Abstract

Second harmonic generation microscopy (SHGM) is a well-known technique for examining the noncentrosymmetric structures in biomedical research. However, without real-state transitions, fluorescence-based superresolution methods cannot be applied. To improve the resolution, fringe-scanning SHGM (FS-SHGM), which combines SHGM with structured illumination based on point-scanning, is introduced in this paper. The scanning path was modulated to generate illumination patterns. For the coherent parts of SHG signals, a mathematical model of image formation and reconstruction was established. Both simulations and experiments showed a resolution improvement factor of ~1.4 in the lateral and 1.56 in the axial directions for chicken tendons and mouse skin.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Frontiers in structured illumination microscopy

Florian Ströhl and Clemens F. Kaminski
Optica 3(6) 667-677 (2016)

Resolution enhancement in nonlinear scanning microscopy through post-detection digital computation

Grégoire P. J. Laporte, Nicolino Stasio, Colin J. R. Sheppard, and Demetri Psaltis
Optica 1(6) 455-460 (2014)

Image filtering in structured illumination microscopy using the Lukosz bound

Christiaan H. Righolt, Johan A. Slotman, Ian T. Young, Sabine Mai, Lucas J. van Vliet, and Sjoerd Stallinga
Opt. Express 21(21) 24431-24451 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
    [Crossref] [PubMed]
  2. P. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem. 83(9), 3224–3231 (2011).
    [Crossref] [PubMed]
  3. H. Lim and J. Danias, “Label-free morphometry of retinal nerve fiber bundles by second-harmonic-generation microscopy,” Opt. Lett. 37(12), 2316–2318 (2012).
    [Crossref] [PubMed]
  4. H. Blom and J. Widengren, “Stimulated emission depletion microscopy,” Chem. Rev. 117(11), 7377–7427 (2017).
    [Crossref] [PubMed]
  5. R. Heintzmann and T. Huser, “Super-resolution structured illumination microscopy,” Chem. Rev. 117(23), 13890–13908 (2017).
    [Crossref] [PubMed]
  6. J. Tam and D. Merino, “Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods,” J. Neurochem. 135(4), 643–658 (2015).
    [Crossref] [PubMed]
  7. B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron 38(2), 150–157 (2007).
    [Crossref] [PubMed]
  8. N. Tian, L. Fu, and M. Gu, “Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam,” Sci. Rep. 5(1), 13580 (2015).
    [Crossref] [PubMed]
  9. J. Liu, I. H. Cho, Y. Cui, and J. Irudayaraj, “Second harmonic super-resolution microscopy for quantification of mRNA at single copy sensitivity,” ACS Nano 8(12), 12418–12427 (2014).
    [Crossref] [PubMed]
  10. J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. U.S.A. 113(24), 6605–6610 (2016).
    [Crossref] [PubMed]
  11. M. J. Huttunen, A. Abbas, J. Upham, and R. W. Boyd, “Label-free super-resolution with coherent nonlinear structured-illumination microscopy,” J. Opt. 19(8), 085504 (2017).
    [Crossref]
  12. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref] [PubMed]
  13. M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
    [Crossref] [PubMed]
  14. D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3(1), 1116 (2013).
    [Crossref] [PubMed]
  15. J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt. 15(1), 016027 (2010).
    [Crossref] [PubMed]
  16. C. H. Yeh and S. Y. Chen, “Resolution enhancement of two-photon microscopy via intensity-modulated laser scanning structured illumination,” Appl. Opt. 54(9), 2309–2317 (2015).
    [Crossref] [PubMed]
  17. O. Nadiarnykh, R. B. Lacomb, P. J. Campagnola, and W. A. Mohler, “Coherent and incoherent SHG in fibrillar cellulose matrices,” Opt. Express 15(6), 3348–3360 (2007).
    [Crossref] [PubMed]
  18. Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337(6207), 519–525 (1989).
    [Crossref]
  19. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005),Chap. 6.
  20. R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
    [Crossref] [PubMed]
  21. D. Dan, B. Yao, and M. Lei, “Structured illumination microscopy for super-resolution and optical sectioning,” Chin. Sci. Bull. 59(12), 1291–1307 (2014).
    [Crossref]
  22. T. Wilson, “Optical sectioning in fluorescence microscopy,” J. Microsc. 242(2), 111–116 (2011).
    [Crossref] [PubMed]

2017 (3)

H. Blom and J. Widengren, “Stimulated emission depletion microscopy,” Chem. Rev. 117(11), 7377–7427 (2017).
[Crossref] [PubMed]

R. Heintzmann and T. Huser, “Super-resolution structured illumination microscopy,” Chem. Rev. 117(23), 13890–13908 (2017).
[Crossref] [PubMed]

M. J. Huttunen, A. Abbas, J. Upham, and R. W. Boyd, “Label-free super-resolution with coherent nonlinear structured-illumination microscopy,” J. Opt. 19(8), 085504 (2017).
[Crossref]

2016 (1)

J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. U.S.A. 113(24), 6605–6610 (2016).
[Crossref] [PubMed]

2015 (3)

N. Tian, L. Fu, and M. Gu, “Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam,” Sci. Rep. 5(1), 13580 (2015).
[Crossref] [PubMed]

J. Tam and D. Merino, “Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods,” J. Neurochem. 135(4), 643–658 (2015).
[Crossref] [PubMed]

C. H. Yeh and S. Y. Chen, “Resolution enhancement of two-photon microscopy via intensity-modulated laser scanning structured illumination,” Appl. Opt. 54(9), 2309–2317 (2015).
[Crossref] [PubMed]

2014 (2)

J. Liu, I. H. Cho, Y. Cui, and J. Irudayaraj, “Second harmonic super-resolution microscopy for quantification of mRNA at single copy sensitivity,” ACS Nano 8(12), 12418–12427 (2014).
[Crossref] [PubMed]

D. Dan, B. Yao, and M. Lei, “Structured illumination microscopy for super-resolution and optical sectioning,” Chin. Sci. Bull. 59(12), 1291–1307 (2014).
[Crossref]

2013 (1)

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3(1), 1116 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

T. Wilson, “Optical sectioning in fluorescence microscopy,” J. Microsc. 242(2), 111–116 (2011).
[Crossref] [PubMed]

P. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem. 83(9), 3224–3231 (2011).
[Crossref] [PubMed]

2010 (1)

J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt. 15(1), 016027 (2010).
[Crossref] [PubMed]

2008 (1)

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

2007 (2)

O. Nadiarnykh, R. B. Lacomb, P. J. Campagnola, and W. A. Mohler, “Coherent and incoherent SHG in fibrillar cellulose matrices,” Opt. Express 15(6), 3348–3360 (2007).
[Crossref] [PubMed]

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron 38(2), 150–157 (2007).
[Crossref] [PubMed]

2003 (1)

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

2002 (1)

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

2000 (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

1989 (1)

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337(6207), 519–525 (1989).
[Crossref]

Abbas, A.

M. J. Huttunen, A. Abbas, J. Upham, and R. W. Boyd, “Label-free super-resolution with coherent nonlinear structured-illumination microscopy,” J. Opt. 19(8), 085504 (2017).
[Crossref]

Agard, D. A.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Allende Motz, A. M.

J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. U.S.A. 113(24), 6605–6610 (2016).
[Crossref] [PubMed]

Bartels, R. A.

J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. U.S.A. 113(24), 6605–6610 (2016).
[Crossref] [PubMed]

Blom, H.

H. Blom and J. Widengren, “Stimulated emission depletion microscopy,” Chem. Rev. 117(11), 7377–7427 (2017).
[Crossref] [PubMed]

Boyd, R. W.

M. J. Huttunen, A. Abbas, J. Upham, and R. W. Boyd, “Label-free super-resolution with coherent nonlinear structured-illumination microscopy,” J. Opt. 19(8), 085504 (2017).
[Crossref]

Campagnola, P.

P. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem. 83(9), 3224–3231 (2011).
[Crossref] [PubMed]

Campagnola, P. J.

O. Nadiarnykh, R. B. Lacomb, P. J. Campagnola, and W. A. Mohler, “Coherent and incoherent SHG in fibrillar cellulose matrices,” Opt. Express 15(6), 3348–3360 (2007).
[Crossref] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Cande, W. Z.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Carlton, P. M.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Chen, S. Y.

Cho, I. H.

J. Liu, I. H. Cho, Y. Cui, and J. Irudayaraj, “Second harmonic super-resolution microscopy for quantification of mRNA at single copy sensitivity,” ACS Nano 8(12), 12418–12427 (2014).
[Crossref] [PubMed]

Cui, Y.

J. Liu, I. H. Cho, Y. Cui, and J. Irudayaraj, “Second harmonic super-resolution microscopy for quantification of mRNA at single copy sensitivity,” ACS Nano 8(12), 12418–12427 (2014).
[Crossref] [PubMed]

Dan, D.

D. Dan, B. Yao, and M. Lei, “Structured illumination microscopy for super-resolution and optical sectioning,” Chin. Sci. Bull. 59(12), 1291–1307 (2014).
[Crossref]

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3(1), 1116 (2013).
[Crossref] [PubMed]

Danias, J.

DeLuca, J. G.

J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. U.S.A. 113(24), 6605–6610 (2016).
[Crossref] [PubMed]

DeLuca, K. F.

J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. U.S.A. 113(24), 6605–6610 (2016).
[Crossref] [PubMed]

Domingue, S. R.

J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. U.S.A. 113(24), 6605–6610 (2016).
[Crossref] [PubMed]

Field, J. J.

J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. U.S.A. 113(24), 6605–6610 (2016).
[Crossref] [PubMed]

Fu, L.

N. Tian, L. Fu, and M. Gu, “Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam,” Sci. Rep. 5(1), 13580 (2015).
[Crossref] [PubMed]

Gao, P.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3(1), 1116 (2013).
[Crossref] [PubMed]

Golubovskaya, I. N.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Gu, M.

N. Tian, L. Fu, and M. Gu, “Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam,” Sci. Rep. 5(1), 13580 (2015).
[Crossref] [PubMed]

Gustafsson, M. G. L.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

Hanley, Q. S.

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

Heckenberg, N.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron 38(2), 150–157 (2007).
[Crossref] [PubMed]

Heintzmann, R.

R. Heintzmann and T. Huser, “Super-resolution structured illumination microscopy,” Chem. Rev. 117(23), 13890–13908 (2017).
[Crossref] [PubMed]

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

Hoppe, P. E.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Huser, T.

R. Heintzmann and T. Huser, “Super-resolution structured illumination microscopy,” Chem. Rev. 117(23), 13890–13908 (2017).
[Crossref] [PubMed]

Huttunen, M. J.

M. J. Huttunen, A. Abbas, J. Upham, and R. W. Boyd, “Label-free super-resolution with coherent nonlinear structured-illumination microscopy,” J. Opt. 19(8), 085504 (2017).
[Crossref]

Irudayaraj, J.

J. Liu, I. H. Cho, Y. Cui, and J. Irudayaraj, “Second harmonic super-resolution microscopy for quantification of mRNA at single copy sensitivity,” ACS Nano 8(12), 12418–12427 (2014).
[Crossref] [PubMed]

Jovin, T. M.

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

Kim, J.

J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt. 15(1), 016027 (2010).
[Crossref] [PubMed]

Lacomb, R. B.

Lai, K.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron 38(2), 150–157 (2007).
[Crossref] [PubMed]

Lei, M.

D. Dan, B. Yao, and M. Lei, “Structured illumination microscopy for super-resolution and optical sectioning,” Chin. Sci. Bull. 59(12), 1291–1307 (2014).
[Crossref]

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3(1), 1116 (2013).
[Crossref] [PubMed]

Levi, D. H.

J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. U.S.A. 113(24), 6605–6610 (2016).
[Crossref] [PubMed]

Lim, H.

Littleton, B.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron 38(2), 150–157 (2007).
[Crossref] [PubMed]

Liu, J.

J. Liu, I. H. Cho, Y. Cui, and J. Irudayaraj, “Second harmonic super-resolution microscopy for quantification of mRNA at single copy sensitivity,” ACS Nano 8(12), 12418–12427 (2014).
[Crossref] [PubMed]

Longstaff, D.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron 38(2), 150–157 (2007).
[Crossref] [PubMed]

Malone, C. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Merino, D.

J. Tam and D. Merino, “Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods,” J. Neurochem. 135(4), 643–658 (2015).
[Crossref] [PubMed]

Mertz, J.

J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt. 15(1), 016027 (2010).
[Crossref] [PubMed]

Millard, A. C.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Mohler, W. A.

O. Nadiarnykh, R. B. Lacomb, P. J. Campagnola, and W. A. Mohler, “Coherent and incoherent SHG in fibrillar cellulose matrices,” Opt. Express 15(6), 3348–3360 (2007).
[Crossref] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Munroe, P.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron 38(2), 150–157 (2007).
[Crossref] [PubMed]

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

Nadiarnykh, O.

Nailon, J.

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

Qi, Y.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3(1), 1116 (2013).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron 38(2), 150–157 (2007).
[Crossref] [PubMed]

Sarafis, V.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron 38(2), 150–157 (2007).
[Crossref] [PubMed]

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

Sedat, J. W.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Shao, L.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Shen, Y. R.

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337(6207), 519–525 (1989).
[Crossref]

Squier, J. A.

J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. U.S.A. 113(24), 6605–6610 (2016).
[Crossref] [PubMed]

Tam, J.

J. Tam and D. Merino, “Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods,” J. Neurochem. 135(4), 643–658 (2015).
[Crossref] [PubMed]

Terasaki, M.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Tian, N.

N. Tian, L. Fu, and M. Gu, “Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam,” Sci. Rep. 5(1), 13580 (2015).
[Crossref] [PubMed]

Upham, J.

M. J. Huttunen, A. Abbas, J. Upham, and R. W. Boyd, “Label-free super-resolution with coherent nonlinear structured-illumination microscopy,” J. Opt. 19(8), 085504 (2017).
[Crossref]

Wang, C. J. R.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Wang, W.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3(1), 1116 (2013).
[Crossref] [PubMed]

Wernsing, K. A.

J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. U.S.A. 113(24), 6605–6610 (2016).
[Crossref] [PubMed]

Widengren, J.

H. Blom and J. Widengren, “Stimulated emission depletion microscopy,” Chem. Rev. 117(11), 7377–7427 (2017).
[Crossref] [PubMed]

Wilson, T.

T. Wilson, “Optical sectioning in fluorescence microscopy,” J. Microsc. 242(2), 111–116 (2011).
[Crossref] [PubMed]

Winterhalder, M.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3(1), 1116 (2013).
[Crossref] [PubMed]

Xia, L.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3(1), 1116 (2013).
[Crossref] [PubMed]

Yan, S.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3(1), 1116 (2013).
[Crossref] [PubMed]

Yang, Y.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3(1), 1116 (2013).
[Crossref] [PubMed]

Yao, B.

D. Dan, B. Yao, and M. Lei, “Structured illumination microscopy for super-resolution and optical sectioning,” Chin. Sci. Bull. 59(12), 1291–1307 (2014).
[Crossref]

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3(1), 1116 (2013).
[Crossref] [PubMed]

Ye, T.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3(1), 1116 (2013).
[Crossref] [PubMed]

Yeh, C. H.

Young, M. D.

J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. U.S.A. 113(24), 6605–6610 (2016).
[Crossref] [PubMed]

Zhao, W.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3(1), 1116 (2013).
[Crossref] [PubMed]

Zumbusch, A.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3(1), 1116 (2013).
[Crossref] [PubMed]

ACS Nano (1)

J. Liu, I. H. Cho, Y. Cui, and J. Irudayaraj, “Second harmonic super-resolution microscopy for quantification of mRNA at single copy sensitivity,” ACS Nano 8(12), 12418–12427 (2014).
[Crossref] [PubMed]

Anal. Chem. (1)

P. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem. 83(9), 3224–3231 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Biophys. J. (2)

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Chem. Rev. (2)

H. Blom and J. Widengren, “Stimulated emission depletion microscopy,” Chem. Rev. 117(11), 7377–7427 (2017).
[Crossref] [PubMed]

R. Heintzmann and T. Huser, “Super-resolution structured illumination microscopy,” Chem. Rev. 117(23), 13890–13908 (2017).
[Crossref] [PubMed]

Chin. Sci. Bull. (1)

D. Dan, B. Yao, and M. Lei, “Structured illumination microscopy for super-resolution and optical sectioning,” Chin. Sci. Bull. 59(12), 1291–1307 (2014).
[Crossref]

J. Biomed. Opt. (1)

J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt. 15(1), 016027 (2010).
[Crossref] [PubMed]

J. Microsc. (2)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

T. Wilson, “Optical sectioning in fluorescence microscopy,” J. Microsc. 242(2), 111–116 (2011).
[Crossref] [PubMed]

J. Neurochem. (1)

J. Tam and D. Merino, “Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods,” J. Neurochem. 135(4), 643–658 (2015).
[Crossref] [PubMed]

J. Opt. (1)

M. J. Huttunen, A. Abbas, J. Upham, and R. W. Boyd, “Label-free super-resolution with coherent nonlinear structured-illumination microscopy,” J. Opt. 19(8), 085504 (2017).
[Crossref]

Micron (2)

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron 38(2), 150–157 (2007).
[Crossref] [PubMed]

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

Nature (1)

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337(6207), 519–525 (1989).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

J. J. Field, K. A. Wernsing, S. R. Domingue, A. M. Allende Motz, K. F. DeLuca, D. H. Levi, J. G. DeLuca, M. D. Young, J. A. Squier, and R. A. Bartels, “Superresolved multiphoton microscopy with spatial frequency-modulated imaging,” Proc. Natl. Acad. Sci. U.S.A. 113(24), 6605–6610 (2016).
[Crossref] [PubMed]

Sci. Rep. (2)

N. Tian, L. Fu, and M. Gu, “Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam,” Sci. Rep. 5(1), 13580 (2015).
[Crossref] [PubMed]

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3(1), 1116 (2013).
[Crossref] [PubMed]

Other (1)

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005),Chap. 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The scanning path configurations of C-SHGM and FS-SHGM. In FS-SHGM, quasi-comb scanning is applied to generate the illumination pattern.
Fig. 2
Fig. 2 Simulation FS-SHGM images of the USAF resolution: (a) 1951 USAF resolution target; (b) profiles of h2p(k) and hem(k) along the kx direction; (c) and (d) are the C-SHGM image and its spectrum; (e) and (f) show the patterned SHG image and its spectrum; (g) and (h) show the reconstructed FS-SHGM image and its spectrum. To reveal the details with low contrast, contrast enhancement was applied to (c), (e) and (g).
Fig. 3
Fig. 3 (a) The system configuration of FS-SHGM. L: lens; M: mirror; DBS: dichroic beamsplitter; Obj.: objective; TS: motorized translation stage; (b) time sequences of the control signals for the fast-axis and slow-axis of the galvo mirror and sCMOS camera. T: trigger signal; E: exposure time; R: readout time.
Fig. 4
Fig. 4 Demonstration of resolution improvement for chicken tendons: (a) and (b) show the C-SHGM images and (c) and (d) the corresponding FS-SHGM images; (e) the normalized intensity profiles along the yellow lines in (a) and (c); (f) the normalized intensity profiles along the yellow lines in (b) and (d).
Fig. 5
Fig. 5 (a) PMT-based SHGM, (b) C-SHGM and (c) FS-SHGM images of chicken tendons. (d) The normalized intensity profiles along the yellow lines in (a), (b) and (c).
Fig. 6
Fig. 6 C-SHGM and FS-SHGM 3D images of the dermis layer of an unsectioned mouse skin. (a) and (b) show the C-SHGM and FS-SHGM image set, including x-y, y-z and x-z sections; (c) the normalized intensity profiles along the yellow lines c in x-y sections; (d) the normalized intensity profiles along the blue dashed lines d in y-z sections; (e) the normalized intensity profiles along the white lines e in x-z sections.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I n (u)= | P 2p (r r n )S(r) P em (ur)dr | 2 ,
I C (u)= | P 2p (r r n )S(r) P em (ur)dr | 2 d r n .
M m (r)= 1 a comb( r- r m a )rect( r b ),
I p m (u)= | M m ( r n ) P 2p (r r n )S(r) P em (ur)dr | 2 d r n = | M m ( r n ) | 2 [ P 2p (r r n )S(r) P em (ur)dr ] [ P ¯ 2p (r r n ) S ¯ (r) P ¯ em (ur)dr ]d r n = | M m ( r n ) | 2 ( τ r n P 2p S P em )( u )( τ r n P ¯ 2p S ¯ P ¯ em )( u ) d r n ,
| M m (r) | 2 = M m (r)=D{ 1+ N=1 sinc( NπD )[ e i( Nωr+N ϕ m πND ) + e i( Nωr+N ϕ m πND ) ] } , N=1, 2, 3, ... ,
I ˜ p m (k)= D[ 1+sinc(πD)( e i(ω r n + ϕ m πD) + e i(ω r n + ϕ m πD) )+ ] ( τ r n P 2p S P em )( u )( τ r n P ¯ 2p S ¯ P ¯ em )( u ) e iku dud r n =D [ 1+M( e i(ω r n + ϕ m πD) + e i(ω r n + ϕ m πD) )+ ] { τ r n P 2p S P em }{ τ r n P 2p S P em }d r n =D [ 1+M( e i(ω r n + ϕ m πD) + e i(ω r n + ϕ m πD) )+ ] { [ h 2p ( k ) e ik r n S ˜ ( k ) ] h em ( k ) } { [ h 2p ( k ) e ik r n S ˜ ( k ) ] h em ( k ) }d r n = I ˜ p,0 m (k)+ I ˜ p,ω m (k)+ I ˜ p,ω m (k)+ ,
I ˜ p,0 m (k)=D { [ h 2p ( k ) e ik r n S ˜ ( k ) ] h em ( k ) }{ [ h 2p ( k ) e ik r n S ˜ ( k ) ] h em ( k ) }d r n =D [ e i r n ( ρ+ξ ) d r n ] h 2p ( ρ ) S ˜ ( ηρ ) h em ( η ) h ¯ 2p ( ξ ) S ˜ ¯ ( ηkξ ) h ¯ em ( ηk )dρdξdη = (ρ=ξ) D h 2p ( ρ ) S ˜ ( ηρ ) h em ( η ) h ¯ 2p ( ρ ) S ˜ ¯ ( ηkρ ) h ¯ em ( ηk )dρdη =D | h 2p ( ρ ) | 2 ( τ ρ S ˜ h em τ ρ S ˜ h em )( k ) dρ,
I ˜ p,±ω m (k)=DM e ±i( ϕ m πD) e ±iω r n { [ h 2p ( k ) e ik r n S ˜ ( k ) ] h em ( k ) }{ [ h 2p ( k ) e ik r n S ˜ ( k ) ] h em ( k ) }d r n =DM e ±i( ϕ m πD) [ e i r n ( ±ωρ+ξ ) d r n ] h 2p ( ρ ) S ˜ ( ηρ ) h em ( η ) h ¯ 2p ( ξ ) S ˜ ¯ ( ηkξ ) h ¯ em ( ηk )dρdξ dη = (ξ=ρω) DM e ±i( ϕ m πD) h 2p ( ρ ) S ˜ ( ηρ ) h em ( η ) h ¯ 2p ( ρω ) S ˜ ¯ ( ηkρ±ω ) h ¯ em ( ηk )dρdη =DM e ±i( ϕ m πD) h 2p ( ρ ) h ¯ 2p ( ρω )( τ ρ S ˜ h em τ ρ±ω S ˜ h em )( k )dρ .
I ˜ p m (k)=D | P ˜ 2p ( ρ ) | 2 ( τ ρ S ˜ h em τ ρ S ˜ h em )( k ) dρ +DM e i( ϕ m πD) h 2p ( ρ ) h ¯ 2p ( ρω )( τ ρ S ˜ h em τ ρ+ω S ˜ h em )( k )dρ +DM e i( ϕ m πD) h 2p ( ρ ) h ¯ 2p ( ρ+ω )( τ ρ S ˜ h em τ ρω S ˜ h em )( k )dρ .