Opt. Lett. 36(20), 3975–3977 (2011).
[Crossref] [PubMed]

S. Jiao, Z. Xie, H. F. Zhang, and C. A. Puliafito, “Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography,” Opt. Lett. 34(19), 2961–2963 (2009).
[Crossref] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
[Crossref] [PubMed]

Z. Chen, S. Yang, Y. Wang, and D. Xing, “All-optically integrated photo-acoustic microscopy and optical coherence tomography based on a single Michelson detector,” Opt. Lett. 40(12), 2838–2841 (2015).
[Crossref] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[Crossref] [PubMed]

S. J. Park, J. Eom, Y. H. Kim, C. S. Lee, and B. H. Lee, “Noncontact photoacoustic imaging based on all-fiber heterodyne interferometer,” Opt. Lett. 39(16), 4903–4906 (2014).
[Crossref] [PubMed]

Z. Chen, S. Yang, and D. Xing, “Optically integrated trimodality imaging system: combined all-optical photoacoustic microscopy, optical coherence tomography, and fluorescence imaging,” Opt. Lett. 41(7), 1636–1639 (2016).
[Crossref] [PubMed]

Optica (1)

Phys. Med. Biol. (2)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

R. K. Wang, “Three-dimensional optical micro-angiography maps directional blood perfusion deep within microcirculation tissue beds in vivo,” Phys. Med. Biol. 52(23), N531–N537 (2007).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Skin Res. Technol. (1)

U. Baran, E. Swanson, J. E. Sanders, and R. K. Wang, “OCT-based microangiography for reactive hyperaemia assessment within residual limb skin of people with lower limb loss,” Skin Res. Technol. 24(1), 152–155 (2018).
[Crossref] [PubMed]

Other (3)

M. Liu, Z. Chen, E. Rank, B. Zabihian, E. Z. Zhang, P.C. Beard, H. Kittler, and W. Drexler, “Combined multimodal photoacoustic tomography, optical coherence tomography (OCT) and OCT based angiography system for in vivo imaging of multiple skin disorders in human (Conference Presentation),” SPIE BiOS, 100370T (2017).

D. Royer and E. Dieulesaint, Elastic Waves in Solids I: Freeand Guided Propagation (Springer, 2000).

L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging (John Wiley & Sons, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the experimental setup. HPF: High-pass Filter, BD: Balanced Detector, PZT: Piezo-translator, CIR: Circulator, M: Mirror, L: Lens, FC: Fiber Coupler, IL: Indicator Light, COL: Collimator, DM: Dichroic Mirror, SLD: Superluminescent Diode, SH: Shutter.
Fig. 2
Fig. 2 PA wave extraction with high-pass filtering. (a) Measured interference signal with PA waves. (b) Measured high-pass filtered result of signal in (a). PA1-8: PA waves.
Fig. 3
Fig. 3 PA signal sensitivity compensation with reference arm modulation. (a) Multi-excitation PA signals without reference arm modulation. (b) Multi-excitation PA signals with reference arm modulation. (c) High-pass filtered result of waveform in (b). (d) Sensitivity compensated PA signals. (e) PA image of tungsten filament acquired without reference modulation. (f) PA image of tungsten filament acquired with reference arm modulation.
Fig. 4
Fig. 4 Differentiation of blood flow states with dual-modal system. (a,e) OCT cross-sectional structural images of mouse pinna. (b,f) Blood flow images extracted by OCTA algorithm. (c,g) En face microvasculature image of OCTA. (d,h) PA images of mouse pinna. (a,b,c,d): images with normal blood flow. (e,f,g,h):images with blood flow blocking.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I( t,k )=2S( k ) E R a(z, t) cos[2kn(z  vt)]dz ,
I j ( t,k )=I( t,k )I(t+Δ t B ,k), j=1, 2, 3...256,
p( t )= C 2 ε(t) t ,
D(t)=Acos[ϕ(t)+ 4π λ ε(t)],
D( t )=Acosϕ( t )+ 4πA λ sinϕ( t )ε( t ).
DHF( t )= 4πA λ sinϕ( t )ε( t ).
ϕ( t p )=arccos( D( t p ) A ),
ε( t )= λDHF( t ) 4πAsinϕ( t p ) .