Abstract

Optical-resolution photoacoustic microscopy (OR-PAM) images biological tissue with sub-cellular resolution and optical absorption contrast. OR-PAM is limited by the tradeoff among imaging speed, field of view, and sensitivity. In this work, we present an OR-PAM technique based on an unfocused side-looking fiber optic ultrasound (FOUS) sensor, which achieves high imaging speed, large field of view, and good sensitivity for in vivo imaging. The FOUS sensor is developed based on a dual-polarized fiber laser and read out with real-time frequency demodulation. Via minimizing the readout noise, the sensor offers a noise-equivalent pressure of 43.6 Pa, enabling high detection sensitivity over a large field of view. High imaging speed is achieved via scanning the laser beam with a 2D galvo mirror in the ultrasound detection area. Microvascular imaging with a frame rate of 2 Hz over a 2 × 2 mm2 area has been demonstrated in the mouse ear. The new OR-PAM technique may be used in the visualization of biological and physiologic dynamics.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Large area laser scanning optical resolution photoacoustic microscopy using a fibre optic sensor

Thomas J. Allen, Olumide Ogunlade, Edward Zhang, and Paul C. Beard
Biomed. Opt. Express 9(2) 650-660 (2018)

All-optical highly sensitive akinetic sensor for ultrasound detection and photoacoustic imaging

Stefan Preisser, Wolfgang Rohringer, Mengyang Liu, Christian Kollmann, Stefan Zotter, Balthasar Fischer, and Wolfgang Drexler
Biomed. Opt. Express 7(10) 4171-4186 (2016)

Sensitivity characteristics of broadband fiber-laser-based ultrasound sensors for photoacoustic microscopy

Xue Bai, Yizhi Liang, Huojiao Sun, Long Jin, Jun Ma, Bai-Ou Guan, and Lidai Wang
Opt. Express 25(15) 17616-17626 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
    [Crossref] [PubMed]
  2. P. Hai, J. Yao, K. I. Maslov, Y. Zhou, and L. V. Wang, “Near-infrared optical-resolution photoacoustic microscopy,” Opt. Lett. 39(17), 5192–5195 (2014).
    [Crossref] [PubMed]
  3. O. Simandoux, N. Stasio, J. Gateau, J. P. Huignard, C. Moser, D. Psaltis, and E. Bossy, “Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide,” Appl. Phys. Lett. 106(9), 094102 (2015).
    [Crossref]
  4. P. K. Upputuri and M. Pramanik, “Fast photoacoustic imaging systems using pulsed laser diodes: a review,” Biomed. Eng. Lett. 8(2), 1–15 (2018).
    [Crossref]
  5. X. Shu, H. Li, B. Dong, C. Sun, and H. F. Zhang, “Quantifying melanin concentration in retinal pigment epithelium using broadband photoacoustic microscopy,” Biomed. Opt. Express 8(6), 2851–2865 (2017).
    [Crossref] [PubMed]
  6. W. Liu and H. F. Zhang, “Photoacoustic imaging of the eye: A mini review,” Photoacoustics 4(3), 112–123 (2016).
    [Crossref] [PubMed]
  7. R. Cao, J. Li, B. Ning, N. Sun, T. Wang, Z. Zuo, and S. Hu, “Functional and oxygen-metabolic photoacoustic microscopy of the awake mouse brain,” Neuroimage 150, 77–87 (2017).
    [Crossref] [PubMed]
  8. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
    [Crossref] [PubMed]
  9. S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
    [Crossref] [PubMed]
  10. L. Wang, K. Maslov, J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 36(2), 139–141 (2011).
    [Crossref] [PubMed]
  11. J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
    [Crossref] [PubMed]
  12. J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5(1), 7932 (2015).
    [Crossref] [PubMed]
  13. K. Park, J. Y. Kim, C. Lee, S. Jeon, G. Lim, and C. Kim, “Handheld photoacoustic microscopy probe,” Sci. Rep. 7(1), 13359 (2017).
    [Crossref] [PubMed]
  14. J. Y. Kim, C. Lee, K. Park, S. Han, and C. Kim, “High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid,” Sci. Rep. 6(1), 34803 (2016).
    [Crossref] [PubMed]
  15. L. Lin, J. Yao, R. Zhang, C. C. Chen, C. H. Huang, Y. Li, L. Wang, W. Chapman, J. Zou, and L. V. Wang, “High-speed photoacoustic microscopy of mouse cortical microhemodynamics,” J. Biophotonics 10(6-7), 792–798 (2017).
    [Crossref] [PubMed]
  16. L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39(7), 2117–2120 (2014).
    [Crossref] [PubMed]
  17. Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34(12), 1771–1773 (2009).
    [Crossref] [PubMed]
  18. B. Dong, H. Li, Z. Zhang, K. Zhang, S. Chen, C. Sun, and H. F. Zhang, “Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection,” Optica 2(2), 169–176 (2015).
    [Crossref] [PubMed]
  19. R. Shnaiderman, G. Wissmeyer, M. Seeger, D. Soliman, H. Estrada, D. Razansky, A. Rosenthal, and V. Ntziachristos, “Fiber interferometer for hybrid optical and optoacoustic intravital microscopy,” Optica 4(10), 1180–1186 (2017).
    [Crossref]
  20. T. J. Allen, O. Ogunlade, E. Zhang, and P. C. Beard, “Large area laser scanning optical resolution photoacoustic microscopy using a fibre optic sensor,” Biomed. Opt. Express 9(2), 650–660 (2018).
    [Crossref] [PubMed]
  21. Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B. O. Guan, “Fiber-laser-based ultrasound sensor for photoacoustic imaging,” Sci. Rep. 7(1), 40849 (2017).
    [Crossref] [PubMed]
  22. X. Bai, Y. Liang, H. Sun, L. Jin, J. Ma, B. O. Guan, and L. Wang, “Sensitivity characteristics of broadband fiber-laser-based ultrasound sensors for photoacoustic microscopy,” Opt. Express 25(15), 17616–17626 (2017).
    [Crossref] [PubMed]
  23. H. Jiang, J. Taylor, F. Quinlan, T. Fortier, and S. A. Diddams, “Noise Floor Reduction of an Er:Fiber Laser-Based Photonic Microwave Generator,” IEEE Photonics J. 3(6), 1004–1012 (2011).
    [Crossref]
  24. J. Taylor, S. Diddams, S. Datta, and A. Joshi, “Photodiode limitations in the generation of low-noise microwave signals from stable frequency combs,” International Topical Meeting on Microwave Photonics, 1–3 (2009).

2018 (2)

2017 (7)

X. Shu, H. Li, B. Dong, C. Sun, and H. F. Zhang, “Quantifying melanin concentration in retinal pigment epithelium using broadband photoacoustic microscopy,” Biomed. Opt. Express 8(6), 2851–2865 (2017).
[Crossref] [PubMed]

X. Bai, Y. Liang, H. Sun, L. Jin, J. Ma, B. O. Guan, and L. Wang, “Sensitivity characteristics of broadband fiber-laser-based ultrasound sensors for photoacoustic microscopy,” Opt. Express 25(15), 17616–17626 (2017).
[Crossref] [PubMed]

R. Shnaiderman, G. Wissmeyer, M. Seeger, D. Soliman, H. Estrada, D. Razansky, A. Rosenthal, and V. Ntziachristos, “Fiber interferometer for hybrid optical and optoacoustic intravital microscopy,” Optica 4(10), 1180–1186 (2017).
[Crossref]

R. Cao, J. Li, B. Ning, N. Sun, T. Wang, Z. Zuo, and S. Hu, “Functional and oxygen-metabolic photoacoustic microscopy of the awake mouse brain,” Neuroimage 150, 77–87 (2017).
[Crossref] [PubMed]

K. Park, J. Y. Kim, C. Lee, S. Jeon, G. Lim, and C. Kim, “Handheld photoacoustic microscopy probe,” Sci. Rep. 7(1), 13359 (2017).
[Crossref] [PubMed]

L. Lin, J. Yao, R. Zhang, C. C. Chen, C. H. Huang, Y. Li, L. Wang, W. Chapman, J. Zou, and L. V. Wang, “High-speed photoacoustic microscopy of mouse cortical microhemodynamics,” J. Biophotonics 10(6-7), 792–798 (2017).
[Crossref] [PubMed]

Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B. O. Guan, “Fiber-laser-based ultrasound sensor for photoacoustic imaging,” Sci. Rep. 7(1), 40849 (2017).
[Crossref] [PubMed]

2016 (3)

J. Y. Kim, C. Lee, K. Park, S. Han, and C. Kim, “High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid,” Sci. Rep. 6(1), 34803 (2016).
[Crossref] [PubMed]

W. Liu and H. F. Zhang, “Photoacoustic imaging of the eye: A mini review,” Photoacoustics 4(3), 112–123 (2016).
[Crossref] [PubMed]

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref] [PubMed]

2015 (4)

O. Simandoux, N. Stasio, J. Gateau, J. P. Huignard, C. Moser, D. Psaltis, and E. Bossy, “Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide,” Appl. Phys. Lett. 106(9), 094102 (2015).
[Crossref]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5(1), 7932 (2015).
[Crossref] [PubMed]

B. Dong, H. Li, Z. Zhang, K. Zhang, S. Chen, C. Sun, and H. F. Zhang, “Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection,” Optica 2(2), 169–176 (2015).
[Crossref] [PubMed]

2014 (2)

2011 (3)

2009 (1)

2008 (1)

Allen, T. J.

Bai, X.

Beard, P. C.

Bossy, E.

O. Simandoux, N. Stasio, J. Gateau, J. P. Huignard, C. Moser, D. Psaltis, and E. Bossy, “Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide,” Appl. Phys. Lett. 106(9), 094102 (2015).
[Crossref]

Cao, R.

R. Cao, J. Li, B. Ning, N. Sun, T. Wang, Z. Zuo, and S. Hu, “Functional and oxygen-metabolic photoacoustic microscopy of the awake mouse brain,” Neuroimage 150, 77–87 (2017).
[Crossref] [PubMed]

Chapman, W.

L. Lin, J. Yao, R. Zhang, C. C. Chen, C. H. Huang, Y. Li, L. Wang, W. Chapman, J. Zou, and L. V. Wang, “High-speed photoacoustic microscopy of mouse cortical microhemodynamics,” J. Biophotonics 10(6-7), 792–798 (2017).
[Crossref] [PubMed]

Chen, C. C.

L. Lin, J. Yao, R. Zhang, C. C. Chen, C. H. Huang, Y. Li, L. Wang, W. Chapman, J. Zou, and L. V. Wang, “High-speed photoacoustic microscopy of mouse cortical microhemodynamics,” J. Biophotonics 10(6-7), 792–798 (2017).
[Crossref] [PubMed]

Chen, R.

Chen, S.

Cheng, L.

Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B. O. Guan, “Fiber-laser-based ultrasound sensor for photoacoustic imaging,” Sci. Rep. 7(1), 40849 (2017).
[Crossref] [PubMed]

Datta, S.

J. Taylor, S. Diddams, S. Datta, and A. Joshi, “Photodiode limitations in the generation of low-noise microwave signals from stable frequency combs,” International Topical Meeting on Microwave Photonics, 1–3 (2009).

Diddams, S.

J. Taylor, S. Diddams, S. Datta, and A. Joshi, “Photodiode limitations in the generation of low-noise microwave signals from stable frequency combs,” International Topical Meeting on Microwave Photonics, 1–3 (2009).

Diddams, S. A.

H. Jiang, J. Taylor, F. Quinlan, T. Fortier, and S. A. Diddams, “Noise Floor Reduction of an Er:Fiber Laser-Based Photonic Microwave Generator,” IEEE Photonics J. 3(6), 1004–1012 (2011).
[Crossref]

Dong, B.

Estrada, H.

Fortier, T.

H. Jiang, J. Taylor, F. Quinlan, T. Fortier, and S. A. Diddams, “Noise Floor Reduction of an Er:Fiber Laser-Based Photonic Microwave Generator,” IEEE Photonics J. 3(6), 1004–1012 (2011).
[Crossref]

Gateau, J.

O. Simandoux, N. Stasio, J. Gateau, J. P. Huignard, C. Moser, D. Psaltis, and E. Bossy, “Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide,” Appl. Phys. Lett. 106(9), 094102 (2015).
[Crossref]

Guan, B. O.

Hai, P.

Han, S.

J. Y. Kim, C. Lee, K. Park, S. Han, and C. Kim, “High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid,” Sci. Rep. 6(1), 34803 (2016).
[Crossref] [PubMed]

Hu, S.

Huang, C. H.

L. Lin, J. Yao, R. Zhang, C. C. Chen, C. H. Huang, Y. Li, L. Wang, W. Chapman, J. Zou, and L. V. Wang, “High-speed photoacoustic microscopy of mouse cortical microhemodynamics,” J. Biophotonics 10(6-7), 792–798 (2017).
[Crossref] [PubMed]

Huang, C.-H.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Huignard, J. P.

O. Simandoux, N. Stasio, J. Gateau, J. P. Huignard, C. Moser, D. Psaltis, and E. Bossy, “Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide,” Appl. Phys. Lett. 106(9), 094102 (2015).
[Crossref]

Jeon, S.

K. Park, J. Y. Kim, C. Lee, S. Jeon, G. Lim, and C. Kim, “Handheld photoacoustic microscopy probe,” Sci. Rep. 7(1), 13359 (2017).
[Crossref] [PubMed]

Jiang, H.

H. Jiang, J. Taylor, F. Quinlan, T. Fortier, and S. A. Diddams, “Noise Floor Reduction of an Er:Fiber Laser-Based Photonic Microwave Generator,” IEEE Photonics J. 3(6), 1004–1012 (2011).
[Crossref]

Jiao, S.

Jin, L.

Joshi, A.

J. Taylor, S. Diddams, S. Datta, and A. Joshi, “Photodiode limitations in the generation of low-noise microwave signals from stable frequency combs,” International Topical Meeting on Microwave Photonics, 1–3 (2009).

Kim, C.

K. Park, J. Y. Kim, C. Lee, S. Jeon, G. Lim, and C. Kim, “Handheld photoacoustic microscopy probe,” Sci. Rep. 7(1), 13359 (2017).
[Crossref] [PubMed]

J. Y. Kim, C. Lee, K. Park, S. Han, and C. Kim, “High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid,” Sci. Rep. 6(1), 34803 (2016).
[Crossref] [PubMed]

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5(1), 7932 (2015).
[Crossref] [PubMed]

Kim, J. Y.

K. Park, J. Y. Kim, C. Lee, S. Jeon, G. Lim, and C. Kim, “Handheld photoacoustic microscopy probe,” Sci. Rep. 7(1), 13359 (2017).
[Crossref] [PubMed]

J. Y. Kim, C. Lee, K. Park, S. Han, and C. Kim, “High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid,” Sci. Rep. 6(1), 34803 (2016).
[Crossref] [PubMed]

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5(1), 7932 (2015).
[Crossref] [PubMed]

Lee, C.

K. Park, J. Y. Kim, C. Lee, S. Jeon, G. Lim, and C. Kim, “Handheld photoacoustic microscopy probe,” Sci. Rep. 7(1), 13359 (2017).
[Crossref] [PubMed]

J. Y. Kim, C. Lee, K. Park, S. Han, and C. Kim, “High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid,” Sci. Rep. 6(1), 34803 (2016).
[Crossref] [PubMed]

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5(1), 7932 (2015).
[Crossref] [PubMed]

Li, H.

Li, J.

R. Cao, J. Li, B. Ning, N. Sun, T. Wang, Z. Zuo, and S. Hu, “Functional and oxygen-metabolic photoacoustic microscopy of the awake mouse brain,” Neuroimage 150, 77–87 (2017).
[Crossref] [PubMed]

Li, L.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39(7), 2117–2120 (2014).
[Crossref] [PubMed]

Li, Y.

L. Lin, J. Yao, R. Zhang, C. C. Chen, C. H. Huang, Y. Li, L. Wang, W. Chapman, J. Zou, and L. V. Wang, “High-speed photoacoustic microscopy of mouse cortical microhemodynamics,” J. Biophotonics 10(6-7), 792–798 (2017).
[Crossref] [PubMed]

Liang, Y.

Lim, G.

K. Park, J. Y. Kim, C. Lee, S. Jeon, G. Lim, and C. Kim, “Handheld photoacoustic microscopy probe,” Sci. Rep. 7(1), 13359 (2017).
[Crossref] [PubMed]

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5(1), 7932 (2015).
[Crossref] [PubMed]

Lin, L.

L. Lin, J. Yao, R. Zhang, C. C. Chen, C. H. Huang, Y. Li, L. Wang, W. Chapman, J. Zou, and L. V. Wang, “High-speed photoacoustic microscopy of mouse cortical microhemodynamics,” J. Biophotonics 10(6-7), 792–798 (2017).
[Crossref] [PubMed]

Liu, W.

W. Liu and H. F. Zhang, “Photoacoustic imaging of the eye: A mini review,” Photoacoustics 4(3), 112–123 (2016).
[Crossref] [PubMed]

Ma, J.

Maslov, K.

Maslov, K. I.

Moser, C.

O. Simandoux, N. Stasio, J. Gateau, J. P. Huignard, C. Moser, D. Psaltis, and E. Bossy, “Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide,” Appl. Phys. Lett. 106(9), 094102 (2015).
[Crossref]

Ning, B.

R. Cao, J. Li, B. Ning, N. Sun, T. Wang, Z. Zuo, and S. Hu, “Functional and oxygen-metabolic photoacoustic microscopy of the awake mouse brain,” Neuroimage 150, 77–87 (2017).
[Crossref] [PubMed]

Ntziachristos, V.

Ogunlade, O.

Park, K.

K. Park, J. Y. Kim, C. Lee, S. Jeon, G. Lim, and C. Kim, “Handheld photoacoustic microscopy probe,” Sci. Rep. 7(1), 13359 (2017).
[Crossref] [PubMed]

J. Y. Kim, C. Lee, K. Park, S. Han, and C. Kim, “High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid,” Sci. Rep. 6(1), 34803 (2016).
[Crossref] [PubMed]

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5(1), 7932 (2015).
[Crossref] [PubMed]

Pramanik, M.

P. K. Upputuri and M. Pramanik, “Fast photoacoustic imaging systems using pulsed laser diodes: a review,” Biomed. Eng. Lett. 8(2), 1–15 (2018).
[Crossref]

Psaltis, D.

O. Simandoux, N. Stasio, J. Gateau, J. P. Huignard, C. Moser, D. Psaltis, and E. Bossy, “Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide,” Appl. Phys. Lett. 106(9), 094102 (2015).
[Crossref]

Puliafito, C. A.

Quinlan, F.

H. Jiang, J. Taylor, F. Quinlan, T. Fortier, and S. A. Diddams, “Noise Floor Reduction of an Er:Fiber Laser-Based Photonic Microwave Generator,” IEEE Photonics J. 3(6), 1004–1012 (2011).
[Crossref]

Rao, B.

Razansky, D.

Rosenthal, A.

Seeger, M.

Shnaiderman, R.

Shu, X.

Shung, K. K.

Simandoux, O.

O. Simandoux, N. Stasio, J. Gateau, J. P. Huignard, C. Moser, D. Psaltis, and E. Bossy, “Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide,” Appl. Phys. Lett. 106(9), 094102 (2015).
[Crossref]

Soetikno, B. T.

Soliman, D.

Stasio, N.

O. Simandoux, N. Stasio, J. Gateau, J. P. Huignard, C. Moser, D. Psaltis, and E. Bossy, “Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide,” Appl. Phys. Lett. 106(9), 094102 (2015).
[Crossref]

Sun, C.

Sun, H.

Sun, N.

R. Cao, J. Li, B. Ning, N. Sun, T. Wang, Z. Zuo, and S. Hu, “Functional and oxygen-metabolic photoacoustic microscopy of the awake mouse brain,” Neuroimage 150, 77–87 (2017).
[Crossref] [PubMed]

Taylor, J.

H. Jiang, J. Taylor, F. Quinlan, T. Fortier, and S. A. Diddams, “Noise Floor Reduction of an Er:Fiber Laser-Based Photonic Microwave Generator,” IEEE Photonics J. 3(6), 1004–1012 (2011).
[Crossref]

J. Taylor, S. Diddams, S. Datta, and A. Joshi, “Photodiode limitations in the generation of low-noise microwave signals from stable frequency combs,” International Topical Meeting on Microwave Photonics, 1–3 (2009).

Upputuri, P. K.

P. K. Upputuri and M. Pramanik, “Fast photoacoustic imaging systems using pulsed laser diodes: a review,” Biomed. Eng. Lett. 8(2), 1–15 (2018).
[Crossref]

Wang, L.

Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B. O. Guan, “Fiber-laser-based ultrasound sensor for photoacoustic imaging,” Sci. Rep. 7(1), 40849 (2017).
[Crossref] [PubMed]

L. Lin, J. Yao, R. Zhang, C. C. Chen, C. H. Huang, Y. Li, L. Wang, W. Chapman, J. Zou, and L. V. Wang, “High-speed photoacoustic microscopy of mouse cortical microhemodynamics,” J. Biophotonics 10(6-7), 792–798 (2017).
[Crossref] [PubMed]

X. Bai, Y. Liang, H. Sun, L. Jin, J. Ma, B. O. Guan, and L. Wang, “Sensitivity characteristics of broadband fiber-laser-based ultrasound sensors for photoacoustic microscopy,” Opt. Express 25(15), 17616–17626 (2017).
[Crossref] [PubMed]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39(7), 2117–2120 (2014).
[Crossref] [PubMed]

L. Wang, K. Maslov, J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 36(2), 139–141 (2011).
[Crossref] [PubMed]

Wang, L. V.

L. Lin, J. Yao, R. Zhang, C. C. Chen, C. H. Huang, Y. Li, L. Wang, W. Chapman, J. Zou, and L. V. Wang, “High-speed photoacoustic microscopy of mouse cortical microhemodynamics,” J. Biophotonics 10(6-7), 792–798 (2017).
[Crossref] [PubMed]

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref] [PubMed]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39(7), 2117–2120 (2014).
[Crossref] [PubMed]

P. Hai, J. Yao, K. I. Maslov, Y. Zhou, and L. V. Wang, “Near-infrared optical-resolution photoacoustic microscopy,” Opt. Lett. 39(17), 5192–5195 (2014).
[Crossref] [PubMed]

L. Wang, K. Maslov, J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 36(2), 139–141 (2011).
[Crossref] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
[Crossref] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[Crossref] [PubMed]

Wang, T.

R. Cao, J. Li, B. Ning, N. Sun, T. Wang, Z. Zuo, and S. Hu, “Functional and oxygen-metabolic photoacoustic microscopy of the awake mouse brain,” Neuroimage 150, 77–87 (2017).
[Crossref] [PubMed]

Wissmeyer, G.

Wong, T. T. W.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Xie, Z.

Yang, J.-M.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Yao, J.

L. Lin, J. Yao, R. Zhang, C. C. Chen, C. H. Huang, Y. Li, L. Wang, W. Chapman, J. Zou, and L. V. Wang, “High-speed photoacoustic microscopy of mouse cortical microhemodynamics,” J. Biophotonics 10(6-7), 792–798 (2017).
[Crossref] [PubMed]

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref] [PubMed]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

P. Hai, J. Yao, K. I. Maslov, Y. Zhou, and L. V. Wang, “Near-infrared optical-resolution photoacoustic microscopy,” Opt. Lett. 39(17), 5192–5195 (2014).
[Crossref] [PubMed]

L. Wang, K. Maslov, J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 36(2), 139–141 (2011).
[Crossref] [PubMed]

Yeh, C.

Zhang, E.

Zhang, H. F.

Zhang, K.

Zhang, R.

L. Lin, J. Yao, R. Zhang, C. C. Chen, C. H. Huang, Y. Li, L. Wang, W. Chapman, J. Zou, and L. V. Wang, “High-speed photoacoustic microscopy of mouse cortical microhemodynamics,” J. Biophotonics 10(6-7), 792–798 (2017).
[Crossref] [PubMed]

Zhang, Z.

Zhou, Q.

Zhou, Y.

Zou, J.

L. Lin, J. Yao, R. Zhang, C. C. Chen, C. H. Huang, Y. Li, L. Wang, W. Chapman, J. Zou, and L. V. Wang, “High-speed photoacoustic microscopy of mouse cortical microhemodynamics,” J. Biophotonics 10(6-7), 792–798 (2017).
[Crossref] [PubMed]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Zuo, Z.

R. Cao, J. Li, B. Ning, N. Sun, T. Wang, Z. Zuo, and S. Hu, “Functional and oxygen-metabolic photoacoustic microscopy of the awake mouse brain,” Neuroimage 150, 77–87 (2017).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

O. Simandoux, N. Stasio, J. Gateau, J. P. Huignard, C. Moser, D. Psaltis, and E. Bossy, “Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide,” Appl. Phys. Lett. 106(9), 094102 (2015).
[Crossref]

Biomed. Eng. Lett. (1)

P. K. Upputuri and M. Pramanik, “Fast photoacoustic imaging systems using pulsed laser diodes: a review,” Biomed. Eng. Lett. 8(2), 1–15 (2018).
[Crossref]

Biomed. Opt. Express (2)

IEEE Photonics J. (1)

H. Jiang, J. Taylor, F. Quinlan, T. Fortier, and S. A. Diddams, “Noise Floor Reduction of an Er:Fiber Laser-Based Photonic Microwave Generator,” IEEE Photonics J. 3(6), 1004–1012 (2011).
[Crossref]

J. Biophotonics (1)

L. Lin, J. Yao, R. Zhang, C. C. Chen, C. H. Huang, Y. Li, L. Wang, W. Chapman, J. Zou, and L. V. Wang, “High-speed photoacoustic microscopy of mouse cortical microhemodynamics,” J. Biophotonics 10(6-7), 792–798 (2017).
[Crossref] [PubMed]

Nat. Methods (2)

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref] [PubMed]

Neuroimage (1)

R. Cao, J. Li, B. Ning, N. Sun, T. Wang, Z. Zuo, and S. Hu, “Functional and oxygen-metabolic photoacoustic microscopy of the awake mouse brain,” Neuroimage 150, 77–87 (2017).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (6)

Optica (2)

Photoacoustics (1)

W. Liu and H. F. Zhang, “Photoacoustic imaging of the eye: A mini review,” Photoacoustics 4(3), 112–123 (2016).
[Crossref] [PubMed]

Sci. Rep. (4)

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5(1), 7932 (2015).
[Crossref] [PubMed]

K. Park, J. Y. Kim, C. Lee, S. Jeon, G. Lim, and C. Kim, “Handheld photoacoustic microscopy probe,” Sci. Rep. 7(1), 13359 (2017).
[Crossref] [PubMed]

J. Y. Kim, C. Lee, K. Park, S. Han, and C. Kim, “High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid,” Sci. Rep. 6(1), 34803 (2016).
[Crossref] [PubMed]

Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B. O. Guan, “Fiber-laser-based ultrasound sensor for photoacoustic imaging,” Sci. Rep. 7(1), 40849 (2017).
[Crossref] [PubMed]

Other (1)

J. Taylor, S. Diddams, S. Datta, and A. Joshi, “Photodiode limitations in the generation of low-noise microwave signals from stable frequency combs,” International Topical Meeting on Microwave Photonics, 1–3 (2009).

Supplementary Material (2)

NameDescription
» Visualization 1       Fast imaging of blood flow in the mouse ear (see Visualization 1). Pixel number 200×200, scanning area 2×2 mm2, frame rate 2 Hz.
» Visualization 2       three-dimensional volumetric images for the in vivo imaging of mouse ear, the dimension of the white box are 2.2×2.2×0.52mm

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of OR-PAM system. (b) Principle of the FOUS sensor. (c) Calculated fiber deformation under 22-MHz ultrasound excitation. (d) Demodulated photoacoustic signal in time domain. (e) Amplitude spectrum of the demodulated signal in (d). (f) Measured SNR and noise-equivalent pressure (NEP) as a function of input power at the photodetector. The noise floor is characterized as six times of the noise standard deviation. In the SNR measurement, the incident acoustic pressure is 75.2 kPa.
Fig. 2
Fig. 2 Comparison between the present FOUS and an unfocused piezoelectric ultrasound transducer. (a) Experimental setup. L: lens, RFA: radio-frequency amplifier. UT: ultrasound transducer. DAQ: data acquisition.(b) Recorded temporal photoacoustic signals. (c) Peak-to-peak amplitudes at different signal strengths.
Fig. 3
Fig. 3 (a) Lateral resolution test result. The line spread function (LSF) is calculated from the photoacoustic amplitude profile normal to a sharp blade edge. (b) Maximum amplitude projection (MAP) image of the black tape. Scale bar: 1 mm. (c, d) B-scan images of black tape along the horizontal and vertical dashed lines in (b). Scale bar: 1 mm. (e) Schematic showing that the FOUS sensor works as a line detector along the fiber length. (f) In the radial direction, the sensitivity of the FOUS sensor depends on the acoustic incident angle θ.
Fig. 4
Fig. 4 (a) B-Scan MAP image of two hair as absorb for 30 minutes (b) Date extracted from 3 dash line of the Fig. 4(a).
Fig. 5
Fig. 5 (a) OR-PAM of black ink flowing in a plastic tube at 4 Hz. The blue dashed lines show the boundaries of the tube. scale bar: 500 μm (b) Fast imaging of blood flow in the mouse ear (see Visualization 1). Pixel number 200 × 200, scanning area 2 × 2 mm2, frame rate 2 Hz. Scale bar: 500 μm. Three consecutive snapshots in the dashed white circle shows the blood flow. (c) In vivo imaging of the mouse ear. Pixels 500 × 500, scanning area 2.2 × 2.2 mm2, frame rate 0.2 Hz. Scale bar 500 μm. (d) three-dimensional volumetric images for the in vivo imaging of mouse ear, the dimension of the white box is 2.2 × 2.2 × 0.52mm (Visualization 2).

Metrics