Abstract

The purpose of this study was to provide an in-depth analysis of the ciliary muscle’s (CM) morphological changes during accommodation by evaluating CM thickness (CMT) profiles. The CM of 15 near-emmetropic subjects (age 20-39) was imaged via optical coherence tomography (OCT) during far (0 D) and near vision (3 D). A custom-made Java-based program was used for semi-automatic CM segmentation and thickness measurements. CMT profiles were generated to determine regions of the largest shape changes. The results revealed on average a thinning within the first 0.25 mm and a thickening from 0.36 to 1.48 mm posterior to scleral spur when accommodating from 0 to 3 D. In contrast to previous analyses, this method offers pixel-wise reconstruction of CM shapes and quantification of accommodative change across the entire muscle boundary.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

Sandra Wagner, Eberhart Zrenner, and Torsten Strasser, "Ciliary muscle thickness profiles derived from optical coherence tomography images: erratum," Biomed. Opt. Express 10, 119-119 (2019)
http://proxy.osapublishing.org/boe/abstract.cfm?uri=boe-10-1-119

OSA Recommended Articles
Variability of manual ciliary muscle segmentation in optical coherence tomography images

Yu-Cherng Chang, Keke Liu, Florence Cabot, Sonia H. Yoo, Marco Ruggeri, Arthur Ho, Jean-Marie Parel, and Fabrice Manns
Biomed. Opt. Express 9(2) 791-800 (2018)

Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation

Yilei Shao, Aizhu Tao, Hong Jiang, Meixiao Shen, Jianguang Zhong, Fan Lu, and Jianhua Wang
Biomed. Opt. Express 4(3) 466-480 (2013)

Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT

Enrique Gambra, Sergio Ortiz, Pablo Perez-Merino, Michalina Gora, Maciej Wojtkowski, and Susana Marcos
Biomed. Opt. Express 4(9) 1595-1609 (2013)

References

  • View by:
  • |
  • |
  • |

  1. E. R. Tamm and E. Lütjen-Drecoll, “Ciliary Body,” Microsc. Res. Tech. 33(5), 390–439 (1996).
    [Crossref] [PubMed]
  2. K. J. Ciuffreda, “Accommodation, the pupil, and presbyopia,” in Borish’s Clinical Refraction, W. J. Benjamin, ed. (Butterworth-Heinemann Elsevier Inc., 2006), pp. 93–144.
  3. M. D. Bailey, “How should we measure the ciliary muscle?” Invest. Ophthalmol. Vis. Sci. 52(3), 1817–1818 (2011).
    [Crossref] [PubMed]
  4. J. S. Pepose, J. Burke, and M. Qazi, “Accommodating intraocular lenses,” Asia Pac. J. Ophthalmol. 6(4), 350–357 (2017).
    [PubMed]
  5. O. Findl and C. Leydolt, “Meta-analysis of accommodating intraocular lenses,” J. Cataract Refract. Surg. 33(3), 522–527 (2007).
    [Crossref] [PubMed]
  6. I. Morgan and K. Rose, “How genetic is school myopia?” Prog. Retin. Eye Res. 24(1), 1–38 (2005).
    [Crossref] [PubMed]
  7. I. G. Morgan and K. A. Rose, “Myopia and international educational performance,” Ophthalmic Physiol. Opt. 33(3), 329–338 (2013).
    [Crossref] [PubMed]
  8. D. O. Mutti, “Hereditary and Environmental Contributions to Emmetropization and Myopia,” Optom. Vis. Sci. 87(4), 255–259 (2010).
    [PubMed]
  9. J. C. Chen, K. L. Schmid, and B. Brown, “The autonomic control of accommodation and implications for human myopia development: a review,” Ophthalmic Physiol. Opt. 23(5), 401–422 (2003).
    [Crossref] [PubMed]
  10. S. Jeon, W. K. Lee, K. Lee, and N. J. Moon, “Diminished ciliary muscle movement on accommodation in myopia,” Exp. Eye Res. 105, 9–14 (2012).
    [Crossref] [PubMed]
  11. C. Oliveira, C. Tello, J. M. Liebmann, and R. Ritch, “Ciliary body thickness increases with increasing axial myopia,” Am. J. Ophthalmol. 140(2), 324–325 (2005).
    [Crossref] [PubMed]
  12. O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes Arch. Clin. Exp. Ophthalmol. 240(11), 906–912 (2002).
    [Crossref] [PubMed]
  13. A. Bacskulin, U. Bergmann, Z. Horóczi, and R. Guthoff, “Kontinuierliche ultraschallbiomikroskopische Darstellung der akkommodativen Veränderung des humanen Ziliarkörpers,” Klin. Monatsbl. Augenheilkd. 207(10), 247–252 (1995).
    [Crossref] [PubMed]
  14. O. Muftuoglu, B. M. Hosal, and G. Zilelioglu, “Ciliary body thickness in unilateral high axial myopia,” Eye (Lond.) 23(5), 1176–1181 (2009).
    [Crossref] [PubMed]
  15. H. Buckhurst, B. Gilmartin, R. P. Cubbidge, M. Nagra, and N. S. Logan, “Ocular biometric correlates of ciliary muscle thickness in human myopia,” Ophthalmic Physiol. Opt. 33(3), 294–304 (2013).
    [Crossref] [PubMed]
  16. H. A. Lewis, C. Y. Kao, L. T. Sinnott, and M. D. Bailey, “Changes in ciliary muscle thickness during accommodation in children,” Optom. Vis. Sci. 89(5), 727–737 (2012).
    [Crossref] [PubMed]
  17. L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
    [Crossref] [PubMed]
  18. K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
    [Crossref] [PubMed]
  19. M. Ruggeri, C. de Freitas, S. Williams, V. M. Hernandez, F. Cabot, N. Yesilirmak, K. Alawa, Y. C. Chang, S. H. Yoo, G. Gregori, J. M. Parel, and F. Manns, “Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging,” Biomed. Opt. Express 7(4), 1351–1364 (2016).
    [Crossref] [PubMed]
  20. K. E. Schultz, L. T. Sinnott, D. O. Mutti, and M. D. Bailey, “Accommodative fluctuations, lens tension, and ciliary body thickness in children,” Optom. Vis. Sci. 86(6), 677–684 (2009).
    [Crossref] [PubMed]
  21. M. Ruggeri, V. Hernandez, C. de Freitas, F. Manns, and J. M. Parel, “Biometry of the ciliary muscle during dynamic accommodation assessed with OCT,” Ophthalmic Technol. XXIV Int. Soc. Opt. Photonics 8930, 89300W (2014).
    [Crossref]
  22. M. D. Bailey, L. T. Sinnott, and D. O. Mutti, “Ciliary body thickness and refractive error in children,” Invest. Ophthalmol. Vis. Sci. 49(10), 4353–4360 (2008).
    [Crossref] [PubMed]
  23. Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express 4(3), 466–480 (2013).
    [Crossref] [PubMed]
  24. A. L. Sheppard and L. N. Davies, “In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia,” Invest. Ophthalmol. Vis. Sci. 51(12), 6882–6889 (2010).
    [Crossref] [PubMed]
  25. A. D. Pucker, L. T. Sinnott, C. Y. Kao, and M. D. Bailey, “Region-specific relationships between refractive error and ciliary muscle thickness in children,” Invest. Ophthalmol. Vis. Sci. 54(7), 4710–4716 (2013).
    [Crossref] [PubMed]
  26. D. S. Laughton, B. J. Coldrick, A. L. Sheppard, and L. N. Davies, “A program to analyse optical coherence tomography images of the ciliary muscle,” Cont. Lens Anterior Eye 38(6), 402–408 (2015).
    [Crossref] [PubMed]
  27. A. L. Sheppard and L. N. Davies, “The effect of ageing on in vivo human ciliary muscle morphology and contractility,” Invest. Ophthalmol. Vis. Sci. 52(3), 1809–1816 (2011).
    [Crossref] [PubMed]
  28. Y. C. Chang, K. Liu, F. Cabot, S. H. Yoo, M. Ruggeri, A. Ho, J. M. Parel, and F. Manns, “Variability of manual ciliary muscle segmentation in optical coherence tomography images,” Biomed. Opt. Express 9(2), 791–800 (2018).
    [Crossref] [PubMed]
  29. S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
    [PubMed]
  30. G. W. H. M. van Alphen, “Choroidal stress and emmetropization,” Vision Res. 26(5), 723–734 (1986).
    [Crossref] [PubMed]
  31. C. Y. Kao, K. Richdale, L. T. Sinnott, L. E. Grillott, and M. D. Bailey, “Semiautomatic extraction algorithm for images of the ciliary muscle,” Optom. Vis. Sci. 88(2), 275–289 (2011).
    [Crossref] [PubMed]
  32. K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), 1507–1511 (2012).
    [Crossref] [PubMed]
  33. M. K. Kuchem, L. T. Sinnott, C.-Y. Kao, and M. D. Bailey, “Ciliary muscle thickness in anisometropia,” Optom. Vis. Sci. 90(11), 1312–1320 (2013).
    [Crossref] [PubMed]
  34. D. Lopes-Ferreira, H. Neves, A. Queiros, M. Faria-Ribeiro, S. C. Peixoto-de-Matos, and J. M. González-Méijome, “Ocular dominance and visual function testing,” BioMed Res. Int. 2013, 238943 (2013).
    [Crossref] [PubMed]
  35. T. Kohnen, M. Baumeister, and A. Strenger, “Akkommodationsprüfung,” in AugenärztlicheUntersuchungsmethoden, P. Kroll, M. Kuechle, and H. J. Kuechle, eds., 3 (Georg Thieme Verlag, 2008), pp. 102–106.
  36. F. Gekeler, F. Schaeffel, H. C. Howland, and J. Wattam-Bell, “Measurement of astigmatism by automated infrared photoretinoscopy,” Optom. Vis. Sci. 74(7), 472–482 (1997).
    [Crossref] [PubMed]
  37. F. Schaeffel, H. Wilhelm, and E. Zrenner, “Inter-individual variability in the dynamics of natural accommodation in humans: relation to age and refractive errors,” J. Physiol. 461(1), 301–320 (1993).
    [Crossref] [PubMed]
  38. J. W. Peirce, “PsychoPy-Psychophysics software in Python,” J. Neurosci. Methods 162(1-2), 8–13 (2007).
    [Crossref] [PubMed]
  39. D. G. Pelli, J. G. Robson, and A. J. Wilkins, “The design of a new letter chart for measuring contrast sensitivity,” Clin. Vis. Sci. 2(3), 187–199 (1988).
  40. I. E. Loewenfeld, “Development and Aging,” in The Pupil. Anatomy, Physiology, and Clinical Applications (Wayne State University Press, 1993), pp. 498–517.

2018 (1)

2017 (1)

J. S. Pepose, J. Burke, and M. Qazi, “Accommodating intraocular lenses,” Asia Pac. J. Ophthalmol. 6(4), 350–357 (2017).
[PubMed]

2016 (1)

2015 (1)

D. S. Laughton, B. J. Coldrick, A. L. Sheppard, and L. N. Davies, “A program to analyse optical coherence tomography images of the ciliary muscle,” Cont. Lens Anterior Eye 38(6), 402–408 (2015).
[Crossref] [PubMed]

2014 (1)

M. Ruggeri, V. Hernandez, C. de Freitas, F. Manns, and J. M. Parel, “Biometry of the ciliary muscle during dynamic accommodation assessed with OCT,” Ophthalmic Technol. XXIV Int. Soc. Opt. Photonics 8930, 89300W (2014).
[Crossref]

2013 (7)

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

I. G. Morgan and K. A. Rose, “Myopia and international educational performance,” Ophthalmic Physiol. Opt. 33(3), 329–338 (2013).
[Crossref] [PubMed]

H. Buckhurst, B. Gilmartin, R. P. Cubbidge, M. Nagra, and N. S. Logan, “Ocular biometric correlates of ciliary muscle thickness in human myopia,” Ophthalmic Physiol. Opt. 33(3), 294–304 (2013).
[Crossref] [PubMed]

A. D. Pucker, L. T. Sinnott, C. Y. Kao, and M. D. Bailey, “Region-specific relationships between refractive error and ciliary muscle thickness in children,” Invest. Ophthalmol. Vis. Sci. 54(7), 4710–4716 (2013).
[Crossref] [PubMed]

M. K. Kuchem, L. T. Sinnott, C.-Y. Kao, and M. D. Bailey, “Ciliary muscle thickness in anisometropia,” Optom. Vis. Sci. 90(11), 1312–1320 (2013).
[Crossref] [PubMed]

D. Lopes-Ferreira, H. Neves, A. Queiros, M. Faria-Ribeiro, S. C. Peixoto-de-Matos, and J. M. González-Méijome, “Ocular dominance and visual function testing,” BioMed Res. Int. 2013, 238943 (2013).
[Crossref] [PubMed]

Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express 4(3), 466–480 (2013).
[Crossref] [PubMed]

2012 (4)

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), 1507–1511 (2012).
[Crossref] [PubMed]

H. A. Lewis, C. Y. Kao, L. T. Sinnott, and M. D. Bailey, “Changes in ciliary muscle thickness during accommodation in children,” Optom. Vis. Sci. 89(5), 727–737 (2012).
[Crossref] [PubMed]

L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
[Crossref] [PubMed]

S. Jeon, W. K. Lee, K. Lee, and N. J. Moon, “Diminished ciliary muscle movement on accommodation in myopia,” Exp. Eye Res. 105, 9–14 (2012).
[Crossref] [PubMed]

2011 (3)

M. D. Bailey, “How should we measure the ciliary muscle?” Invest. Ophthalmol. Vis. Sci. 52(3), 1817–1818 (2011).
[Crossref] [PubMed]

C. Y. Kao, K. Richdale, L. T. Sinnott, L. E. Grillott, and M. D. Bailey, “Semiautomatic extraction algorithm for images of the ciliary muscle,” Optom. Vis. Sci. 88(2), 275–289 (2011).
[Crossref] [PubMed]

A. L. Sheppard and L. N. Davies, “The effect of ageing on in vivo human ciliary muscle morphology and contractility,” Invest. Ophthalmol. Vis. Sci. 52(3), 1809–1816 (2011).
[Crossref] [PubMed]

2010 (2)

A. L. Sheppard and L. N. Davies, “In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia,” Invest. Ophthalmol. Vis. Sci. 51(12), 6882–6889 (2010).
[Crossref] [PubMed]

D. O. Mutti, “Hereditary and Environmental Contributions to Emmetropization and Myopia,” Optom. Vis. Sci. 87(4), 255–259 (2010).
[PubMed]

2009 (2)

K. E. Schultz, L. T. Sinnott, D. O. Mutti, and M. D. Bailey, “Accommodative fluctuations, lens tension, and ciliary body thickness in children,” Optom. Vis. Sci. 86(6), 677–684 (2009).
[Crossref] [PubMed]

O. Muftuoglu, B. M. Hosal, and G. Zilelioglu, “Ciliary body thickness in unilateral high axial myopia,” Eye (Lond.) 23(5), 1176–1181 (2009).
[Crossref] [PubMed]

2008 (1)

M. D. Bailey, L. T. Sinnott, and D. O. Mutti, “Ciliary body thickness and refractive error in children,” Invest. Ophthalmol. Vis. Sci. 49(10), 4353–4360 (2008).
[Crossref] [PubMed]

2007 (2)

O. Findl and C. Leydolt, “Meta-analysis of accommodating intraocular lenses,” J. Cataract Refract. Surg. 33(3), 522–527 (2007).
[Crossref] [PubMed]

J. W. Peirce, “PsychoPy-Psychophysics software in Python,” J. Neurosci. Methods 162(1-2), 8–13 (2007).
[Crossref] [PubMed]

2005 (2)

I. Morgan and K. Rose, “How genetic is school myopia?” Prog. Retin. Eye Res. 24(1), 1–38 (2005).
[Crossref] [PubMed]

C. Oliveira, C. Tello, J. M. Liebmann, and R. Ritch, “Ciliary body thickness increases with increasing axial myopia,” Am. J. Ophthalmol. 140(2), 324–325 (2005).
[Crossref] [PubMed]

2003 (1)

J. C. Chen, K. L. Schmid, and B. Brown, “The autonomic control of accommodation and implications for human myopia development: a review,” Ophthalmic Physiol. Opt. 23(5), 401–422 (2003).
[Crossref] [PubMed]

2002 (1)

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes Arch. Clin. Exp. Ophthalmol. 240(11), 906–912 (2002).
[Crossref] [PubMed]

1999 (1)

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

1997 (1)

F. Gekeler, F. Schaeffel, H. C. Howland, and J. Wattam-Bell, “Measurement of astigmatism by automated infrared photoretinoscopy,” Optom. Vis. Sci. 74(7), 472–482 (1997).
[Crossref] [PubMed]

1996 (1)

E. R. Tamm and E. Lütjen-Drecoll, “Ciliary Body,” Microsc. Res. Tech. 33(5), 390–439 (1996).
[Crossref] [PubMed]

1995 (1)

A. Bacskulin, U. Bergmann, Z. Horóczi, and R. Guthoff, “Kontinuierliche ultraschallbiomikroskopische Darstellung der akkommodativen Veränderung des humanen Ziliarkörpers,” Klin. Monatsbl. Augenheilkd. 207(10), 247–252 (1995).
[Crossref] [PubMed]

1993 (1)

F. Schaeffel, H. Wilhelm, and E. Zrenner, “Inter-individual variability in the dynamics of natural accommodation in humans: relation to age and refractive errors,” J. Physiol. 461(1), 301–320 (1993).
[Crossref] [PubMed]

1988 (1)

D. G. Pelli, J. G. Robson, and A. J. Wilkins, “The design of a new letter chart for measuring contrast sensitivity,” Clin. Vis. Sci. 2(3), 187–199 (1988).

1986 (1)

G. W. H. M. van Alphen, “Choroidal stress and emmetropization,” Vision Res. 26(5), 723–734 (1986).
[Crossref] [PubMed]

Alawa, K.

Bacskulin, A.

A. Bacskulin, U. Bergmann, Z. Horóczi, and R. Guthoff, “Kontinuierliche ultraschallbiomikroskopische Darstellung der akkommodativen Veränderung des humanen Ziliarkörpers,” Klin. Monatsbl. Augenheilkd. 207(10), 247–252 (1995).
[Crossref] [PubMed]

Bailey, M. D.

M. K. Kuchem, L. T. Sinnott, C.-Y. Kao, and M. D. Bailey, “Ciliary muscle thickness in anisometropia,” Optom. Vis. Sci. 90(11), 1312–1320 (2013).
[Crossref] [PubMed]

A. D. Pucker, L. T. Sinnott, C. Y. Kao, and M. D. Bailey, “Region-specific relationships between refractive error and ciliary muscle thickness in children,” Invest. Ophthalmol. Vis. Sci. 54(7), 4710–4716 (2013).
[Crossref] [PubMed]

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), 1507–1511 (2012).
[Crossref] [PubMed]

H. A. Lewis, C. Y. Kao, L. T. Sinnott, and M. D. Bailey, “Changes in ciliary muscle thickness during accommodation in children,” Optom. Vis. Sci. 89(5), 727–737 (2012).
[Crossref] [PubMed]

L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
[Crossref] [PubMed]

M. D. Bailey, “How should we measure the ciliary muscle?” Invest. Ophthalmol. Vis. Sci. 52(3), 1817–1818 (2011).
[Crossref] [PubMed]

C. Y. Kao, K. Richdale, L. T. Sinnott, L. E. Grillott, and M. D. Bailey, “Semiautomatic extraction algorithm for images of the ciliary muscle,” Optom. Vis. Sci. 88(2), 275–289 (2011).
[Crossref] [PubMed]

K. E. Schultz, L. T. Sinnott, D. O. Mutti, and M. D. Bailey, “Accommodative fluctuations, lens tension, and ciliary body thickness in children,” Optom. Vis. Sci. 86(6), 677–684 (2009).
[Crossref] [PubMed]

M. D. Bailey, L. T. Sinnott, and D. O. Mutti, “Ciliary body thickness and refractive error in children,” Invest. Ophthalmol. Vis. Sci. 49(10), 4353–4360 (2008).
[Crossref] [PubMed]

Bergmann, U.

A. Bacskulin, U. Bergmann, Z. Horóczi, and R. Guthoff, “Kontinuierliche ultraschallbiomikroskopische Darstellung der akkommodativen Veränderung des humanen Ziliarkörpers,” Klin. Monatsbl. Augenheilkd. 207(10), 247–252 (1995).
[Crossref] [PubMed]

Brown, B.

J. C. Chen, K. L. Schmid, and B. Brown, “The autonomic control of accommodation and implications for human myopia development: a review,” Ophthalmic Physiol. Opt. 23(5), 401–422 (2003).
[Crossref] [PubMed]

Buckhurst, H.

H. Buckhurst, B. Gilmartin, R. P. Cubbidge, M. Nagra, and N. S. Logan, “Ocular biometric correlates of ciliary muscle thickness in human myopia,” Ophthalmic Physiol. Opt. 33(3), 294–304 (2013).
[Crossref] [PubMed]

Bullimore, M. A.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), 1507–1511 (2012).
[Crossref] [PubMed]

Burke, J.

J. S. Pepose, J. Burke, and M. Qazi, “Accommodating intraocular lenses,” Asia Pac. J. Ophthalmol. 6(4), 350–357 (2017).
[PubMed]

Cabot, F.

Chang, Y. C.

Chen, J. C.

J. C. Chen, K. L. Schmid, and B. Brown, “The autonomic control of accommodation and implications for human myopia development: a review,” Ophthalmic Physiol. Opt. 23(5), 401–422 (2003).
[Crossref] [PubMed]

Coldrick, B. J.

D. S. Laughton, B. J. Coldrick, A. L. Sheppard, and L. N. Davies, “A program to analyse optical coherence tomography images of the ciliary muscle,” Cont. Lens Anterior Eye 38(6), 402–408 (2015).
[Crossref] [PubMed]

Cubbidge, R. P.

H. Buckhurst, B. Gilmartin, R. P. Cubbidge, M. Nagra, and N. S. Logan, “Ocular biometric correlates of ciliary muscle thickness in human myopia,” Ophthalmic Physiol. Opt. 33(3), 294–304 (2013).
[Crossref] [PubMed]

Davies, L. N.

D. S. Laughton, B. J. Coldrick, A. L. Sheppard, and L. N. Davies, “A program to analyse optical coherence tomography images of the ciliary muscle,” Cont. Lens Anterior Eye 38(6), 402–408 (2015).
[Crossref] [PubMed]

A. L. Sheppard and L. N. Davies, “The effect of ageing on in vivo human ciliary muscle morphology and contractility,” Invest. Ophthalmol. Vis. Sci. 52(3), 1809–1816 (2011).
[Crossref] [PubMed]

A. L. Sheppard and L. N. Davies, “In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia,” Invest. Ophthalmol. Vis. Sci. 51(12), 6882–6889 (2010).
[Crossref] [PubMed]

de Freitas, C.

DeMarco, J. K.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Faria-Ribeiro, M.

D. Lopes-Ferreira, H. Neves, A. Queiros, M. Faria-Ribeiro, S. C. Peixoto-de-Matos, and J. M. González-Méijome, “Ocular dominance and visual function testing,” BioMed Res. Int. 2013, 238943 (2013).
[Crossref] [PubMed]

Findl, O.

O. Findl and C. Leydolt, “Meta-analysis of accommodating intraocular lenses,” J. Cataract Refract. Surg. 33(3), 522–527 (2007).
[Crossref] [PubMed]

Gekeler, F.

F. Gekeler, F. Schaeffel, H. C. Howland, and J. Wattam-Bell, “Measurement of astigmatism by automated infrared photoretinoscopy,” Optom. Vis. Sci. 74(7), 472–482 (1997).
[Crossref] [PubMed]

Gilmartin, B.

H. Buckhurst, B. Gilmartin, R. P. Cubbidge, M. Nagra, and N. S. Logan, “Ocular biometric correlates of ciliary muscle thickness in human myopia,” Ophthalmic Physiol. Opt. 33(3), 294–304 (2013).
[Crossref] [PubMed]

Glasser, A.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

González-Méijome, J. M.

D. Lopes-Ferreira, H. Neves, A. Queiros, M. Faria-Ribeiro, S. C. Peixoto-de-Matos, and J. M. González-Méijome, “Ocular dominance and visual function testing,” BioMed Res. Int. 2013, 238943 (2013).
[Crossref] [PubMed]

Gregori, G.

Grillott, L. E.

C. Y. Kao, K. Richdale, L. T. Sinnott, L. E. Grillott, and M. D. Bailey, “Semiautomatic extraction algorithm for images of the ciliary muscle,” Optom. Vis. Sci. 88(2), 275–289 (2011).
[Crossref] [PubMed]

Gronlund-Jacob, J.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Guthoff, R.

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes Arch. Clin. Exp. Ophthalmol. 240(11), 906–912 (2002).
[Crossref] [PubMed]

A. Bacskulin, U. Bergmann, Z. Horóczi, and R. Guthoff, “Kontinuierliche ultraschallbiomikroskopische Darstellung der akkommodativen Veränderung des humanen Ziliarkörpers,” Klin. Monatsbl. Augenheilkd. 207(10), 247–252 (1995).
[Crossref] [PubMed]

Hernandez, V.

M. Ruggeri, V. Hernandez, C. de Freitas, F. Manns, and J. M. Parel, “Biometry of the ciliary muscle during dynamic accommodation assessed with OCT,” Ophthalmic Technol. XXIV Int. Soc. Opt. Photonics 8930, 89300W (2014).
[Crossref]

Hernandez, V. M.

Ho, A.

Horóczi, Z.

A. Bacskulin, U. Bergmann, Z. Horóczi, and R. Guthoff, “Kontinuierliche ultraschallbiomikroskopische Darstellung der akkommodativen Veränderung des humanen Ziliarkörpers,” Klin. Monatsbl. Augenheilkd. 207(10), 247–252 (1995).
[Crossref] [PubMed]

Hosal, B. M.

O. Muftuoglu, B. M. Hosal, and G. Zilelioglu, “Ciliary body thickness in unilateral high axial myopia,” Eye (Lond.) 23(5), 1176–1181 (2009).
[Crossref] [PubMed]

Howland, H. C.

F. Gekeler, F. Schaeffel, H. C. Howland, and J. Wattam-Bell, “Measurement of astigmatism by automated infrared photoretinoscopy,” Optom. Vis. Sci. 74(7), 472–482 (1997).
[Crossref] [PubMed]

Jeon, S.

S. Jeon, W. K. Lee, K. Lee, and N. J. Moon, “Diminished ciliary muscle movement on accommodation in myopia,” Exp. Eye Res. 105, 9–14 (2012).
[Crossref] [PubMed]

Jiang, H.

Kao, C. Y.

A. D. Pucker, L. T. Sinnott, C. Y. Kao, and M. D. Bailey, “Region-specific relationships between refractive error and ciliary muscle thickness in children,” Invest. Ophthalmol. Vis. Sci. 54(7), 4710–4716 (2013).
[Crossref] [PubMed]

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

H. A. Lewis, C. Y. Kao, L. T. Sinnott, and M. D. Bailey, “Changes in ciliary muscle thickness during accommodation in children,” Optom. Vis. Sci. 89(5), 727–737 (2012).
[Crossref] [PubMed]

L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
[Crossref] [PubMed]

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), 1507–1511 (2012).
[Crossref] [PubMed]

C. Y. Kao, K. Richdale, L. T. Sinnott, L. E. Grillott, and M. D. Bailey, “Semiautomatic extraction algorithm for images of the ciliary muscle,” Optom. Vis. Sci. 88(2), 275–289 (2011).
[Crossref] [PubMed]

Kao, C.-Y.

M. K. Kuchem, L. T. Sinnott, C.-Y. Kao, and M. D. Bailey, “Ciliary muscle thickness in anisometropia,” Optom. Vis. Sci. 90(11), 1312–1320 (2013).
[Crossref] [PubMed]

Kirchhoff, A.

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes Arch. Clin. Exp. Ophthalmol. 240(11), 906–912 (2002).
[Crossref] [PubMed]

Kuchem, M. K.

M. K. Kuchem, L. T. Sinnott, C.-Y. Kao, and M. D. Bailey, “Ciliary muscle thickness in anisometropia,” Optom. Vis. Sci. 90(11), 1312–1320 (2013).
[Crossref] [PubMed]

Laughton, D. S.

D. S. Laughton, B. J. Coldrick, A. L. Sheppard, and L. N. Davies, “A program to analyse optical coherence tomography images of the ciliary muscle,” Cont. Lens Anterior Eye 38(6), 402–408 (2015).
[Crossref] [PubMed]

Lee, K.

S. Jeon, W. K. Lee, K. Lee, and N. J. Moon, “Diminished ciliary muscle movement on accommodation in myopia,” Exp. Eye Res. 105, 9–14 (2012).
[Crossref] [PubMed]

Lee, W. K.

S. Jeon, W. K. Lee, K. Lee, and N. J. Moon, “Diminished ciliary muscle movement on accommodation in myopia,” Exp. Eye Res. 105, 9–14 (2012).
[Crossref] [PubMed]

Lewis, H. A.

H. A. Lewis, C. Y. Kao, L. T. Sinnott, and M. D. Bailey, “Changes in ciliary muscle thickness during accommodation in children,” Optom. Vis. Sci. 89(5), 727–737 (2012).
[Crossref] [PubMed]

Leydolt, C.

O. Findl and C. Leydolt, “Meta-analysis of accommodating intraocular lenses,” J. Cataract Refract. Surg. 33(3), 522–527 (2007).
[Crossref] [PubMed]

Liebmann, J. M.

C. Oliveira, C. Tello, J. M. Liebmann, and R. Ritch, “Ciliary body thickness increases with increasing axial myopia,” Am. J. Ophthalmol. 140(2), 324–325 (2005).
[Crossref] [PubMed]

Liu, K.

Logan, N. S.

H. Buckhurst, B. Gilmartin, R. P. Cubbidge, M. Nagra, and N. S. Logan, “Ocular biometric correlates of ciliary muscle thickness in human myopia,” Ophthalmic Physiol. Opt. 33(3), 294–304 (2013).
[Crossref] [PubMed]

Lopes-Ferreira, D.

D. Lopes-Ferreira, H. Neves, A. Queiros, M. Faria-Ribeiro, S. C. Peixoto-de-Matos, and J. M. González-Méijome, “Ocular dominance and visual function testing,” BioMed Res. Int. 2013, 238943 (2013).
[Crossref] [PubMed]

Lossing, L. A.

L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
[Crossref] [PubMed]

Lu, F.

Lütjen-Drecoll, E.

E. R. Tamm and E. Lütjen-Drecoll, “Ciliary Body,” Microsc. Res. Tech. 33(5), 390–439 (1996).
[Crossref] [PubMed]

Manns, F.

Martin, H.

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes Arch. Clin. Exp. Ophthalmol. 240(11), 906–912 (2002).
[Crossref] [PubMed]

Moon, N. J.

S. Jeon, W. K. Lee, K. Lee, and N. J. Moon, “Diminished ciliary muscle movement on accommodation in myopia,” Exp. Eye Res. 105, 9–14 (2012).
[Crossref] [PubMed]

Morgan, I.

I. Morgan and K. Rose, “How genetic is school myopia?” Prog. Retin. Eye Res. 24(1), 1–38 (2005).
[Crossref] [PubMed]

Morgan, I. G.

I. G. Morgan and K. A. Rose, “Myopia and international educational performance,” Ophthalmic Physiol. Opt. 33(3), 329–338 (2013).
[Crossref] [PubMed]

Muftuoglu, O.

O. Muftuoglu, B. M. Hosal, and G. Zilelioglu, “Ciliary body thickness in unilateral high axial myopia,” Eye (Lond.) 23(5), 1176–1181 (2009).
[Crossref] [PubMed]

Munoz, P.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Mutti, D. O.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

D. O. Mutti, “Hereditary and Environmental Contributions to Emmetropization and Myopia,” Optom. Vis. Sci. 87(4), 255–259 (2010).
[PubMed]

K. E. Schultz, L. T. Sinnott, D. O. Mutti, and M. D. Bailey, “Accommodative fluctuations, lens tension, and ciliary body thickness in children,” Optom. Vis. Sci. 86(6), 677–684 (2009).
[Crossref] [PubMed]

M. D. Bailey, L. T. Sinnott, and D. O. Mutti, “Ciliary body thickness and refractive error in children,” Invest. Ophthalmol. Vis. Sci. 49(10), 4353–4360 (2008).
[Crossref] [PubMed]

Nagra, M.

H. Buckhurst, B. Gilmartin, R. P. Cubbidge, M. Nagra, and N. S. Logan, “Ocular biometric correlates of ciliary muscle thickness in human myopia,” Ophthalmic Physiol. Opt. 33(3), 294–304 (2013).
[Crossref] [PubMed]

Neves, H.

D. Lopes-Ferreira, H. Neves, A. Queiros, M. Faria-Ribeiro, S. C. Peixoto-de-Matos, and J. M. González-Méijome, “Ocular dominance and visual function testing,” BioMed Res. Int. 2013, 238943 (2013).
[Crossref] [PubMed]

Oliveira, C.

C. Oliveira, C. Tello, J. M. Liebmann, and R. Ritch, “Ciliary body thickness increases with increasing axial myopia,” Am. J. Ophthalmol. 140(2), 324–325 (2005).
[Crossref] [PubMed]

Parel, J. M.

Patz, S.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

Peirce, J. W.

J. W. Peirce, “PsychoPy-Psychophysics software in Python,” J. Neurosci. Methods 162(1-2), 8–13 (2007).
[Crossref] [PubMed]

Peixoto-de-Matos, S. C.

D. Lopes-Ferreira, H. Neves, A. Queiros, M. Faria-Ribeiro, S. C. Peixoto-de-Matos, and J. M. González-Méijome, “Ocular dominance and visual function testing,” BioMed Res. Int. 2013, 238943 (2013).
[Crossref] [PubMed]

Pelli, D. G.

D. G. Pelli, J. G. Robson, and A. J. Wilkins, “The design of a new letter chart for measuring contrast sensitivity,” Clin. Vis. Sci. 2(3), 187–199 (1988).

Pepose, J. S.

J. S. Pepose, J. Burke, and M. Qazi, “Accommodating intraocular lenses,” Asia Pac. J. Ophthalmol. 6(4), 350–357 (2017).
[PubMed]

Pucker, A. D.

A. D. Pucker, L. T. Sinnott, C. Y. Kao, and M. D. Bailey, “Region-specific relationships between refractive error and ciliary muscle thickness in children,” Invest. Ophthalmol. Vis. Sci. 54(7), 4710–4716 (2013).
[Crossref] [PubMed]

Qazi, M.

J. S. Pepose, J. Burke, and M. Qazi, “Accommodating intraocular lenses,” Asia Pac. J. Ophthalmol. 6(4), 350–357 (2017).
[PubMed]

Queiros, A.

D. Lopes-Ferreira, H. Neves, A. Queiros, M. Faria-Ribeiro, S. C. Peixoto-de-Matos, and J. M. González-Méijome, “Ocular dominance and visual function testing,” BioMed Res. Int. 2013, 238943 (2013).
[Crossref] [PubMed]

Richdale, K.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
[Crossref] [PubMed]

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), 1507–1511 (2012).
[Crossref] [PubMed]

C. Y. Kao, K. Richdale, L. T. Sinnott, L. E. Grillott, and M. D. Bailey, “Semiautomatic extraction algorithm for images of the ciliary muscle,” Optom. Vis. Sci. 88(2), 275–289 (2011).
[Crossref] [PubMed]

Ritch, R.

C. Oliveira, C. Tello, J. M. Liebmann, and R. Ritch, “Ciliary body thickness increases with increasing axial myopia,” Am. J. Ophthalmol. 140(2), 324–325 (2005).
[Crossref] [PubMed]

Robson, J. G.

D. G. Pelli, J. G. Robson, and A. J. Wilkins, “The design of a new letter chart for measuring contrast sensitivity,” Clin. Vis. Sci. 2(3), 187–199 (1988).

Rose, K.

I. Morgan and K. Rose, “How genetic is school myopia?” Prog. Retin. Eye Res. 24(1), 1–38 (2005).
[Crossref] [PubMed]

Rose, K. A.

I. G. Morgan and K. A. Rose, “Myopia and international educational performance,” Ophthalmic Physiol. Opt. 33(3), 329–338 (2013).
[Crossref] [PubMed]

Ruggeri, M.

Schaeffel, F.

F. Gekeler, F. Schaeffel, H. C. Howland, and J. Wattam-Bell, “Measurement of astigmatism by automated infrared photoretinoscopy,” Optom. Vis. Sci. 74(7), 472–482 (1997).
[Crossref] [PubMed]

F. Schaeffel, H. Wilhelm, and E. Zrenner, “Inter-individual variability in the dynamics of natural accommodation in humans: relation to age and refractive errors,” J. Physiol. 461(1), 301–320 (1993).
[Crossref] [PubMed]

Schmalbrock, P.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

Schmid, K. L.

J. C. Chen, K. L. Schmid, and B. Brown, “The autonomic control of accommodation and implications for human myopia development: a review,” Ophthalmic Physiol. Opt. 23(5), 401–422 (2003).
[Crossref] [PubMed]

Schultz, K. E.

K. E. Schultz, L. T. Sinnott, D. O. Mutti, and M. D. Bailey, “Accommodative fluctuations, lens tension, and ciliary body thickness in children,” Optom. Vis. Sci. 86(6), 677–684 (2009).
[Crossref] [PubMed]

Semmlow, J. L.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Shao, Y.

Shen, M.

Sheppard, A. L.

D. S. Laughton, B. J. Coldrick, A. L. Sheppard, and L. N. Davies, “A program to analyse optical coherence tomography images of the ciliary muscle,” Cont. Lens Anterior Eye 38(6), 402–408 (2015).
[Crossref] [PubMed]

A. L. Sheppard and L. N. Davies, “The effect of ageing on in vivo human ciliary muscle morphology and contractility,” Invest. Ophthalmol. Vis. Sci. 52(3), 1809–1816 (2011).
[Crossref] [PubMed]

A. L. Sheppard and L. N. Davies, “In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia,” Invest. Ophthalmol. Vis. Sci. 51(12), 6882–6889 (2010).
[Crossref] [PubMed]

Sinnott, L. T.

A. D. Pucker, L. T. Sinnott, C. Y. Kao, and M. D. Bailey, “Region-specific relationships between refractive error and ciliary muscle thickness in children,” Invest. Ophthalmol. Vis. Sci. 54(7), 4710–4716 (2013).
[Crossref] [PubMed]

M. K. Kuchem, L. T. Sinnott, C.-Y. Kao, and M. D. Bailey, “Ciliary muscle thickness in anisometropia,” Optom. Vis. Sci. 90(11), 1312–1320 (2013).
[Crossref] [PubMed]

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
[Crossref] [PubMed]

H. A. Lewis, C. Y. Kao, L. T. Sinnott, and M. D. Bailey, “Changes in ciliary muscle thickness during accommodation in children,” Optom. Vis. Sci. 89(5), 727–737 (2012).
[Crossref] [PubMed]

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), 1507–1511 (2012).
[Crossref] [PubMed]

C. Y. Kao, K. Richdale, L. T. Sinnott, L. E. Grillott, and M. D. Bailey, “Semiautomatic extraction algorithm for images of the ciliary muscle,” Optom. Vis. Sci. 88(2), 275–289 (2011).
[Crossref] [PubMed]

K. E. Schultz, L. T. Sinnott, D. O. Mutti, and M. D. Bailey, “Accommodative fluctuations, lens tension, and ciliary body thickness in children,” Optom. Vis. Sci. 86(6), 677–684 (2009).
[Crossref] [PubMed]

M. D. Bailey, L. T. Sinnott, and D. O. Mutti, “Ciliary body thickness and refractive error in children,” Invest. Ophthalmol. Vis. Sci. 49(10), 4353–4360 (2008).
[Crossref] [PubMed]

Stachs, O.

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes Arch. Clin. Exp. Ophthalmol. 240(11), 906–912 (2002).
[Crossref] [PubMed]

Stave, J.

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes Arch. Clin. Exp. Ophthalmol. 240(11), 906–912 (2002).
[Crossref] [PubMed]

Strenk, L. M.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Strenk, S. A.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Tamm, E. R.

E. R. Tamm and E. Lütjen-Drecoll, “Ciliary Body,” Microsc. Res. Tech. 33(5), 390–439 (1996).
[Crossref] [PubMed]

Tao, A.

Tello, C.

C. Oliveira, C. Tello, J. M. Liebmann, and R. Ritch, “Ciliary body thickness increases with increasing axial myopia,” Am. J. Ophthalmol. 140(2), 324–325 (2005).
[Crossref] [PubMed]

Terwee, T.

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes Arch. Clin. Exp. Ophthalmol. 240(11), 906–912 (2002).
[Crossref] [PubMed]

van Alphen, G. W. H. M.

G. W. H. M. van Alphen, “Choroidal stress and emmetropization,” Vision Res. 26(5), 723–734 (1986).
[Crossref] [PubMed]

Wang, J.

Wassenaar, P. A.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

Wattam-Bell, J.

F. Gekeler, F. Schaeffel, H. C. Howland, and J. Wattam-Bell, “Measurement of astigmatism by automated infrared photoretinoscopy,” Optom. Vis. Sci. 74(7), 472–482 (1997).
[Crossref] [PubMed]

Wilhelm, H.

F. Schaeffel, H. Wilhelm, and E. Zrenner, “Inter-individual variability in the dynamics of natural accommodation in humans: relation to age and refractive errors,” J. Physiol. 461(1), 301–320 (1993).
[Crossref] [PubMed]

Wilkins, A. J.

D. G. Pelli, J. G. Robson, and A. J. Wilkins, “The design of a new letter chart for measuring contrast sensitivity,” Clin. Vis. Sci. 2(3), 187–199 (1988).

Williams, S.

Yesilirmak, N.

Yoo, S. H.

Zadnik, K.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), 1507–1511 (2012).
[Crossref] [PubMed]

Zhong, J.

Zilelioglu, G.

O. Muftuoglu, B. M. Hosal, and G. Zilelioglu, “Ciliary body thickness in unilateral high axial myopia,” Eye (Lond.) 23(5), 1176–1181 (2009).
[Crossref] [PubMed]

Zrenner, E.

F. Schaeffel, H. Wilhelm, and E. Zrenner, “Inter-individual variability in the dynamics of natural accommodation in humans: relation to age and refractive errors,” J. Physiol. 461(1), 301–320 (1993).
[Crossref] [PubMed]

Am. J. Ophthalmol. (1)

C. Oliveira, C. Tello, J. M. Liebmann, and R. Ritch, “Ciliary body thickness increases with increasing axial myopia,” Am. J. Ophthalmol. 140(2), 324–325 (2005).
[Crossref] [PubMed]

Asia Pac. J. Ophthalmol. (1)

J. S. Pepose, J. Burke, and M. Qazi, “Accommodating intraocular lenses,” Asia Pac. J. Ophthalmol. 6(4), 350–357 (2017).
[PubMed]

BioMed Res. Int. (1)

D. Lopes-Ferreira, H. Neves, A. Queiros, M. Faria-Ribeiro, S. C. Peixoto-de-Matos, and J. M. González-Méijome, “Ocular dominance and visual function testing,” BioMed Res. Int. 2013, 238943 (2013).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Clin. Vis. Sci. (1)

D. G. Pelli, J. G. Robson, and A. J. Wilkins, “The design of a new letter chart for measuring contrast sensitivity,” Clin. Vis. Sci. 2(3), 187–199 (1988).

Cont. Lens Anterior Eye (1)

D. S. Laughton, B. J. Coldrick, A. L. Sheppard, and L. N. Davies, “A program to analyse optical coherence tomography images of the ciliary muscle,” Cont. Lens Anterior Eye 38(6), 402–408 (2015).
[Crossref] [PubMed]

Exp. Eye Res. (1)

S. Jeon, W. K. Lee, K. Lee, and N. J. Moon, “Diminished ciliary muscle movement on accommodation in myopia,” Exp. Eye Res. 105, 9–14 (2012).
[Crossref] [PubMed]

Eye (Lond.) (1)

O. Muftuoglu, B. M. Hosal, and G. Zilelioglu, “Ciliary body thickness in unilateral high axial myopia,” Eye (Lond.) 23(5), 1176–1181 (2009).
[Crossref] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes Arch. Clin. Exp. Ophthalmol. 240(11), 906–912 (2002).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (7)

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

M. D. Bailey, “How should we measure the ciliary muscle?” Invest. Ophthalmol. Vis. Sci. 52(3), 1817–1818 (2011).
[Crossref] [PubMed]

A. L. Sheppard and L. N. Davies, “The effect of ageing on in vivo human ciliary muscle morphology and contractility,” Invest. Ophthalmol. Vis. Sci. 52(3), 1809–1816 (2011).
[Crossref] [PubMed]

A. L. Sheppard and L. N. Davies, “In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia,” Invest. Ophthalmol. Vis. Sci. 51(12), 6882–6889 (2010).
[Crossref] [PubMed]

A. D. Pucker, L. T. Sinnott, C. Y. Kao, and M. D. Bailey, “Region-specific relationships between refractive error and ciliary muscle thickness in children,” Invest. Ophthalmol. Vis. Sci. 54(7), 4710–4716 (2013).
[Crossref] [PubMed]

M. D. Bailey, L. T. Sinnott, and D. O. Mutti, “Ciliary body thickness and refractive error in children,” Invest. Ophthalmol. Vis. Sci. 49(10), 4353–4360 (2008).
[Crossref] [PubMed]

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

J. Cataract Refract. Surg. (1)

O. Findl and C. Leydolt, “Meta-analysis of accommodating intraocular lenses,” J. Cataract Refract. Surg. 33(3), 522–527 (2007).
[Crossref] [PubMed]

J. Neurosci. Methods (1)

J. W. Peirce, “PsychoPy-Psychophysics software in Python,” J. Neurosci. Methods 162(1-2), 8–13 (2007).
[Crossref] [PubMed]

J. Physiol. (1)

F. Schaeffel, H. Wilhelm, and E. Zrenner, “Inter-individual variability in the dynamics of natural accommodation in humans: relation to age and refractive errors,” J. Physiol. 461(1), 301–320 (1993).
[Crossref] [PubMed]

Klin. Monatsbl. Augenheilkd. (1)

A. Bacskulin, U. Bergmann, Z. Horóczi, and R. Guthoff, “Kontinuierliche ultraschallbiomikroskopische Darstellung der akkommodativen Veränderung des humanen Ziliarkörpers,” Klin. Monatsbl. Augenheilkd. 207(10), 247–252 (1995).
[Crossref] [PubMed]

Microsc. Res. Tech. (1)

E. R. Tamm and E. Lütjen-Drecoll, “Ciliary Body,” Microsc. Res. Tech. 33(5), 390–439 (1996).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (3)

J. C. Chen, K. L. Schmid, and B. Brown, “The autonomic control of accommodation and implications for human myopia development: a review,” Ophthalmic Physiol. Opt. 23(5), 401–422 (2003).
[Crossref] [PubMed]

I. G. Morgan and K. A. Rose, “Myopia and international educational performance,” Ophthalmic Physiol. Opt. 33(3), 329–338 (2013).
[Crossref] [PubMed]

H. Buckhurst, B. Gilmartin, R. P. Cubbidge, M. Nagra, and N. S. Logan, “Ocular biometric correlates of ciliary muscle thickness in human myopia,” Ophthalmic Physiol. Opt. 33(3), 294–304 (2013).
[Crossref] [PubMed]

Ophthalmic Technol. XXIV Int. Soc. Opt. Photonics (1)

M. Ruggeri, V. Hernandez, C. de Freitas, F. Manns, and J. M. Parel, “Biometry of the ciliary muscle during dynamic accommodation assessed with OCT,” Ophthalmic Technol. XXIV Int. Soc. Opt. Photonics 8930, 89300W (2014).
[Crossref]

Optom. Vis. Sci. (8)

K. E. Schultz, L. T. Sinnott, D. O. Mutti, and M. D. Bailey, “Accommodative fluctuations, lens tension, and ciliary body thickness in children,” Optom. Vis. Sci. 86(6), 677–684 (2009).
[Crossref] [PubMed]

F. Gekeler, F. Schaeffel, H. C. Howland, and J. Wattam-Bell, “Measurement of astigmatism by automated infrared photoretinoscopy,” Optom. Vis. Sci. 74(7), 472–482 (1997).
[Crossref] [PubMed]

C. Y. Kao, K. Richdale, L. T. Sinnott, L. E. Grillott, and M. D. Bailey, “Semiautomatic extraction algorithm for images of the ciliary muscle,” Optom. Vis. Sci. 88(2), 275–289 (2011).
[Crossref] [PubMed]

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), 1507–1511 (2012).
[Crossref] [PubMed]

M. K. Kuchem, L. T. Sinnott, C.-Y. Kao, and M. D. Bailey, “Ciliary muscle thickness in anisometropia,” Optom. Vis. Sci. 90(11), 1312–1320 (2013).
[Crossref] [PubMed]

H. A. Lewis, C. Y. Kao, L. T. Sinnott, and M. D. Bailey, “Changes in ciliary muscle thickness during accommodation in children,” Optom. Vis. Sci. 89(5), 727–737 (2012).
[Crossref] [PubMed]

L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
[Crossref] [PubMed]

D. O. Mutti, “Hereditary and Environmental Contributions to Emmetropization and Myopia,” Optom. Vis. Sci. 87(4), 255–259 (2010).
[PubMed]

Prog. Retin. Eye Res. (1)

I. Morgan and K. Rose, “How genetic is school myopia?” Prog. Retin. Eye Res. 24(1), 1–38 (2005).
[Crossref] [PubMed]

Vision Res. (1)

G. W. H. M. van Alphen, “Choroidal stress and emmetropization,” Vision Res. 26(5), 723–734 (1986).
[Crossref] [PubMed]

Other (3)

T. Kohnen, M. Baumeister, and A. Strenger, “Akkommodationsprüfung,” in AugenärztlicheUntersuchungsmethoden, P. Kroll, M. Kuechle, and H. J. Kuechle, eds., 3 (Georg Thieme Verlag, 2008), pp. 102–106.

K. J. Ciuffreda, “Accommodation, the pupil, and presbyopia,” in Borish’s Clinical Refraction, W. J. Benjamin, ed. (Butterworth-Heinemann Elsevier Inc., 2006), pp. 93–144.

I. E. Loewenfeld, “Development and Aging,” in The Pupil. Anatomy, Physiology, and Clinical Applications (Wayne State University Press, 1993), pp. 498–517.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup. Subjects were positioned in front of the OCT with their head in 0° and their fixation gaze shifted by about 40°. With their left eye, subjects fixated a target through a mirror which was attached to the head rest while their right eye’s ciliary muscle was imaged. For far vision, the near display was moved out of the subjects’ fixation line to allow unobstructed view of the far target. The order of target presentation was randomized. Simultaneous measurements of accommodative response were undertaken by eccentric infrared photorefraction.
Fig. 2
Fig. 2 Semi-automatic segmentation. (A) Manual landmark positioning, (B) Definition of CM boundaries using polynomial splines (1: upper, 2: vertical, 3: lower CM border); points of interest are labeled with a green cross, (C) New CM boundaries after refraction distortion correction, (D) Calculation of CM area (red).
Fig. 3
Fig. 3 Definition of morphological measures. OCT image of CM with sketch illustrating the plotting of CM thickness profiles and the definition of the perpendicular axis (green line).
Fig. 4
Fig. 4 Horizontal shift of the ciliary muscle apex’ position against the scleral spur. Graphical derivation to calculate the horizontal displacement of the ciliary muscle apex’ position (CA) against the scleral spur’s position (SP) for far (dF) and near accommodation (dN).
Fig. 5
Fig. 5 Left: Intra-examiner repeatability of first (Seg_1) and second (Seg_2) segmentation. Bland-Altman plot showing the difference between the repeated CMA evaluation for both distances (blue circles: 0 D, red circles: 3 D) as a function of the mean, with mean difference (solid red line) and 95% confidence intervals (dotted red line). Grey solid lines denote limits of agreement (mean difference ± 1.96 * SD of difference). Middle: Intra-session repeatability of first (round_1) and second (round_2) imaging. Bland-Altman plot showing the difference between averaged CMA of first three and last three images of one individual session. Right: Inter-examiner repeatability of examiner A and examiner B. Bland-Altman analysis reveals good inter-examiner repeatability with a mean difference of −0.03 mm2.
Fig. 6
Fig. 6 Definition of region of largest thickness change. Using a bivariate fit with Kernel smoothing (black line) for the CMT difference between far and near accommodation and taking 18 µm as thresholds (derived from axial resolution of OCT; green dashed lines), two regions of largest thickness changes were identified, the first between 0.00 to 0.25 mm, and the second between 0.36 to 1.48 mm (green bars).
Fig. 7
Fig. 7 Averaged CMT profiles for far and near accommodation. Averaged CMT for far (blue) and near accommodation (red), respectively, using the coordinate system with origin in the scleral spur position. Shaded areas denote ± 1 SD. Green bars indicate regions of largest thickness change.
Fig. 8
Fig. 8 Individual CMT profiles. CMT profiles of all 13 subjects with CMT during far (blue line) and during near vision (red line). Green bars represent average regions of largest CMT change. Shaded areas denote ± 1 SD of repeated imaging per subject.

Tables (2)

Tables Icon

Table 1 Intra-session repeatability. Comparison of anatomical values averaged over all subjects for the first three vs. the last three images taken within one session for far and near accommodation, respectively.

Tables Icon

Table 2 Individual perpendicular axis for far and near accommodation for all 13 subjects

Metrics