Abstract

Dynamic light scattering optical coherence microscopy (DLS-OCM) integrates DLS, which measures diffusion or flow of particles by analyzing fluctuations in light scattered by the particles, and OCM, which achieves single-cell resolution by combining coherence and confocal gating, integratively enabling cellular-resolution 3D mapping of the diffusion coefficient, and flow velocity. The diffusion coefficient mapping has a potential for the non-destructive measurement of cellular viability in the standard unit but has not been validated yet. Here, we present DLS-OCM imaging of intra-cellular motility (ICM) as a surrogate of cellular viability. For this purpose, we have simultaneously obtained and compared ICM-contrast DLS-OCM images and calcium fluorescence-contrast images of retinal ganglion cells, and then characterized the responses of the measured ICM to a change in cellular viability induced by environmental conditions such as temperature and pH. The diffusion-coefficient-represented ICM exhibits consistent changes with the manipulated cellular viability.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic light scattering optical coherence tomography

Jonghwan Lee, Weicheng Wu, James Y. Jiang, Bo Zhu, and David A. Boas
Opt. Express 20(20) 22262-22277 (2012)

Diffusive and directional intracellular dynamics measured by field-based dynamic light scattering

Chulmin Joo, Conor L. Evans, Thomas Stepinac, Tayyaba Hasan, and Johannes F. de Boer
Opt. Express 18(3) 2858-2871 (2010)

Intracellular dynamics measurements with full field optical coherence tomography suggest hindering effect of actomyosin contractility on organelle transport

Charles-Edouard Leroux, Fabien Bertillot, Olivier Thouvenin, and Albert-Claude Boccara
Biomed. Opt. Express 7(11) 4501-4513 (2016)

References

  • View by:
  • |
  • |
  • |

  1. O. Kepp, L. Galluzzi, M. Lipinski, J. Yuan, and G. Kroemer, “Cell death assays for drug discovery,” Nat. Rev. Drug Discov. 10(3), 221–237 (2011).
    [Crossref] [PubMed]
  2. D. T. Vistica, P. Skehan, D. Scudiero, A. Monks, A. Pittman, and M. R. Boyd, “Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production,” Cancer Res. 51(10), 2515–2520 (1991).
    [PubMed]
  3. S. R. Khetani and S. N. Bhatia, “Microscale culture of human liver cells for drug development,” Nat. Biotechnol. 26(1), 120–126 (2008).
    [Crossref] [PubMed]
  4. B. Herman and D. F. Albertini, “A time-lapse video image intensification analysis of cytoplasmic organelle movements during endosome translocation,” J. Cell Biol. 98(2), 565–576 (1984).
    [Crossref] [PubMed]
  5. C. P. Brangwynne, F. C. MacKintosh, and D. A. Weitz, “Force fluctuations and polymerization dynamics of intracellular microtubules,” Proc. Natl. Acad. Sci. U.S.A. 104(41), 16128–16133 (2007).
    [Crossref] [PubMed]
  6. Y. Tseng, T. P. Kole, and D. Wirtz, “Micromechanical mapping of live cells by multiple-particle-tracking microrheology,” Biophys. J. 83(6), 3162–3176 (2002).
    [Crossref] [PubMed]
  7. P. Panorchan, J. S. H. Lee, T. P. Kole, Y. Tseng, and D. Wirtz, “Microrheology and ROCK Signaling of Human Endothelial Cells Embedded in a 3D Matrix,” Biophys. J. 91(9), 3499–3507 (2006).
    [Crossref] [PubMed]
  8. K. Luby-Phelps, P. E. Castles, D. L. Taylort, and F. Lannit, “Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells,” Proc. Natl. Acad. Sci. U.S.A. 84, 4910–4913 (1987).
  9. K. Luby-Phelps, D. L. Taylor, and F. Lanni, “Probing the structure of cytoplasm,” J. Cell Biol. 102(6), 2015–2022 (1986).
    [Crossref] [PubMed]
  10. E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
    [Crossref]
  11. H. Chen, E. R. Farkas, and W. W. Webb, “Chapter 1: In vivo applications of fluorescence correlation spectroscopy,” Methods Cell Biol. 89, 3–35 (2008).
    [Crossref] [PubMed]
  12. C. P. Brangwynne, G. H. Koenderink, F. C. MacKintosh, and D. A. Weitz, “Intracellular transport by active diffusion,” Trends Cell Biol. 19(9), 423–427 (2009).
    [Crossref] [PubMed]
  13. D. D. Nolte, R. An, J. Turek, and K. Jeong, “Holographic tissue dynamics spectroscopy,” J. Biomed. Opt. 16(8), 087004 (2011).
    [Crossref] [PubMed]
  14. M. Prummer, D. Kling, V. Trefzer, T. Enderle, S. Zoffmann, and M. Prunotto, “A random motility assay based on image correlation spectroscopy,” Biophys. J. 104(11), 2362–2372 (2013).
    [Crossref] [PubMed]
  15. N. T. Shaked and A. Wax, “Quantitative Phase Microscopy of Live Biological Cell Dynamics,” in Advanced Phase Measurement Methods in Optics and Imaging (Springer Berlin Heidelberg, 2010), pp. 283–288.
  16. G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
    [Crossref] [PubMed]
  17. T. Yamauchi, H. Iwai, and Y. Yamashita, “Label-free imaging of intracellular motility by low-coherent quantitative phase microscopy,” Opt. Express 19(6), 5536–5550 (2011).
    [Crossref] [PubMed]
  18. D. B. Sattelle, D. J. Green, and K. H. Langley, “Subcellular Motions in Nitella flexilis studied by Photon Correlation Spectroscopy,” Phys. Scr. 19(4), 471–475 (1979).
    [Crossref]
  19. J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas, “Dynamic light scattering optical coherence tomography,” Opt. Express 20(20), 22262–22277 (2012).
    [Crossref] [PubMed]
  20. J. Lee, H. Radhakrishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography,” J. Cereb. Blood Flow Metab. 33(6), 819–825 (2013).
    [Crossref] [PubMed]
  21. A. L. Oldenburg, X. Yu, T. Gilliss, O. Alabi, R. M. Taylor, and M. A. Troester, “Inverse-power-law behavior of cellular motility reveals stromal-epithelial cell interactions in 3D co-culture by OCT fluctuation spectroscopy,” Optica 2(10), 877–885 (2015).
    [Crossref] [PubMed]
  22. C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, “Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis,” Biomed. Opt. Express 7(4), 1511–1524 (2016).
    [Crossref] [PubMed]
  23. P. J. Marchand, A. Bouwens, T. Bolmont, V. K. Shamaei, D. Nguyen, D. Szlag, J. Extermann, and T. Lasser, “Statistical parametric mapping of stimuli evoked changes in total blood flow velocity in the mouse cortex obtained with extended-focus optical coherence microscopy,” Biomed. Opt. Express 8(1), 1–15 (2017).
    [Crossref] [PubMed]
  24. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
    [Crossref] [PubMed]
  25. J. W. Wojcieszyn, R. A. Schlegelt, E.-S. Wut, and K. A. Jacobson, “Diffusion of injected macromolecules within the cytoplasm of living cells (erythrocyte-mediated microinjection/photobleaching/human fibroblast/cytoplasmic viscosity/cytoskeleton),” Cell Biol. 78, 4407–4410 (1981).
  26. S. Marlar, E. C. Arnspang, G. A. Pedersen, J. S. Koffman, and L. N. Nejsum, “Measuring localization and diffusion coefficients of basolateral proteins in lateral versus basal membranes using functionalized substrates and kICS analysis,” Biochim. Biophys. Acta 1838(10), 2404–2411 (2014).
    [Crossref] [PubMed]
  27. N. Weiss, T. G. van Leeuwen, and J. Kalkman, “Simultaneous and localized measurement of diffusion and flow using optical coherence tomography,” Opt. Express 23(3), 3448–3459 (2015).
    [Crossref] [PubMed]
  28. L. Tian, S. A. Hires, T. Mao, D. Huber, M. E. Chiappe, S. H. Chalasani, L. Petreanu, J. Akerboom, S. A. McKinney, E. R. Schreiter, C. I. Bargmann, V. Jayaraman, K. Svoboda, and L. L. Looger, “Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators,” Nat. Methods 6(12), 875–881 (2009).
    [Crossref] [PubMed]
  29. A. Einstein, “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen,” Ann. Phys. 322(8), 549–560 (1905).
    [Crossref]
  30. P. M. Schulte, “The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment,” J. Exp. Biol. 218(12), 1856–1866 (2015).
    [Crossref] [PubMed]
  31. E. A. Koehler, R. J. Reitzel, ,Rockefeller Institute for Medical ResearchAmerican Society for Biochemistry and Molecular Biology, “The effect of pH on the oxygen consumption of tissues,” J. Biol. Chem. 64, 739–751 (1925).
  32. C. Lin, M. Schuster, S. C. Guimaraes, P. Ashwin, M. Schrader, J. Metz, C. Hacker, S. J. Gurr, and G. Steinberg, “Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells,” Nat. Commun. 7, 11814 (2016).
    [Crossref] [PubMed]
  33. K. Norregaard, R. Metzler, C. M. Ritter, K. Berg-Sørensen, and L. B. Oddershede, “Manipulation and Motion of Organelles and Single Molecules in Living Cells,” Chem. Rev. 117(5), 4342–4375 (2017).
    [Crossref] [PubMed]
  34. H. O. Pörtner, “Climate change and temperature-dependent biogeography: Oxygen limitation of thermal tolerance in animals,” Naturwissenschaften 88(4), 137–146 (2001).
    [Crossref] [PubMed]
  35. S. Zielinski and H. O. Pörtner, “Energy metabolism and ATP free-energy change of the intertidal worm Sipunculus nudus below a critical temperature,” J. Comp. Physiol. - B Biochem. Syst. Environ. Physiol. 166, 492–500 (1996).
    [Crossref]
  36. W. Hong, A. Takshak, O. Osunbayo, A. Kunwar, and M. Vershinin, “The Effect of Temperature on Microtubule-Based Transport by Cytoplasmic Dynein and Kinesin-1 Motors,” Biophys. J. 111(6), 1287–1294 (2016).
    [Crossref] [PubMed]
  37. K. K. Patel, J. F. Hartmann, and M. M. Cohen, “Effect of pH on Metabolism and Ultrastructure of Guinea Pig Cerebral Cortex Slices,” Stroke 4, 221–231 (1973).

2017 (2)

2016 (3)

C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, “Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis,” Biomed. Opt. Express 7(4), 1511–1524 (2016).
[Crossref] [PubMed]

W. Hong, A. Takshak, O. Osunbayo, A. Kunwar, and M. Vershinin, “The Effect of Temperature on Microtubule-Based Transport by Cytoplasmic Dynein and Kinesin-1 Motors,” Biophys. J. 111(6), 1287–1294 (2016).
[Crossref] [PubMed]

C. Lin, M. Schuster, S. C. Guimaraes, P. Ashwin, M. Schrader, J. Metz, C. Hacker, S. J. Gurr, and G. Steinberg, “Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells,” Nat. Commun. 7, 11814 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (1)

S. Marlar, E. C. Arnspang, G. A. Pedersen, J. S. Koffman, and L. N. Nejsum, “Measuring localization and diffusion coefficients of basolateral proteins in lateral versus basal membranes using functionalized substrates and kICS analysis,” Biochim. Biophys. Acta 1838(10), 2404–2411 (2014).
[Crossref] [PubMed]

2013 (2)

M. Prummer, D. Kling, V. Trefzer, T. Enderle, S. Zoffmann, and M. Prunotto, “A random motility assay based on image correlation spectroscopy,” Biophys. J. 104(11), 2362–2372 (2013).
[Crossref] [PubMed]

J. Lee, H. Radhakrishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography,” J. Cereb. Blood Flow Metab. 33(6), 819–825 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (3)

T. Yamauchi, H. Iwai, and Y. Yamashita, “Label-free imaging of intracellular motility by low-coherent quantitative phase microscopy,” Opt. Express 19(6), 5536–5550 (2011).
[Crossref] [PubMed]

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Holographic tissue dynamics spectroscopy,” J. Biomed. Opt. 16(8), 087004 (2011).
[Crossref] [PubMed]

O. Kepp, L. Galluzzi, M. Lipinski, J. Yuan, and G. Kroemer, “Cell death assays for drug discovery,” Nat. Rev. Drug Discov. 10(3), 221–237 (2011).
[Crossref] [PubMed]

2009 (2)

C. P. Brangwynne, G. H. Koenderink, F. C. MacKintosh, and D. A. Weitz, “Intracellular transport by active diffusion,” Trends Cell Biol. 19(9), 423–427 (2009).
[Crossref] [PubMed]

L. Tian, S. A. Hires, T. Mao, D. Huber, M. E. Chiappe, S. H. Chalasani, L. Petreanu, J. Akerboom, S. A. McKinney, E. R. Schreiter, C. I. Bargmann, V. Jayaraman, K. Svoboda, and L. L. Looger, “Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators,” Nat. Methods 6(12), 875–881 (2009).
[Crossref] [PubMed]

2008 (3)

H. Chen, E. R. Farkas, and W. W. Webb, “Chapter 1: In vivo applications of fluorescence correlation spectroscopy,” Methods Cell Biol. 89, 3–35 (2008).
[Crossref] [PubMed]

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

S. R. Khetani and S. N. Bhatia, “Microscale culture of human liver cells for drug development,” Nat. Biotechnol. 26(1), 120–126 (2008).
[Crossref] [PubMed]

2007 (1)

C. P. Brangwynne, F. C. MacKintosh, and D. A. Weitz, “Force fluctuations and polymerization dynamics of intracellular microtubules,” Proc. Natl. Acad. Sci. U.S.A. 104(41), 16128–16133 (2007).
[Crossref] [PubMed]

2006 (1)

P. Panorchan, J. S. H. Lee, T. P. Kole, Y. Tseng, and D. Wirtz, “Microrheology and ROCK Signaling of Human Endothelial Cells Embedded in a 3D Matrix,” Biophys. J. 91(9), 3499–3507 (2006).
[Crossref] [PubMed]

2002 (1)

Y. Tseng, T. P. Kole, and D. Wirtz, “Micromechanical mapping of live cells by multiple-particle-tracking microrheology,” Biophys. J. 83(6), 3162–3176 (2002).
[Crossref] [PubMed]

2001 (1)

H. O. Pörtner, “Climate change and temperature-dependent biogeography: Oxygen limitation of thermal tolerance in animals,” Naturwissenschaften 88(4), 137–146 (2001).
[Crossref] [PubMed]

1996 (1)

S. Zielinski and H. O. Pörtner, “Energy metabolism and ATP free-energy change of the intertidal worm Sipunculus nudus below a critical temperature,” J. Comp. Physiol. - B Biochem. Syst. Environ. Physiol. 166, 492–500 (1996).
[Crossref]

1991 (1)

D. T. Vistica, P. Skehan, D. Scudiero, A. Monks, A. Pittman, and M. R. Boyd, “Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production,” Cancer Res. 51(10), 2515–2520 (1991).
[PubMed]

1987 (1)

K. Luby-Phelps, P. E. Castles, D. L. Taylort, and F. Lannit, “Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells,” Proc. Natl. Acad. Sci. U.S.A. 84, 4910–4913 (1987).

1986 (1)

K. Luby-Phelps, D. L. Taylor, and F. Lanni, “Probing the structure of cytoplasm,” J. Cell Biol. 102(6), 2015–2022 (1986).
[Crossref] [PubMed]

1984 (1)

B. Herman and D. F. Albertini, “A time-lapse video image intensification analysis of cytoplasmic organelle movements during endosome translocation,” J. Cell Biol. 98(2), 565–576 (1984).
[Crossref] [PubMed]

1981 (1)

J. W. Wojcieszyn, R. A. Schlegelt, E.-S. Wut, and K. A. Jacobson, “Diffusion of injected macromolecules within the cytoplasm of living cells (erythrocyte-mediated microinjection/photobleaching/human fibroblast/cytoplasmic viscosity/cytoskeleton),” Cell Biol. 78, 4407–4410 (1981).

1979 (1)

D. B. Sattelle, D. J. Green, and K. H. Langley, “Subcellular Motions in Nitella flexilis studied by Photon Correlation Spectroscopy,” Phys. Scr. 19(4), 471–475 (1979).
[Crossref]

1974 (1)

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[Crossref]

1973 (1)

K. K. Patel, J. F. Hartmann, and M. M. Cohen, “Effect of pH on Metabolism and Ultrastructure of Guinea Pig Cerebral Cortex Slices,” Stroke 4, 221–231 (1973).

1925 (1)

E. A. Koehler, R. J. Reitzel, ,Rockefeller Institute for Medical ResearchAmerican Society for Biochemistry and Molecular Biology, “The effect of pH on the oxygen consumption of tissues,” J. Biol. Chem. 64, 739–751 (1925).

1905 (1)

A. Einstein, “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen,” Ann. Phys. 322(8), 549–560 (1905).
[Crossref]

Akerboom, J.

L. Tian, S. A. Hires, T. Mao, D. Huber, M. E. Chiappe, S. H. Chalasani, L. Petreanu, J. Akerboom, S. A. McKinney, E. R. Schreiter, C. I. Bargmann, V. Jayaraman, K. Svoboda, and L. L. Looger, “Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators,” Nat. Methods 6(12), 875–881 (2009).
[Crossref] [PubMed]

Alabi, O.

Albertini, D. F.

B. Herman and D. F. Albertini, “A time-lapse video image intensification analysis of cytoplasmic organelle movements during endosome translocation,” J. Cell Biol. 98(2), 565–576 (1984).
[Crossref] [PubMed]

An, R.

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Holographic tissue dynamics spectroscopy,” J. Biomed. Opt. 16(8), 087004 (2011).
[Crossref] [PubMed]

Apelian, C.

Arnspang, E. C.

S. Marlar, E. C. Arnspang, G. A. Pedersen, J. S. Koffman, and L. N. Nejsum, “Measuring localization and diffusion coefficients of basolateral proteins in lateral versus basal membranes using functionalized substrates and kICS analysis,” Biochim. Biophys. Acta 1838(10), 2404–2411 (2014).
[Crossref] [PubMed]

Ashwin, P.

C. Lin, M. Schuster, S. C. Guimaraes, P. Ashwin, M. Schrader, J. Metz, C. Hacker, S. J. Gurr, and G. Steinberg, “Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells,” Nat. Commun. 7, 11814 (2016).
[Crossref] [PubMed]

Ayata, C.

J. Lee, H. Radhakrishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography,” J. Cereb. Blood Flow Metab. 33(6), 819–825 (2013).
[Crossref] [PubMed]

Badizadegan, K.

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

Bargmann, C. I.

L. Tian, S. A. Hires, T. Mao, D. Huber, M. E. Chiappe, S. H. Chalasani, L. Petreanu, J. Akerboom, S. A. McKinney, E. R. Schreiter, C. I. Bargmann, V. Jayaraman, K. Svoboda, and L. L. Looger, “Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators,” Nat. Methods 6(12), 875–881 (2009).
[Crossref] [PubMed]

Berg-Sørensen, K.

K. Norregaard, R. Metzler, C. M. Ritter, K. Berg-Sørensen, and L. B. Oddershede, “Manipulation and Motion of Organelles and Single Molecules in Living Cells,” Chem. Rev. 117(5), 4342–4375 (2017).
[Crossref] [PubMed]

Bhatia, S. N.

S. R. Khetani and S. N. Bhatia, “Microscale culture of human liver cells for drug development,” Nat. Biotechnol. 26(1), 120–126 (2008).
[Crossref] [PubMed]

Boas, D. A.

J. Lee, H. Radhakrishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography,” J. Cereb. Blood Flow Metab. 33(6), 819–825 (2013).
[Crossref] [PubMed]

J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas, “Dynamic light scattering optical coherence tomography,” Opt. Express 20(20), 22262–22277 (2012).
[Crossref] [PubMed]

Boccara, A. C.

Bolmont, T.

Bouwens, A.

Boyd, M. R.

D. T. Vistica, P. Skehan, D. Scudiero, A. Monks, A. Pittman, and M. R. Boyd, “Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production,” Cancer Res. 51(10), 2515–2520 (1991).
[PubMed]

Brangwynne, C. P.

C. P. Brangwynne, G. H. Koenderink, F. C. MacKintosh, and D. A. Weitz, “Intracellular transport by active diffusion,” Trends Cell Biol. 19(9), 423–427 (2009).
[Crossref] [PubMed]

C. P. Brangwynne, F. C. MacKintosh, and D. A. Weitz, “Force fluctuations and polymerization dynamics of intracellular microtubules,” Proc. Natl. Acad. Sci. U.S.A. 104(41), 16128–16133 (2007).
[Crossref] [PubMed]

Castles, P. E.

K. Luby-Phelps, P. E. Castles, D. L. Taylort, and F. Lannit, “Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells,” Proc. Natl. Acad. Sci. U.S.A. 84, 4910–4913 (1987).

Chalasani, S. H.

L. Tian, S. A. Hires, T. Mao, D. Huber, M. E. Chiappe, S. H. Chalasani, L. Petreanu, J. Akerboom, S. A. McKinney, E. R. Schreiter, C. I. Bargmann, V. Jayaraman, K. Svoboda, and L. L. Looger, “Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators,” Nat. Methods 6(12), 875–881 (2009).
[Crossref] [PubMed]

Chen, H.

H. Chen, E. R. Farkas, and W. W. Webb, “Chapter 1: In vivo applications of fluorescence correlation spectroscopy,” Methods Cell Biol. 89, 3–35 (2008).
[Crossref] [PubMed]

Chiappe, M. E.

L. Tian, S. A. Hires, T. Mao, D. Huber, M. E. Chiappe, S. H. Chalasani, L. Petreanu, J. Akerboom, S. A. McKinney, E. R. Schreiter, C. I. Bargmann, V. Jayaraman, K. Svoboda, and L. L. Looger, “Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators,” Nat. Methods 6(12), 875–881 (2009).
[Crossref] [PubMed]

Choi, W.

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

Climov, M.

J. Lee, H. Radhakrishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography,” J. Cereb. Blood Flow Metab. 33(6), 819–825 (2013).
[Crossref] [PubMed]

Cohen, M. M.

K. K. Patel, J. F. Hartmann, and M. M. Cohen, “Effect of pH on Metabolism and Ultrastructure of Guinea Pig Cerebral Cortex Slices,” Stroke 4, 221–231 (1973).

Daneshmand, A.

J. Lee, H. Radhakrishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography,” J. Cereb. Blood Flow Metab. 33(6), 819–825 (2013).
[Crossref] [PubMed]

Dasari, R. R.

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

Einstein, A.

A. Einstein, “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen,” Ann. Phys. 322(8), 549–560 (1905).
[Crossref]

Elson, E. L.

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[Crossref]

Enderle, T.

M. Prummer, D. Kling, V. Trefzer, T. Enderle, S. Zoffmann, and M. Prunotto, “A random motility assay based on image correlation spectroscopy,” Biophys. J. 104(11), 2362–2372 (2013).
[Crossref] [PubMed]

Extermann, J.

Farkas, E. R.

H. Chen, E. R. Farkas, and W. W. Webb, “Chapter 1: In vivo applications of fluorescence correlation spectroscopy,” Methods Cell Biol. 89, 3–35 (2008).
[Crossref] [PubMed]

Feld, M. S.

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

Fujimoto, J. G.

Galluzzi, L.

O. Kepp, L. Galluzzi, M. Lipinski, J. Yuan, and G. Kroemer, “Cell death assays for drug discovery,” Nat. Rev. Drug Discov. 10(3), 221–237 (2011).
[Crossref] [PubMed]

Gilliss, T.

Green, D. J.

D. B. Sattelle, D. J. Green, and K. H. Langley, “Subcellular Motions in Nitella flexilis studied by Photon Correlation Spectroscopy,” Phys. Scr. 19(4), 471–475 (1979).
[Crossref]

Guimaraes, S. C.

C. Lin, M. Schuster, S. C. Guimaraes, P. Ashwin, M. Schrader, J. Metz, C. Hacker, S. J. Gurr, and G. Steinberg, “Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells,” Nat. Commun. 7, 11814 (2016).
[Crossref] [PubMed]

Gurr, S. J.

C. Lin, M. Schuster, S. C. Guimaraes, P. Ashwin, M. Schrader, J. Metz, C. Hacker, S. J. Gurr, and G. Steinberg, “Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells,” Nat. Commun. 7, 11814 (2016).
[Crossref] [PubMed]

Hacker, C.

C. Lin, M. Schuster, S. C. Guimaraes, P. Ashwin, M. Schrader, J. Metz, C. Hacker, S. J. Gurr, and G. Steinberg, “Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells,” Nat. Commun. 7, 11814 (2016).
[Crossref] [PubMed]

Harms, F.

Hartmann, J. F.

K. K. Patel, J. F. Hartmann, and M. M. Cohen, “Effect of pH on Metabolism and Ultrastructure of Guinea Pig Cerebral Cortex Slices,” Stroke 4, 221–231 (1973).

Herman, B.

B. Herman and D. F. Albertini, “A time-lapse video image intensification analysis of cytoplasmic organelle movements during endosome translocation,” J. Cell Biol. 98(2), 565–576 (1984).
[Crossref] [PubMed]

Hires, S. A.

L. Tian, S. A. Hires, T. Mao, D. Huber, M. E. Chiappe, S. H. Chalasani, L. Petreanu, J. Akerboom, S. A. McKinney, E. R. Schreiter, C. I. Bargmann, V. Jayaraman, K. Svoboda, and L. L. Looger, “Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators,” Nat. Methods 6(12), 875–881 (2009).
[Crossref] [PubMed]

Hong, W.

W. Hong, A. Takshak, O. Osunbayo, A. Kunwar, and M. Vershinin, “The Effect of Temperature on Microtubule-Based Transport by Cytoplasmic Dynein and Kinesin-1 Motors,” Biophys. J. 111(6), 1287–1294 (2016).
[Crossref] [PubMed]

Hornegger, J.

Huang, D.

Huber, D.

L. Tian, S. A. Hires, T. Mao, D. Huber, M. E. Chiappe, S. H. Chalasani, L. Petreanu, J. Akerboom, S. A. McKinney, E. R. Schreiter, C. I. Bargmann, V. Jayaraman, K. Svoboda, and L. L. Looger, “Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators,” Nat. Methods 6(12), 875–881 (2009).
[Crossref] [PubMed]

Iwai, H.

Jacobson, K. A.

J. W. Wojcieszyn, R. A. Schlegelt, E.-S. Wut, and K. A. Jacobson, “Diffusion of injected macromolecules within the cytoplasm of living cells (erythrocyte-mediated microinjection/photobleaching/human fibroblast/cytoplasmic viscosity/cytoskeleton),” Cell Biol. 78, 4407–4410 (1981).

Jayaraman, V.

L. Tian, S. A. Hires, T. Mao, D. Huber, M. E. Chiappe, S. H. Chalasani, L. Petreanu, J. Akerboom, S. A. McKinney, E. R. Schreiter, C. I. Bargmann, V. Jayaraman, K. Svoboda, and L. L. Looger, “Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators,” Nat. Methods 6(12), 875–881 (2009).
[Crossref] [PubMed]

Jeong, K.

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Holographic tissue dynamics spectroscopy,” J. Biomed. Opt. 16(8), 087004 (2011).
[Crossref] [PubMed]

Jia, Y.

Jiang, J. Y.

Kalkman, J.

Kepp, O.

O. Kepp, L. Galluzzi, M. Lipinski, J. Yuan, and G. Kroemer, “Cell death assays for drug discovery,” Nat. Rev. Drug Discov. 10(3), 221–237 (2011).
[Crossref] [PubMed]

Khetani, S. R.

S. R. Khetani and S. N. Bhatia, “Microscale culture of human liver cells for drug development,” Nat. Biotechnol. 26(1), 120–126 (2008).
[Crossref] [PubMed]

Kling, D.

M. Prummer, D. Kling, V. Trefzer, T. Enderle, S. Zoffmann, and M. Prunotto, “A random motility assay based on image correlation spectroscopy,” Biophys. J. 104(11), 2362–2372 (2013).
[Crossref] [PubMed]

Koehler, E. A.

E. A. Koehler, R. J. Reitzel, ,Rockefeller Institute for Medical ResearchAmerican Society for Biochemistry and Molecular Biology, “The effect of pH on the oxygen consumption of tissues,” J. Biol. Chem. 64, 739–751 (1925).

Koenderink, G. H.

C. P. Brangwynne, G. H. Koenderink, F. C. MacKintosh, and D. A. Weitz, “Intracellular transport by active diffusion,” Trends Cell Biol. 19(9), 423–427 (2009).
[Crossref] [PubMed]

Koffman, J. S.

S. Marlar, E. C. Arnspang, G. A. Pedersen, J. S. Koffman, and L. N. Nejsum, “Measuring localization and diffusion coefficients of basolateral proteins in lateral versus basal membranes using functionalized substrates and kICS analysis,” Biochim. Biophys. Acta 1838(10), 2404–2411 (2014).
[Crossref] [PubMed]

Kole, T. P.

P. Panorchan, J. S. H. Lee, T. P. Kole, Y. Tseng, and D. Wirtz, “Microrheology and ROCK Signaling of Human Endothelial Cells Embedded in a 3D Matrix,” Biophys. J. 91(9), 3499–3507 (2006).
[Crossref] [PubMed]

Y. Tseng, T. P. Kole, and D. Wirtz, “Micromechanical mapping of live cells by multiple-particle-tracking microrheology,” Biophys. J. 83(6), 3162–3176 (2002).
[Crossref] [PubMed]

Kraus, M. F.

Kroemer, G.

O. Kepp, L. Galluzzi, M. Lipinski, J. Yuan, and G. Kroemer, “Cell death assays for drug discovery,” Nat. Rev. Drug Discov. 10(3), 221–237 (2011).
[Crossref] [PubMed]

Kunwar, A.

W. Hong, A. Takshak, O. Osunbayo, A. Kunwar, and M. Vershinin, “The Effect of Temperature on Microtubule-Based Transport by Cytoplasmic Dynein and Kinesin-1 Motors,” Biophys. J. 111(6), 1287–1294 (2016).
[Crossref] [PubMed]

Langley, K. H.

D. B. Sattelle, D. J. Green, and K. H. Langley, “Subcellular Motions in Nitella flexilis studied by Photon Correlation Spectroscopy,” Phys. Scr. 19(4), 471–475 (1979).
[Crossref]

Lanni, F.

K. Luby-Phelps, D. L. Taylor, and F. Lanni, “Probing the structure of cytoplasm,” J. Cell Biol. 102(6), 2015–2022 (1986).
[Crossref] [PubMed]

Lannit, F.

K. Luby-Phelps, P. E. Castles, D. L. Taylort, and F. Lannit, “Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells,” Proc. Natl. Acad. Sci. U.S.A. 84, 4910–4913 (1987).

Lasser, T.

Lee, J.

J. Lee, H. Radhakrishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography,” J. Cereb. Blood Flow Metab. 33(6), 819–825 (2013).
[Crossref] [PubMed]

J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas, “Dynamic light scattering optical coherence tomography,” Opt. Express 20(20), 22262–22277 (2012).
[Crossref] [PubMed]

Lee, J. S. H.

P. Panorchan, J. S. H. Lee, T. P. Kole, Y. Tseng, and D. Wirtz, “Microrheology and ROCK Signaling of Human Endothelial Cells Embedded in a 3D Matrix,” Biophys. J. 91(9), 3499–3507 (2006).
[Crossref] [PubMed]

Lin, C.

C. Lin, M. Schuster, S. C. Guimaraes, P. Ashwin, M. Schrader, J. Metz, C. Hacker, S. J. Gurr, and G. Steinberg, “Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells,” Nat. Commun. 7, 11814 (2016).
[Crossref] [PubMed]

Lipinski, M.

O. Kepp, L. Galluzzi, M. Lipinski, J. Yuan, and G. Kroemer, “Cell death assays for drug discovery,” Nat. Rev. Drug Discov. 10(3), 221–237 (2011).
[Crossref] [PubMed]

Liu, J. J.

Looger, L. L.

L. Tian, S. A. Hires, T. Mao, D. Huber, M. E. Chiappe, S. H. Chalasani, L. Petreanu, J. Akerboom, S. A. McKinney, E. R. Schreiter, C. I. Bargmann, V. Jayaraman, K. Svoboda, and L. L. Looger, “Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators,” Nat. Methods 6(12), 875–881 (2009).
[Crossref] [PubMed]

Luby-Phelps, K.

K. Luby-Phelps, P. E. Castles, D. L. Taylort, and F. Lannit, “Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells,” Proc. Natl. Acad. Sci. U.S.A. 84, 4910–4913 (1987).

K. Luby-Phelps, D. L. Taylor, and F. Lanni, “Probing the structure of cytoplasm,” J. Cell Biol. 102(6), 2015–2022 (1986).
[Crossref] [PubMed]

MacKintosh, F. C.

C. P. Brangwynne, G. H. Koenderink, F. C. MacKintosh, and D. A. Weitz, “Intracellular transport by active diffusion,” Trends Cell Biol. 19(9), 423–427 (2009).
[Crossref] [PubMed]

C. P. Brangwynne, F. C. MacKintosh, and D. A. Weitz, “Force fluctuations and polymerization dynamics of intracellular microtubules,” Proc. Natl. Acad. Sci. U.S.A. 104(41), 16128–16133 (2007).
[Crossref] [PubMed]

Magde, D.

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[Crossref]

Mao, T.

L. Tian, S. A. Hires, T. Mao, D. Huber, M. E. Chiappe, S. H. Chalasani, L. Petreanu, J. Akerboom, S. A. McKinney, E. R. Schreiter, C. I. Bargmann, V. Jayaraman, K. Svoboda, and L. L. Looger, “Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators,” Nat. Methods 6(12), 875–881 (2009).
[Crossref] [PubMed]

Marchand, P. J.

Marlar, S.

S. Marlar, E. C. Arnspang, G. A. Pedersen, J. S. Koffman, and L. N. Nejsum, “Measuring localization and diffusion coefficients of basolateral proteins in lateral versus basal membranes using functionalized substrates and kICS analysis,” Biochim. Biophys. Acta 1838(10), 2404–2411 (2014).
[Crossref] [PubMed]

McKinney, S. A.

L. Tian, S. A. Hires, T. Mao, D. Huber, M. E. Chiappe, S. H. Chalasani, L. Petreanu, J. Akerboom, S. A. McKinney, E. R. Schreiter, C. I. Bargmann, V. Jayaraman, K. Svoboda, and L. L. Looger, “Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators,” Nat. Methods 6(12), 875–881 (2009).
[Crossref] [PubMed]

Metz, J.

C. Lin, M. Schuster, S. C. Guimaraes, P. Ashwin, M. Schrader, J. Metz, C. Hacker, S. J. Gurr, and G. Steinberg, “Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells,” Nat. Commun. 7, 11814 (2016).
[Crossref] [PubMed]

Metzler, R.

K. Norregaard, R. Metzler, C. M. Ritter, K. Berg-Sørensen, and L. B. Oddershede, “Manipulation and Motion of Organelles and Single Molecules in Living Cells,” Chem. Rev. 117(5), 4342–4375 (2017).
[Crossref] [PubMed]

Monks, A.

D. T. Vistica, P. Skehan, D. Scudiero, A. Monks, A. Pittman, and M. R. Boyd, “Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production,” Cancer Res. 51(10), 2515–2520 (1991).
[PubMed]

Nejsum, L. N.

S. Marlar, E. C. Arnspang, G. A. Pedersen, J. S. Koffman, and L. N. Nejsum, “Measuring localization and diffusion coefficients of basolateral proteins in lateral versus basal membranes using functionalized substrates and kICS analysis,” Biochim. Biophys. Acta 1838(10), 2404–2411 (2014).
[Crossref] [PubMed]

Nguyen, D.

Nolte, D. D.

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Holographic tissue dynamics spectroscopy,” J. Biomed. Opt. 16(8), 087004 (2011).
[Crossref] [PubMed]

Norregaard, K.

K. Norregaard, R. Metzler, C. M. Ritter, K. Berg-Sørensen, and L. B. Oddershede, “Manipulation and Motion of Organelles and Single Molecules in Living Cells,” Chem. Rev. 117(5), 4342–4375 (2017).
[Crossref] [PubMed]

Oddershede, L. B.

K. Norregaard, R. Metzler, C. M. Ritter, K. Berg-Sørensen, and L. B. Oddershede, “Manipulation and Motion of Organelles and Single Molecules in Living Cells,” Chem. Rev. 117(5), 4342–4375 (2017).
[Crossref] [PubMed]

Oldenburg, A. L.

Osunbayo, O.

W. Hong, A. Takshak, O. Osunbayo, A. Kunwar, and M. Vershinin, “The Effect of Temperature on Microtubule-Based Transport by Cytoplasmic Dynein and Kinesin-1 Motors,” Biophys. J. 111(6), 1287–1294 (2016).
[Crossref] [PubMed]

Panorchan, P.

P. Panorchan, J. S. H. Lee, T. P. Kole, Y. Tseng, and D. Wirtz, “Microrheology and ROCK Signaling of Human Endothelial Cells Embedded in a 3D Matrix,” Biophys. J. 91(9), 3499–3507 (2006).
[Crossref] [PubMed]

Park, Y.

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

Patel, K. K.

K. K. Patel, J. F. Hartmann, and M. M. Cohen, “Effect of pH on Metabolism and Ultrastructure of Guinea Pig Cerebral Cortex Slices,” Stroke 4, 221–231 (1973).

Pedersen, G. A.

S. Marlar, E. C. Arnspang, G. A. Pedersen, J. S. Koffman, and L. N. Nejsum, “Measuring localization and diffusion coefficients of basolateral proteins in lateral versus basal membranes using functionalized substrates and kICS analysis,” Biochim. Biophys. Acta 1838(10), 2404–2411 (2014).
[Crossref] [PubMed]

Petreanu, L.

L. Tian, S. A. Hires, T. Mao, D. Huber, M. E. Chiappe, S. H. Chalasani, L. Petreanu, J. Akerboom, S. A. McKinney, E. R. Schreiter, C. I. Bargmann, V. Jayaraman, K. Svoboda, and L. L. Looger, “Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators,” Nat. Methods 6(12), 875–881 (2009).
[Crossref] [PubMed]

Pittman, A.

D. T. Vistica, P. Skehan, D. Scudiero, A. Monks, A. Pittman, and M. R. Boyd, “Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production,” Cancer Res. 51(10), 2515–2520 (1991).
[PubMed]

Popescu, G.

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

Pörtner, H. O.

H. O. Pörtner, “Climate change and temperature-dependent biogeography: Oxygen limitation of thermal tolerance in animals,” Naturwissenschaften 88(4), 137–146 (2001).
[Crossref] [PubMed]

S. Zielinski and H. O. Pörtner, “Energy metabolism and ATP free-energy change of the intertidal worm Sipunculus nudus below a critical temperature,” J. Comp. Physiol. - B Biochem. Syst. Environ. Physiol. 166, 492–500 (1996).
[Crossref]

Potsaid, B.

Prummer, M.

M. Prummer, D. Kling, V. Trefzer, T. Enderle, S. Zoffmann, and M. Prunotto, “A random motility assay based on image correlation spectroscopy,” Biophys. J. 104(11), 2362–2372 (2013).
[Crossref] [PubMed]

Prunotto, M.

M. Prummer, D. Kling, V. Trefzer, T. Enderle, S. Zoffmann, and M. Prunotto, “A random motility assay based on image correlation spectroscopy,” Biophys. J. 104(11), 2362–2372 (2013).
[Crossref] [PubMed]

Radhakrishnan, H.

J. Lee, H. Radhakrishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography,” J. Cereb. Blood Flow Metab. 33(6), 819–825 (2013).
[Crossref] [PubMed]

Reitzel, R. J.

E. A. Koehler, R. J. Reitzel, ,Rockefeller Institute for Medical ResearchAmerican Society for Biochemistry and Molecular Biology, “The effect of pH on the oxygen consumption of tissues,” J. Biol. Chem. 64, 739–751 (1925).

Ritter, C. M.

K. Norregaard, R. Metzler, C. M. Ritter, K. Berg-Sørensen, and L. B. Oddershede, “Manipulation and Motion of Organelles and Single Molecules in Living Cells,” Chem. Rev. 117(5), 4342–4375 (2017).
[Crossref] [PubMed]

Sattelle, D. B.

D. B. Sattelle, D. J. Green, and K. H. Langley, “Subcellular Motions in Nitella flexilis studied by Photon Correlation Spectroscopy,” Phys. Scr. 19(4), 471–475 (1979).
[Crossref]

Schlegelt, R. A.

J. W. Wojcieszyn, R. A. Schlegelt, E.-S. Wut, and K. A. Jacobson, “Diffusion of injected macromolecules within the cytoplasm of living cells (erythrocyte-mediated microinjection/photobleaching/human fibroblast/cytoplasmic viscosity/cytoskeleton),” Cell Biol. 78, 4407–4410 (1981).

Schrader, M.

C. Lin, M. Schuster, S. C. Guimaraes, P. Ashwin, M. Schrader, J. Metz, C. Hacker, S. J. Gurr, and G. Steinberg, “Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells,” Nat. Commun. 7, 11814 (2016).
[Crossref] [PubMed]

Schreiter, E. R.

L. Tian, S. A. Hires, T. Mao, D. Huber, M. E. Chiappe, S. H. Chalasani, L. Petreanu, J. Akerboom, S. A. McKinney, E. R. Schreiter, C. I. Bargmann, V. Jayaraman, K. Svoboda, and L. L. Looger, “Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators,” Nat. Methods 6(12), 875–881 (2009).
[Crossref] [PubMed]

Schulte, P. M.

P. M. Schulte, “The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment,” J. Exp. Biol. 218(12), 1856–1866 (2015).
[Crossref] [PubMed]

Schuster, M.

C. Lin, M. Schuster, S. C. Guimaraes, P. Ashwin, M. Schrader, J. Metz, C. Hacker, S. J. Gurr, and G. Steinberg, “Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells,” Nat. Commun. 7, 11814 (2016).
[Crossref] [PubMed]

Scudiero, D.

D. T. Vistica, P. Skehan, D. Scudiero, A. Monks, A. Pittman, and M. R. Boyd, “Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production,” Cancer Res. 51(10), 2515–2520 (1991).
[PubMed]

Shamaei, V. K.

Skehan, P.

D. T. Vistica, P. Skehan, D. Scudiero, A. Monks, A. Pittman, and M. R. Boyd, “Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production,” Cancer Res. 51(10), 2515–2520 (1991).
[PubMed]

Steinberg, G.

C. Lin, M. Schuster, S. C. Guimaraes, P. Ashwin, M. Schrader, J. Metz, C. Hacker, S. J. Gurr, and G. Steinberg, “Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells,” Nat. Commun. 7, 11814 (2016).
[Crossref] [PubMed]

Subhash, H.

Svoboda, K.

L. Tian, S. A. Hires, T. Mao, D. Huber, M. E. Chiappe, S. H. Chalasani, L. Petreanu, J. Akerboom, S. A. McKinney, E. R. Schreiter, C. I. Bargmann, V. Jayaraman, K. Svoboda, and L. L. Looger, “Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators,” Nat. Methods 6(12), 875–881 (2009).
[Crossref] [PubMed]

Szlag, D.

Takshak, A.

W. Hong, A. Takshak, O. Osunbayo, A. Kunwar, and M. Vershinin, “The Effect of Temperature on Microtubule-Based Transport by Cytoplasmic Dynein and Kinesin-1 Motors,” Biophys. J. 111(6), 1287–1294 (2016).
[Crossref] [PubMed]

Tan, O.

Taylor, D. L.

K. Luby-Phelps, D. L. Taylor, and F. Lanni, “Probing the structure of cytoplasm,” J. Cell Biol. 102(6), 2015–2022 (1986).
[Crossref] [PubMed]

Taylor, R. M.

Taylort, D. L.

K. Luby-Phelps, P. E. Castles, D. L. Taylort, and F. Lannit, “Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells,” Proc. Natl. Acad. Sci. U.S.A. 84, 4910–4913 (1987).

Thouvenin, O.

Tian, L.

L. Tian, S. A. Hires, T. Mao, D. Huber, M. E. Chiappe, S. H. Chalasani, L. Petreanu, J. Akerboom, S. A. McKinney, E. R. Schreiter, C. I. Bargmann, V. Jayaraman, K. Svoboda, and L. L. Looger, “Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators,” Nat. Methods 6(12), 875–881 (2009).
[Crossref] [PubMed]

Tokayer, J.

Trefzer, V.

M. Prummer, D. Kling, V. Trefzer, T. Enderle, S. Zoffmann, and M. Prunotto, “A random motility assay based on image correlation spectroscopy,” Biophys. J. 104(11), 2362–2372 (2013).
[Crossref] [PubMed]

Troester, M. A.

Tseng, Y.

P. Panorchan, J. S. H. Lee, T. P. Kole, Y. Tseng, and D. Wirtz, “Microrheology and ROCK Signaling of Human Endothelial Cells Embedded in a 3D Matrix,” Biophys. J. 91(9), 3499–3507 (2006).
[Crossref] [PubMed]

Y. Tseng, T. P. Kole, and D. Wirtz, “Micromechanical mapping of live cells by multiple-particle-tracking microrheology,” Biophys. J. 83(6), 3162–3176 (2002).
[Crossref] [PubMed]

Turek, J.

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Holographic tissue dynamics spectroscopy,” J. Biomed. Opt. 16(8), 087004 (2011).
[Crossref] [PubMed]

van Leeuwen, T. G.

Vershinin, M.

W. Hong, A. Takshak, O. Osunbayo, A. Kunwar, and M. Vershinin, “The Effect of Temperature on Microtubule-Based Transport by Cytoplasmic Dynein and Kinesin-1 Motors,” Biophys. J. 111(6), 1287–1294 (2016).
[Crossref] [PubMed]

Vistica, D. T.

D. T. Vistica, P. Skehan, D. Scudiero, A. Monks, A. Pittman, and M. R. Boyd, “Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production,” Cancer Res. 51(10), 2515–2520 (1991).
[PubMed]

Wang, Y.

Webb, W. W.

H. Chen, E. R. Farkas, and W. W. Webb, “Chapter 1: In vivo applications of fluorescence correlation spectroscopy,” Methods Cell Biol. 89, 3–35 (2008).
[Crossref] [PubMed]

Weiss, N.

Weitz, D. A.

C. P. Brangwynne, G. H. Koenderink, F. C. MacKintosh, and D. A. Weitz, “Intracellular transport by active diffusion,” Trends Cell Biol. 19(9), 423–427 (2009).
[Crossref] [PubMed]

C. P. Brangwynne, F. C. MacKintosh, and D. A. Weitz, “Force fluctuations and polymerization dynamics of intracellular microtubules,” Proc. Natl. Acad. Sci. U.S.A. 104(41), 16128–16133 (2007).
[Crossref] [PubMed]

Wirtz, D.

P. Panorchan, J. S. H. Lee, T. P. Kole, Y. Tseng, and D. Wirtz, “Microrheology and ROCK Signaling of Human Endothelial Cells Embedded in a 3D Matrix,” Biophys. J. 91(9), 3499–3507 (2006).
[Crossref] [PubMed]

Y. Tseng, T. P. Kole, and D. Wirtz, “Micromechanical mapping of live cells by multiple-particle-tracking microrheology,” Biophys. J. 83(6), 3162–3176 (2002).
[Crossref] [PubMed]

Wojcieszyn, J. W.

J. W. Wojcieszyn, R. A. Schlegelt, E.-S. Wut, and K. A. Jacobson, “Diffusion of injected macromolecules within the cytoplasm of living cells (erythrocyte-mediated microinjection/photobleaching/human fibroblast/cytoplasmic viscosity/cytoskeleton),” Cell Biol. 78, 4407–4410 (1981).

Wu, W.

J. Lee, H. Radhakrishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography,” J. Cereb. Blood Flow Metab. 33(6), 819–825 (2013).
[Crossref] [PubMed]

J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas, “Dynamic light scattering optical coherence tomography,” Opt. Express 20(20), 22262–22277 (2012).
[Crossref] [PubMed]

Wut, E.-S.

J. W. Wojcieszyn, R. A. Schlegelt, E.-S. Wut, and K. A. Jacobson, “Diffusion of injected macromolecules within the cytoplasm of living cells (erythrocyte-mediated microinjection/photobleaching/human fibroblast/cytoplasmic viscosity/cytoskeleton),” Cell Biol. 78, 4407–4410 (1981).

Yamashita, Y.

Yamauchi, T.

Yu, X.

Yuan, J.

O. Kepp, L. Galluzzi, M. Lipinski, J. Yuan, and G. Kroemer, “Cell death assays for drug discovery,” Nat. Rev. Drug Discov. 10(3), 221–237 (2011).
[Crossref] [PubMed]

Zhu, B.

Zielinski, S.

S. Zielinski and H. O. Pörtner, “Energy metabolism and ATP free-energy change of the intertidal worm Sipunculus nudus below a critical temperature,” J. Comp. Physiol. - B Biochem. Syst. Environ. Physiol. 166, 492–500 (1996).
[Crossref]

Zoffmann, S.

M. Prummer, D. Kling, V. Trefzer, T. Enderle, S. Zoffmann, and M. Prunotto, “A random motility assay based on image correlation spectroscopy,” Biophys. J. 104(11), 2362–2372 (2013).
[Crossref] [PubMed]

Ann. Phys. (1)

A. Einstein, “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen,” Ann. Phys. 322(8), 549–560 (1905).
[Crossref]

Biochim. Biophys. Acta (1)

S. Marlar, E. C. Arnspang, G. A. Pedersen, J. S. Koffman, and L. N. Nejsum, “Measuring localization and diffusion coefficients of basolateral proteins in lateral versus basal membranes using functionalized substrates and kICS analysis,” Biochim. Biophys. Acta 1838(10), 2404–2411 (2014).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Biophys. J. (4)

W. Hong, A. Takshak, O. Osunbayo, A. Kunwar, and M. Vershinin, “The Effect of Temperature on Microtubule-Based Transport by Cytoplasmic Dynein and Kinesin-1 Motors,” Biophys. J. 111(6), 1287–1294 (2016).
[Crossref] [PubMed]

Y. Tseng, T. P. Kole, and D. Wirtz, “Micromechanical mapping of live cells by multiple-particle-tracking microrheology,” Biophys. J. 83(6), 3162–3176 (2002).
[Crossref] [PubMed]

P. Panorchan, J. S. H. Lee, T. P. Kole, Y. Tseng, and D. Wirtz, “Microrheology and ROCK Signaling of Human Endothelial Cells Embedded in a 3D Matrix,” Biophys. J. 91(9), 3499–3507 (2006).
[Crossref] [PubMed]

M. Prummer, D. Kling, V. Trefzer, T. Enderle, S. Zoffmann, and M. Prunotto, “A random motility assay based on image correlation spectroscopy,” Biophys. J. 104(11), 2362–2372 (2013).
[Crossref] [PubMed]

Biopolymers (1)

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[Crossref]

Blood Cells Mol. Dis. (1)

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

Cancer Res. (1)

D. T. Vistica, P. Skehan, D. Scudiero, A. Monks, A. Pittman, and M. R. Boyd, “Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production,” Cancer Res. 51(10), 2515–2520 (1991).
[PubMed]

Cell Biol. (1)

J. W. Wojcieszyn, R. A. Schlegelt, E.-S. Wut, and K. A. Jacobson, “Diffusion of injected macromolecules within the cytoplasm of living cells (erythrocyte-mediated microinjection/photobleaching/human fibroblast/cytoplasmic viscosity/cytoskeleton),” Cell Biol. 78, 4407–4410 (1981).

Chem. Rev. (1)

K. Norregaard, R. Metzler, C. M. Ritter, K. Berg-Sørensen, and L. B. Oddershede, “Manipulation and Motion of Organelles and Single Molecules in Living Cells,” Chem. Rev. 117(5), 4342–4375 (2017).
[Crossref] [PubMed]

J. Biol. Chem. (1)

E. A. Koehler, R. J. Reitzel, ,Rockefeller Institute for Medical ResearchAmerican Society for Biochemistry and Molecular Biology, “The effect of pH on the oxygen consumption of tissues,” J. Biol. Chem. 64, 739–751 (1925).

J. Biomed. Opt. (1)

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Holographic tissue dynamics spectroscopy,” J. Biomed. Opt. 16(8), 087004 (2011).
[Crossref] [PubMed]

J. Cell Biol. (2)

B. Herman and D. F. Albertini, “A time-lapse video image intensification analysis of cytoplasmic organelle movements during endosome translocation,” J. Cell Biol. 98(2), 565–576 (1984).
[Crossref] [PubMed]

K. Luby-Phelps, D. L. Taylor, and F. Lanni, “Probing the structure of cytoplasm,” J. Cell Biol. 102(6), 2015–2022 (1986).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

J. Lee, H. Radhakrishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography,” J. Cereb. Blood Flow Metab. 33(6), 819–825 (2013).
[Crossref] [PubMed]

J. Comp. Physiol. - B Biochem. Syst. Environ. Physiol. (1)

S. Zielinski and H. O. Pörtner, “Energy metabolism and ATP free-energy change of the intertidal worm Sipunculus nudus below a critical temperature,” J. Comp. Physiol. - B Biochem. Syst. Environ. Physiol. 166, 492–500 (1996).
[Crossref]

J. Exp. Biol. (1)

P. M. Schulte, “The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment,” J. Exp. Biol. 218(12), 1856–1866 (2015).
[Crossref] [PubMed]

Methods Cell Biol. (1)

H. Chen, E. R. Farkas, and W. W. Webb, “Chapter 1: In vivo applications of fluorescence correlation spectroscopy,” Methods Cell Biol. 89, 3–35 (2008).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

S. R. Khetani and S. N. Bhatia, “Microscale culture of human liver cells for drug development,” Nat. Biotechnol. 26(1), 120–126 (2008).
[Crossref] [PubMed]

Nat. Commun. (1)

C. Lin, M. Schuster, S. C. Guimaraes, P. Ashwin, M. Schrader, J. Metz, C. Hacker, S. J. Gurr, and G. Steinberg, “Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells,” Nat. Commun. 7, 11814 (2016).
[Crossref] [PubMed]

Nat. Methods (1)

L. Tian, S. A. Hires, T. Mao, D. Huber, M. E. Chiappe, S. H. Chalasani, L. Petreanu, J. Akerboom, S. A. McKinney, E. R. Schreiter, C. I. Bargmann, V. Jayaraman, K. Svoboda, and L. L. Looger, “Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators,” Nat. Methods 6(12), 875–881 (2009).
[Crossref] [PubMed]

Nat. Rev. Drug Discov. (1)

O. Kepp, L. Galluzzi, M. Lipinski, J. Yuan, and G. Kroemer, “Cell death assays for drug discovery,” Nat. Rev. Drug Discov. 10(3), 221–237 (2011).
[Crossref] [PubMed]

Naturwissenschaften (1)

H. O. Pörtner, “Climate change and temperature-dependent biogeography: Oxygen limitation of thermal tolerance in animals,” Naturwissenschaften 88(4), 137–146 (2001).
[Crossref] [PubMed]

Opt. Express (4)

Optica (1)

Phys. Scr. (1)

D. B. Sattelle, D. J. Green, and K. H. Langley, “Subcellular Motions in Nitella flexilis studied by Photon Correlation Spectroscopy,” Phys. Scr. 19(4), 471–475 (1979).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (2)

K. Luby-Phelps, P. E. Castles, D. L. Taylort, and F. Lannit, “Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells,” Proc. Natl. Acad. Sci. U.S.A. 84, 4910–4913 (1987).

C. P. Brangwynne, F. C. MacKintosh, and D. A. Weitz, “Force fluctuations and polymerization dynamics of intracellular microtubules,” Proc. Natl. Acad. Sci. U.S.A. 104(41), 16128–16133 (2007).
[Crossref] [PubMed]

Stroke (1)

K. K. Patel, J. F. Hartmann, and M. M. Cohen, “Effect of pH on Metabolism and Ultrastructure of Guinea Pig Cerebral Cortex Slices,” Stroke 4, 221–231 (1973).

Trends Cell Biol. (1)

C. P. Brangwynne, G. H. Koenderink, F. C. MacKintosh, and D. A. Weitz, “Intracellular transport by active diffusion,” Trends Cell Biol. 19(9), 423–427 (2009).
[Crossref] [PubMed]

Other (1)

N. T. Shaked and A. Wax, “Quantitative Phase Microscopy of Live Biological Cell Dynamics,” in Advanced Phase Measurement Methods in Optics and Imaging (Springer Berlin Heidelberg, 2010), pp. 283–288.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The schematic of the experimental system for simultaneous OCM and fluorescence imaging. (FC: fiber coupler, C: collimator, L: Lens, EmF: Emission filter, DM: Dichroic mirror, OL: objective lens, EF: Excitation filter).
Fig. 2
Fig. 2 Simultaneous wide-field fluorescence microscope (a) and OCM (b) imaging of fluorescent microspheres. Scale bar, 100 μm.
Fig. 3
Fig. 3 (a) Numerical simulation results with the optimized acquisition time and maximum time lag. Each error bar represents variations due to the other combinations: diffusion coefficients, flow velocities, flow angles, and/or number densities. (b) DLS-OCM measurements of the diffusion coefficient in the standard sample. The circles with error bars indicate measurement data while the line indicates the theoretical value as given by the Stokes-Einstein equation.
Fig. 4
Fig. 4 (a) Perfusion setup for live retinal imaging. (b) The retina holder. (c) A dissected retina explant on the retinal imaging chamber.
Fig. 5
Fig. 5 Comparison of cell images between fluorescence and DLS-OCM imaging. (a) GCaMP3 imaging of retinal ganglion cells. (b) Simultaneously acquired diffusion coefficient map using DLS-OCM of the same area as (a). The presented en face map was obtained by a maximum intensity projection of five en face slices around the focal depth (corresponding to a 17.3-μm depth). The red arrows indicate spatial correlation in the cellular location between the two images. This image is presented with the narrow display range for high-contrast visualization of the geometric correspondence. Scale bar, 10 μm.
Fig. 6
Fig. 6 ICM measurements under temperature change. (a) Diffusion coefficient maps at 31 °C, 15 °C, and reheated to 31°C. The presented en face maps were obtained by maximum intensity projection of five en face slices around the focal depth (corresponding to a 17.3-μm depth). Scale bar: 20um. (b) Histograms of the diffusion coefficient at the three temperatures. (c) Statistical analysis of ICM changes (n = 5). Red lines indicate changes in the individual averages. The p-values were obtained by the paired student t-test. * denotes p < 0.05.
Fig. 7
Fig. 7 ICM measurements under pH change. (a) Diffusion coefficient maps at pH 7.6 and 3.5. The presented en face maps were obtained by maximum intensity projection of five en face slices around the focal depth (corresponding to a 17.3-μm depth). Scale bar: 20um. (b) Histograms of the diffusion coefficient at the two pH conditions. (c) Statistical analysis of ICM changes (n = 5). Red lines indicate changes in the individual averages. The p-values were obtained by the paired student t-test. * denotes p < 0.05.
Fig. 8
Fig. 8 Percent changes of ICM in response to the induced viability changes. *p < 0.05.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g( r,τ )=E[ R * ( r,t )R(r,t+τ) ) t R * ( r,t )R(r,t) ) t ]
g( r,τ )= M S ( r )+ M F ( r ) e h t 2 v t 2 ( r ) τ 2 h 2 v z 2 ( r ) τ 2 e q 2 D( r )τ e iq v z ( r )τ +[ 1 M S ( r ) M F (r) ]δ(τ)