Abstract

In this work, a near-infrared probe-based confocal microendoscope (pCM) with a 785 nm laser source, a long working distance, and a probe with diameter of 2.6 mm that can be compatible with a conventional endoscope is demonstrated to produce deep-tissue images at cellular resolutions with enhanced contrast and signal-to-noise ratio. Theoretical simulations and experiments confirm that near-infrared light can optimize the image quality. Abundant details of mouse esophagus obtained at different depths demonstrate the system’s ability to image deep tissues at cellular resolutions, which makes it possible to diagnose diseases in the digestive tract in real time, laying a solid foundation for clinical applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In vivo three-dimensional microelectromechanical endoscopic swept source optical coherence tomography

Jianping Su, Jun Zhang, Linfeng Yu, and Zhongping Chen
Opt. Express 15(16) 10390-10396 (2007)

Endoscopic optical coherence tomography: technologies and clinical applications [Invited]

Michalina J. Gora, Melissa J. Suter, Guillermo J. Tearney, and Xingde Li
Biomed. Opt. Express 8(5) 2405-2444 (2017)

Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement

Alexandre R. Tumlinson, Lida P. Hariri, Urs Utzinger, and Jennifer K. Barton
Appl. Opt. 43(1) 113-121 (2004)

References

  • View by:
  • |
  • |
  • |

  1. R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
    [Crossref] [PubMed]
  2. E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J. F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy,” J. Vasc. Res. 41(5), 400–411 (2004).
    [Crossref] [PubMed]
  3. J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
    [Crossref] [PubMed]
  4. T. Shah, R. Lippman, D. Kohli, P. Mutha, S. Solomon, and A. Zfass, “Accuracy of probe-based confocal laser endomicroscopy (pCLE) compared to random biopsies during endoscopic surveillance of Barrett’s esophagus,” Endosc. Int. Open 6(4), E414–E420 (2018).
    [Crossref] [PubMed]
  5. T. Liu, H. Zheng, W. Gong, C. Chen, and B. Jiang, “The accuracy of confocal laser endomicroscopy, narrow band imaging, and chromoendoscopy for the detection of atrophic gastritis,” J. Clin. Gastroenterol. 49(5), 379–386 (2015).
    [Crossref] [PubMed]
  6. T. Hlavaty, M. Huorka, T. Koller, P. Zita, E. Kresanova, B. Rychly, and J. Toth, “Colorectal cancer screening in patients with ulcerative and Crohn’s colitis with use of colonoscopy, chromoendoscopy and confocal endomicroscopy,” Eur. J. Gastroenterol. Hepatol. 23(8), 680–689 (2011).
    [Crossref] [PubMed]
  7. F. S. Fuchs, S. Zirlik, K. Hildner, J. Schubert, M. Vieth, and M. F. Neurath, “Confocal laser endomicroscopy for diagnosing lung cancer in vivo,” Eur. Respir. J. 41(6), 1401–1408 (2013).
    [Crossref] [PubMed]
  8. C. Schlosser, N. Bodenschatz, S. Lam, M. Lee, J. N. McAlpine, D. M. Miller, D. J. T. Van Niekerk, M. Follen, M. Guillaud, C. E. MacAulay, and P. M. Lane, “Fluorescence confocal endomicroscopy of the cervix: pilot study on the potential and limitations for clinical implementation,” J. Biomed. Opt. 21(12), 126011 (2016).
    [Crossref] [PubMed]
  9. M. D. Risi, A. R. Rouse, S. K. Chambers, K. D. Hatch, W. Zheng, and A. F. Gmitro, “Pilot clinical evaluation of a confocal microlaparoscope for ovarian cancer detection,” Int. J. Gynecol. Cancer 26(2), 248–254 (2016).
    [Crossref] [PubMed]
  10. Y. Nakai, H. Isayama, S. Shinoura, T. Iwashita, J. B. Samarasena, K. J. Chang, and K. Koike, “Confocal laser endomicroscopy in gastrointestinal and pancreatobiliary diseases,” Dig. Endosc. 26(1), 86–94 (2014).
    [Crossref] [PubMed]
  11. M. Goetz, I. Deris, M. Vieth, E. Murr, A. Hoffman, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “Near-infrared confocal imaging during mini-laparoscopy: a novel rigid endomicroscope with increased imaging plane depth,” J. Hepatol. 53(1), 84–90 (2010).
    [Crossref] [PubMed]
  12. O. Pech, T. Rabenstein, H. Manner, M. C. Petrone, J. Pohl, M. Vieth, M. Stolte, and C. Ell, “Confocal laser endomicroscopy for in vivo diagnosis of early squamous cell carcinoma in the esophagus,” Clin. Gastroenterol. Hepatol. 6(1), 89–94 (2008).
    [Crossref] [PubMed]
  13. C. Katada, M. Muto, K. Momma, M. Arima, H. Tajiri, C. Kanamaru, H. Ooyanagi, H. Endo, T. Michida, N. Hasuike, I. Oda, T. Fujii, and D. Saito, “Clinical outcome after endoscopic mucosal resection for esophageal squamous cell carcinoma invading the muscularis mucosae--a multicenter retrospective cohort study,” Endoscopy 39(9), 779–783 (2007).
    [Crossref] [PubMed]
  14. J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7(5), 626–634 (2003).
    [Crossref] [PubMed]
  15. K. Seker and M. Engin, “Deep tissue near-infrared imaging for vascular network analysis,” J. Innov. Opt. Health Sci. 10(3), 1650051 (2017).
    [Crossref]
  16. H. Makhlouf, A. R. Rouse, and A. F. Gmitro, “Dual modality fluorescence confocal and spectral-domain optical coherence tomography microendoscope,” Biomed. Opt. Express 2(3), 634–644 (2011).
    [Crossref] [PubMed]
  17. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [Crossref]
  18. E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
    [Crossref] [PubMed]
  19. T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections,” Biophys. J. 91(12), 4665–4677 (2006).
    [Crossref] [PubMed]
  20. M. Miwa and T. Shikayama, “ICG fluorescence imaging and its medical applications,” Proc. SPIE 7160, 373–378 (2008).
    [Crossref]
  21. N. Haj-Hosseini, P. Behm, I. Shabo, and K. Wardell, “Fluorescence spectroscopy using indocyanine green for lymph node mapping,” Proc. SPIE 8935, 1–6 (2014).
  22. L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9(1-2), 38–43 (2016).
    [Crossref] [PubMed]
  23. G. Li, H. Li, X. Duan, Q. Zhou, J. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression in vertical and horizontal planes with dual axes confocal endomicroscope using compact distal scanner,” IEEE Trans. Med. Imaging 36(7), 1482–1490 (2017).
    [Crossref] [PubMed]
  24. W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
    [Crossref] [PubMed]
  25. A. Pierangelo, D. Fuks, P. Validire, A. Benali, and B. Gayet, “Diagnostic accuracy of confocal laser endomicroscopy for the characterization of liver nodules,” Eur. J. Gastroenterol. Hepatol. 29(1), 42–47 (2017).
    [Crossref] [PubMed]
  26. J. F. Wang, M. Yang, L. Yang, Y. Zhang, J. Yuan, Q. Liu, X. H. Hou, and L. Fu, “A confocal endoscope for cellular imaging,” Engineering 1(3), 351–360 (2015).
    [Crossref]
  27. T. Maeda, N. Arakawa, M. Takahashi, and Y. Aizu, “Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model,” Opt. Rev. 17(3), 223–229 (2010).
    [Crossref]
  28. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [Crossref] [PubMed]
  29. L. Wang and S. L. Jacques, “Monte Carlo Modeling of light transport in multi-layered tissues in standard C,” University of Texas M. D. Anderson Cancer Center (1992).
  30. L. V. Wang and G. Liang, “Absorption distribution of an optical beam focused into a turbid medium,” Appl. Opt. 38(22), 4951–4958 (1999).
    [Crossref] [PubMed]
  31. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
    [Crossref] [PubMed]
  32. P. Giannios, S. Koutsoumpos, K. G. Toutouzas, M. Matiatou, G. C. Zografos, and K. Moutzouris, “Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared,” J. Biophotonics 10(2), 303–310 (2017).
    [Crossref] [PubMed]
  33. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350 – 2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
    [Crossref]
  34. L. Yang, J. Wang, G. Tian, J. Yuan, Q. Liu, and L. Fu, “Five-lens, easy-to-implement miniature objective for a fluorescence confocal microendoscope,” Opt. Express 24(1), 473–484 (2016).
    [Crossref] [PubMed]
  35. Y. S. Sabharwal, A. R. Rouse, L. Donaldson, M. F. Hopkins, and A. F. Gmitro, “Slit-scanning confocal microendoscope for high-resolution in vivo imaging,” Appl. Opt. 38(34), 7133–7144 (1999).
    [Crossref] [PubMed]
  36. R. Drougard, “Optical Transfer Properties of Fiber Bundles,” J. Opt. Soc. Am. 54(7), 907–914 (1964).
    [Crossref]
  37. J. Lv, B. Xue, T. Li, Y.-h. He, X.-l. Ma, and X.-t. Yan, “Optical system design of subminiature endoscope with imaging fiber bundle,” Proc. SPIE 10153101530L (2016).
  38. D. N. Seril, J. Liao, G. Y. Yang, and C. S. Yang, “Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models,” Carcinogenesis 24(3), 353–362 (2003).
    [Crossref] [PubMed]
  39. L. A. Dieleman, M. J. Palmen, H. Akol, E. Bloemena, A. S. Peña, S. G. M. Meuwissen, and E. P. Van Rees, “Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines,” Clin. Exp. Immunol. 114(3), 385–391 (1998).
    [Crossref] [PubMed]
  40. A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
    [Crossref] [PubMed]
  41. S. Yoneya, T. Saito, Y. Komatsu, I. Koyama, K. Takahashi, and J. Duvoll-Young, “Binding properties of indocyanine green in human blood,” Invest. Ophthalmol. Vis. Sci. 39(7), 1286–1290 (1998).
    [PubMed]
  42. J. B. Pawley, in Handbook of Biological Confocal Microscopy (Springer, 2008), Chap. 10.
  43. H. Zhang, J. Yuan, and L. Fu, “Imaging Fourier transform endospectroscopy for in vivo and in situ multispectral imaging,” Opt. Express 20(21), 23349–23360 (2012).
    [Crossref] [PubMed]
  44. S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, and V. Tuchin, “Wavelength dependence of the refractive index of human colorectal tissues: comparison between healthy mucosa and cancer,” J. Biomed. Photon. Eng. 2(4), 040307 (2016).
    [Crossref]
  45. J. S. Trier and T. H. Browning, “Morphologic response of the mucosa of human small intestine to x-ray exposure,” J. Clin. Invest. 45(2), 194–204 (1966).
    [Crossref] [PubMed]

2018 (1)

T. Shah, R. Lippman, D. Kohli, P. Mutha, S. Solomon, and A. Zfass, “Accuracy of probe-based confocal laser endomicroscopy (pCLE) compared to random biopsies during endoscopic surveillance of Barrett’s esophagus,” Endosc. Int. Open 6(4), E414–E420 (2018).
[Crossref] [PubMed]

2017 (4)

K. Seker and M. Engin, “Deep tissue near-infrared imaging for vascular network analysis,” J. Innov. Opt. Health Sci. 10(3), 1650051 (2017).
[Crossref]

A. Pierangelo, D. Fuks, P. Validire, A. Benali, and B. Gayet, “Diagnostic accuracy of confocal laser endomicroscopy for the characterization of liver nodules,” Eur. J. Gastroenterol. Hepatol. 29(1), 42–47 (2017).
[Crossref] [PubMed]

G. Li, H. Li, X. Duan, Q. Zhou, J. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression in vertical and horizontal planes with dual axes confocal endomicroscope using compact distal scanner,” IEEE Trans. Med. Imaging 36(7), 1482–1490 (2017).
[Crossref] [PubMed]

P. Giannios, S. Koutsoumpos, K. G. Toutouzas, M. Matiatou, G. C. Zografos, and K. Moutzouris, “Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared,” J. Biophotonics 10(2), 303–310 (2017).
[Crossref] [PubMed]

2016 (6)

L. Yang, J. Wang, G. Tian, J. Yuan, Q. Liu, and L. Fu, “Five-lens, easy-to-implement miniature objective for a fluorescence confocal microendoscope,” Opt. Express 24(1), 473–484 (2016).
[Crossref] [PubMed]

J. Lv, B. Xue, T. Li, Y.-h. He, X.-l. Ma, and X.-t. Yan, “Optical system design of subminiature endoscope with imaging fiber bundle,” Proc. SPIE 10153101530L (2016).

C. Schlosser, N. Bodenschatz, S. Lam, M. Lee, J. N. McAlpine, D. M. Miller, D. J. T. Van Niekerk, M. Follen, M. Guillaud, C. E. MacAulay, and P. M. Lane, “Fluorescence confocal endomicroscopy of the cervix: pilot study on the potential and limitations for clinical implementation,” J. Biomed. Opt. 21(12), 126011 (2016).
[Crossref] [PubMed]

M. D. Risi, A. R. Rouse, S. K. Chambers, K. D. Hatch, W. Zheng, and A. F. Gmitro, “Pilot clinical evaluation of a confocal microlaparoscope for ovarian cancer detection,” Int. J. Gynecol. Cancer 26(2), 248–254 (2016).
[Crossref] [PubMed]

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9(1-2), 38–43 (2016).
[Crossref] [PubMed]

S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, and V. Tuchin, “Wavelength dependence of the refractive index of human colorectal tissues: comparison between healthy mucosa and cancer,” J. Biomed. Photon. Eng. 2(4), 040307 (2016).
[Crossref]

2015 (2)

T. Liu, H. Zheng, W. Gong, C. Chen, and B. Jiang, “The accuracy of confocal laser endomicroscopy, narrow band imaging, and chromoendoscopy for the detection of atrophic gastritis,” J. Clin. Gastroenterol. 49(5), 379–386 (2015).
[Crossref] [PubMed]

J. F. Wang, M. Yang, L. Yang, Y. Zhang, J. Yuan, Q. Liu, X. H. Hou, and L. Fu, “A confocal endoscope for cellular imaging,” Engineering 1(3), 351–360 (2015).
[Crossref]

2014 (3)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350 – 2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

Y. Nakai, H. Isayama, S. Shinoura, T. Iwashita, J. B. Samarasena, K. J. Chang, and K. Koike, “Confocal laser endomicroscopy in gastrointestinal and pancreatobiliary diseases,” Dig. Endosc. 26(1), 86–94 (2014).
[Crossref] [PubMed]

N. Haj-Hosseini, P. Behm, I. Shabo, and K. Wardell, “Fluorescence spectroscopy using indocyanine green for lymph node mapping,” Proc. SPIE 8935, 1–6 (2014).

2013 (2)

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

F. S. Fuchs, S. Zirlik, K. Hildner, J. Schubert, M. Vieth, and M. F. Neurath, “Confocal laser endomicroscopy for diagnosing lung cancer in vivo,” Eur. Respir. J. 41(6), 1401–1408 (2013).
[Crossref] [PubMed]

2012 (3)

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

H. Zhang, J. Yuan, and L. Fu, “Imaging Fourier transform endospectroscopy for in vivo and in situ multispectral imaging,” Opt. Express 20(21), 23349–23360 (2012).
[Crossref] [PubMed]

2011 (2)

H. Makhlouf, A. R. Rouse, and A. F. Gmitro, “Dual modality fluorescence confocal and spectral-domain optical coherence tomography microendoscope,” Biomed. Opt. Express 2(3), 634–644 (2011).
[Crossref] [PubMed]

T. Hlavaty, M. Huorka, T. Koller, P. Zita, E. Kresanova, B. Rychly, and J. Toth, “Colorectal cancer screening in patients with ulcerative and Crohn’s colitis with use of colonoscopy, chromoendoscopy and confocal endomicroscopy,” Eur. J. Gastroenterol. Hepatol. 23(8), 680–689 (2011).
[Crossref] [PubMed]

2010 (2)

M. Goetz, I. Deris, M. Vieth, E. Murr, A. Hoffman, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “Near-infrared confocal imaging during mini-laparoscopy: a novel rigid endomicroscope with increased imaging plane depth,” J. Hepatol. 53(1), 84–90 (2010).
[Crossref] [PubMed]

T. Maeda, N. Arakawa, M. Takahashi, and Y. Aizu, “Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model,” Opt. Rev. 17(3), 223–229 (2010).
[Crossref]

2008 (2)

O. Pech, T. Rabenstein, H. Manner, M. C. Petrone, J. Pohl, M. Vieth, M. Stolte, and C. Ell, “Confocal laser endomicroscopy for in vivo diagnosis of early squamous cell carcinoma in the esophagus,” Clin. Gastroenterol. Hepatol. 6(1), 89–94 (2008).
[Crossref] [PubMed]

M. Miwa and T. Shikayama, “ICG fluorescence imaging and its medical applications,” Proc. SPIE 7160, 373–378 (2008).
[Crossref]

2007 (1)

C. Katada, M. Muto, K. Momma, M. Arima, H. Tajiri, C. Kanamaru, H. Ooyanagi, H. Endo, T. Michida, N. Hasuike, I. Oda, T. Fujii, and D. Saito, “Clinical outcome after endoscopic mucosal resection for esophageal squamous cell carcinoma invading the muscularis mucosae--a multicenter retrospective cohort study,” Endoscopy 39(9), 779–783 (2007).
[Crossref] [PubMed]

2006 (1)

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections,” Biophys. J. 91(12), 4665–4677 (2006).
[Crossref] [PubMed]

2005 (1)

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

2004 (2)

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J. F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy,” J. Vasc. Res. 41(5), 400–411 (2004).
[Crossref] [PubMed]

2003 (3)

J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7(5), 626–634 (2003).
[Crossref] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

D. N. Seril, J. Liao, G. Y. Yang, and C. S. Yang, “Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models,” Carcinogenesis 24(3), 353–362 (2003).
[Crossref] [PubMed]

1999 (2)

1998 (2)

L. A. Dieleman, M. J. Palmen, H. Akol, E. Bloemena, A. S. Peña, S. G. M. Meuwissen, and E. P. Van Rees, “Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines,” Clin. Exp. Immunol. 114(3), 385–391 (1998).
[Crossref] [PubMed]

S. Yoneya, T. Saito, Y. Komatsu, I. Koyama, K. Takahashi, and J. Duvoll-Young, “Binding properties of indocyanine green in human blood,” Invest. Ophthalmol. Vis. Sci. 39(7), 1286–1290 (1998).
[PubMed]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

1993 (1)

1966 (1)

J. S. Trier and T. H. Browning, “Morphologic response of the mucosa of human small intestine to x-ray exposure,” J. Clin. Invest. 45(2), 194–204 (1966).
[Crossref] [PubMed]

1964 (1)

Aizu, Y.

T. Maeda, N. Arakawa, M. Takahashi, and Y. Aizu, “Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model,” Opt. Rev. 17(3), 223–229 (2010).
[Crossref]

Akol, H.

L. A. Dieleman, M. J. Palmen, H. Akol, E. Bloemena, A. S. Peña, S. G. M. Meuwissen, and E. P. Van Rees, “Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines,” Clin. Exp. Immunol. 114(3), 385–391 (1998).
[Crossref] [PubMed]

Alfano, R.

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9(1-2), 38–43 (2016).
[Crossref] [PubMed]

Arakawa, N.

T. Maeda, N. Arakawa, M. Takahashi, and Y. Aizu, “Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model,” Opt. Rev. 17(3), 223–229 (2010).
[Crossref]

Arima, M.

C. Katada, M. Muto, K. Momma, M. Arima, H. Tajiri, C. Kanamaru, H. Ooyanagi, H. Endo, T. Michida, N. Hasuike, I. Oda, T. Fujii, and D. Saito, “Clinical outcome after endoscopic mucosal resection for esophageal squamous cell carcinoma invading the muscularis mucosae--a multicenter retrospective cohort study,” Endoscopy 39(9), 779–783 (2007).
[Crossref] [PubMed]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350 – 2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

Becker, D. L.

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections,” Biophys. J. 91(12), 4665–4677 (2006).
[Crossref] [PubMed]

Behm, P.

N. Haj-Hosseini, P. Behm, I. Shabo, and K. Wardell, “Fluorescence spectroscopy using indocyanine green for lymph node mapping,” Proc. SPIE 8935, 1–6 (2014).

Benali, A.

A. Pierangelo, D. Fuks, P. Validire, A. Benali, and B. Gayet, “Diagnostic accuracy of confocal laser endomicroscopy for the characterization of liver nodules,” Eur. J. Gastroenterol. Hepatol. 29(1), 42–47 (2017).
[Crossref] [PubMed]

Bixler, J. N.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Bloemena, E.

L. A. Dieleman, M. J. Palmen, H. Akol, E. Bloemena, A. S. Peña, S. G. M. Meuwissen, and E. P. Van Rees, “Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines,” Clin. Exp. Immunol. 114(3), 385–391 (1998).
[Crossref] [PubMed]

Bodenschatz, N.

C. Schlosser, N. Bodenschatz, S. Lam, M. Lee, J. N. McAlpine, D. M. Miller, D. J. T. Van Niekerk, M. Follen, M. Guillaud, C. E. MacAulay, and P. M. Lane, “Fluorescence confocal endomicroscopy of the cervix: pilot study on the potential and limitations for clinical implementation,” J. Biomed. Opt. 21(12), 126011 (2016).
[Crossref] [PubMed]

Browning, T. H.

J. S. Trier and T. H. Browning, “Morphologic response of the mucosa of human small intestine to x-ray exposure,” J. Clin. Invest. 45(2), 194–204 (1966).
[Crossref] [PubMed]

Burg, J.

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Carvalho, S.

S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, and V. Tuchin, “Wavelength dependence of the refractive index of human colorectal tissues: comparison between healthy mucosa and cancer,” J. Biomed. Photon. Eng. 2(4), 040307 (2016).
[Crossref]

Chambers, S. K.

M. D. Risi, A. R. Rouse, S. K. Chambers, K. D. Hatch, W. Zheng, and A. F. Gmitro, “Pilot clinical evaluation of a confocal microlaparoscope for ovarian cancer detection,” Int. J. Gynecol. Cancer 26(2), 248–254 (2016).
[Crossref] [PubMed]

Chang, K. J.

Y. Nakai, H. Isayama, S. Shinoura, T. Iwashita, J. B. Samarasena, K. J. Chang, and K. Koike, “Confocal laser endomicroscopy in gastrointestinal and pancreatobiliary diseases,” Dig. Endosc. 26(1), 86–94 (2014).
[Crossref] [PubMed]

Chen, C.

T. Liu, H. Zheng, W. Gong, C. Chen, and B. Jiang, “The accuracy of confocal laser endomicroscopy, narrow band imaging, and chromoendoscopy for the detection of atrophic gastritis,” J. Clin. Gastroenterol. 49(5), 379–386 (2015).
[Crossref] [PubMed]

Contag, C. H.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Delaney, P.

M. Goetz, I. Deris, M. Vieth, E. Murr, A. Hoffman, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “Near-infrared confocal imaging during mini-laparoscopy: a novel rigid endomicroscope with increased imaging plane depth,” J. Hepatol. 53(1), 84–90 (2010).
[Crossref] [PubMed]

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Delaney, P. M.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

Deris, I.

M. Goetz, I. Deris, M. Vieth, E. Murr, A. Hoffman, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “Near-infrared confocal imaging during mini-laparoscopy: a novel rigid endomicroscope with increased imaging plane depth,” J. Hepatol. 53(1), 84–90 (2010).
[Crossref] [PubMed]

Dieleman, L. A.

L. A. Dieleman, M. J. Palmen, H. Akol, E. Bloemena, A. S. Peña, S. G. M. Meuwissen, and E. P. Van Rees, “Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines,” Clin. Exp. Immunol. 114(3), 385–391 (1998).
[Crossref] [PubMed]

Donaldson, L.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Drougard, R.

Duan, X.

G. Li, H. Li, X. Duan, Q. Zhou, J. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression in vertical and horizontal planes with dual axes confocal endomicroscope using compact distal scanner,” IEEE Trans. Med. Imaging 36(7), 1482–1490 (2017).
[Crossref] [PubMed]

Duvoll-Young, J.

S. Yoneya, T. Saito, Y. Komatsu, I. Koyama, K. Takahashi, and J. Duvoll-Young, “Binding properties of indocyanine green in human blood,” Invest. Ophthalmol. Vis. Sci. 39(7), 1286–1290 (1998).
[PubMed]

Ekwobi, C.

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections,” Biophys. J. 91(12), 4665–4677 (2006).
[Crossref] [PubMed]

Ell, C.

O. Pech, T. Rabenstein, H. Manner, M. C. Petrone, J. Pohl, M. Vieth, M. Stolte, and C. Ell, “Confocal laser endomicroscopy for in vivo diagnosis of early squamous cell carcinoma in the esophagus,” Clin. Gastroenterol. Hepatol. 6(1), 89–94 (2008).
[Crossref] [PubMed]

Enders, M.

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Endo, H.

C. Katada, M. Muto, K. Momma, M. Arima, H. Tajiri, C. Kanamaru, H. Ooyanagi, H. Endo, T. Michida, N. Hasuike, I. Oda, T. Fujii, and D. Saito, “Clinical outcome after endoscopic mucosal resection for esophageal squamous cell carcinoma invading the muscularis mucosae--a multicenter retrospective cohort study,” Endoscopy 39(9), 779–783 (2007).
[Crossref] [PubMed]

Engin, M.

K. Seker and M. Engin, “Deep tissue near-infrared imaging for vascular network analysis,” J. Innov. Opt. Health Sci. 10(3), 1650051 (2017).
[Crossref]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Follen, M.

C. Schlosser, N. Bodenschatz, S. Lam, M. Lee, J. N. McAlpine, D. M. Miller, D. J. T. Van Niekerk, M. Follen, M. Guillaud, C. E. MacAulay, and P. M. Lane, “Fluorescence confocal endomicroscopy of the cervix: pilot study on the potential and limitations for clinical implementation,” J. Biomed. Opt. 21(12), 126011 (2016).
[Crossref] [PubMed]

Frangioni, J. V.

J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7(5), 626–634 (2003).
[Crossref] [PubMed]

Friedland, S.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Fu, L.

Fuchs, F. S.

F. S. Fuchs, S. Zirlik, K. Hildner, J. Schubert, M. Vieth, and M. F. Neurath, “Confocal laser endomicroscopy for diagnosing lung cancer in vivo,” Eur. Respir. J. 41(6), 1401–1408 (2013).
[Crossref] [PubMed]

Fujii, T.

C. Katada, M. Muto, K. Momma, M. Arima, H. Tajiri, C. Kanamaru, H. Ooyanagi, H. Endo, T. Michida, N. Hasuike, I. Oda, T. Fujii, and D. Saito, “Clinical outcome after endoscopic mucosal resection for esophageal squamous cell carcinoma invading the muscularis mucosae--a multicenter retrospective cohort study,” Endoscopy 39(9), 779–783 (2007).
[Crossref] [PubMed]

Fuks, D.

A. Pierangelo, D. Fuks, P. Validire, A. Benali, and B. Gayet, “Diagnostic accuracy of confocal laser endomicroscopy for the characterization of liver nodules,” Eur. J. Gastroenterol. Hepatol. 29(1), 42–47 (2017).
[Crossref] [PubMed]

Galle, P. R.

M. Goetz, I. Deris, M. Vieth, E. Murr, A. Hoffman, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “Near-infrared confocal imaging during mini-laparoscopy: a novel rigid endomicroscope with increased imaging plane depth,” J. Hepatol. 53(1), 84–90 (2010).
[Crossref] [PubMed]

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Gayet, B.

A. Pierangelo, D. Fuks, P. Validire, A. Benali, and B. Gayet, “Diagnostic accuracy of confocal laser endomicroscopy for the characterization of liver nodules,” Eur. J. Gastroenterol. Hepatol. 29(1), 42–47 (2017).
[Crossref] [PubMed]

Genet, M.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J. F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy,” J. Vasc. Res. 41(5), 400–411 (2004).
[Crossref] [PubMed]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350 – 2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

Giannios, P.

P. Giannios, S. Koutsoumpos, K. G. Toutouzas, M. Matiatou, G. C. Zografos, and K. Moutzouris, “Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared,” J. Biophotonics 10(2), 303–310 (2017).
[Crossref] [PubMed]

Gmitro, A. F.

Gnaendiger, J.

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Goetz, M.

M. Goetz, I. Deris, M. Vieth, E. Murr, A. Hoffman, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “Near-infrared confocal imaging during mini-laparoscopy: a novel rigid endomicroscope with increased imaging plane depth,” J. Hepatol. 53(1), 84–90 (2010).
[Crossref] [PubMed]

Gong, W.

T. Liu, H. Zheng, W. Gong, C. Chen, and B. Jiang, “The accuracy of confocal laser endomicroscopy, narrow band imaging, and chromoendoscopy for the detection of atrophic gastritis,” J. Clin. Gastroenterol. 49(5), 379–386 (2015).
[Crossref] [PubMed]

Gueiral, N.

S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, and V. Tuchin, “Wavelength dependence of the refractive index of human colorectal tissues: comparison between healthy mucosa and cancer,” J. Biomed. Photon. Eng. 2(4), 040307 (2016).
[Crossref]

Guillaud, M.

C. Schlosser, N. Bodenschatz, S. Lam, M. Lee, J. N. McAlpine, D. M. Miller, D. J. T. Van Niekerk, M. Follen, M. Guillaud, C. E. MacAulay, and P. M. Lane, “Fluorescence confocal endomicroscopy of the cervix: pilot study on the potential and limitations for clinical implementation,” J. Biomed. Opt. 21(12), 126011 (2016).
[Crossref] [PubMed]

Haj-Hosseini, N.

N. Haj-Hosseini, P. Behm, I. Shabo, and K. Wardell, “Fluorescence spectroscopy using indocyanine green for lymph node mapping,” Proc. SPIE 8935, 1–6 (2014).

Hasuike, N.

C. Katada, M. Muto, K. Momma, M. Arima, H. Tajiri, C. Kanamaru, H. Ooyanagi, H. Endo, T. Michida, N. Hasuike, I. Oda, T. Fujii, and D. Saito, “Clinical outcome after endoscopic mucosal resection for esophageal squamous cell carcinoma invading the muscularis mucosae--a multicenter retrospective cohort study,” Endoscopy 39(9), 779–783 (2007).
[Crossref] [PubMed]

Hatch, K. D.

M. D. Risi, A. R. Rouse, S. K. Chambers, K. D. Hatch, W. Zheng, and A. F. Gmitro, “Pilot clinical evaluation of a confocal microlaparoscope for ovarian cancer detection,” Int. J. Gynecol. Cancer 26(2), 248–254 (2016).
[Crossref] [PubMed]

He, Y.-h.

J. Lv, B. Xue, T. Li, Y.-h. He, X.-l. Ma, and X.-t. Yan, “Optical system design of subminiature endoscope with imaging fiber bundle,” Proc. SPIE 10153101530L (2016).

Henrique, R.

S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, and V. Tuchin, “Wavelength dependence of the refractive index of human colorectal tissues: comparison between healthy mucosa and cancer,” J. Biomed. Photon. Eng. 2(4), 040307 (2016).
[Crossref]

Hildner, K.

F. S. Fuchs, S. Zirlik, K. Hildner, J. Schubert, M. Vieth, and M. F. Neurath, “Confocal laser endomicroscopy for diagnosing lung cancer in vivo,” Eur. Respir. J. 41(6), 1401–1408 (2013).
[Crossref] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Hlavaty, T.

T. Hlavaty, M. Huorka, T. Koller, P. Zita, E. Kresanova, B. Rychly, and J. Toth, “Colorectal cancer screening in patients with ulcerative and Crohn’s colitis with use of colonoscopy, chromoendoscopy and confocal endomicroscopy,” Eur. J. Gastroenterol. Hepatol. 23(8), 680–689 (2011).
[Crossref] [PubMed]

Hoffman, A.

M. Goetz, I. Deris, M. Vieth, E. Murr, A. Hoffman, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “Near-infrared confocal imaging during mini-laparoscopy: a novel rigid endomicroscope with increased imaging plane depth,” J. Hepatol. 53(1), 84–90 (2010).
[Crossref] [PubMed]

Hoover, E. E.

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

Hopkins, M. F.

Hou, X. H.

J. F. Wang, M. Yang, L. Yang, Y. Zhang, J. Yuan, Q. Liu, X. H. Hou, and L. Fu, “A confocal endoscope for cellular imaging,” Engineering 1(3), 351–360 (2015).
[Crossref]

Huorka, M.

T. Hlavaty, M. Huorka, T. Koller, P. Zita, E. Kresanova, B. Rychly, and J. Toth, “Colorectal cancer screening in patients with ulcerative and Crohn’s colitis with use of colonoscopy, chromoendoscopy and confocal endomicroscopy,” Eur. J. Gastroenterol. Hepatol. 23(8), 680–689 (2011).
[Crossref] [PubMed]

Isayama, H.

Y. Nakai, H. Isayama, S. Shinoura, T. Iwashita, J. B. Samarasena, K. J. Chang, and K. Koike, “Confocal laser endomicroscopy in gastrointestinal and pancreatobiliary diseases,” Dig. Endosc. 26(1), 86–94 (2014).
[Crossref] [PubMed]

Iwashita, T.

Y. Nakai, H. Isayama, S. Shinoura, T. Iwashita, J. B. Samarasena, K. J. Chang, and K. Koike, “Confocal laser endomicroscopy in gastrointestinal and pancreatobiliary diseases,” Dig. Endosc. 26(1), 86–94 (2014).
[Crossref] [PubMed]

Jabbour, J. M.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Janell, D.

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Jiang, B.

T. Liu, H. Zheng, W. Gong, C. Chen, and B. Jiang, “The accuracy of confocal laser endomicroscopy, narrow band imaging, and chromoendoscopy for the detection of atrophic gastritis,” J. Clin. Gastroenterol. 49(5), 379–386 (2015).
[Crossref] [PubMed]

Kanamaru, C.

C. Katada, M. Muto, K. Momma, M. Arima, H. Tajiri, C. Kanamaru, H. Ooyanagi, H. Endo, T. Michida, N. Hasuike, I. Oda, T. Fujii, and D. Saito, “Clinical outcome after endoscopic mucosal resection for esophageal squamous cell carcinoma invading the muscularis mucosae--a multicenter retrospective cohort study,” Endoscopy 39(9), 779–783 (2007).
[Crossref] [PubMed]

Katada, C.

C. Katada, M. Muto, K. Momma, M. Arima, H. Tajiri, C. Kanamaru, H. Ooyanagi, H. Endo, T. Michida, N. Hasuike, I. Oda, T. Fujii, and D. Saito, “Clinical outcome after endoscopic mucosal resection for esophageal squamous cell carcinoma invading the muscularis mucosae--a multicenter retrospective cohort study,” Endoscopy 39(9), 779–783 (2007).
[Crossref] [PubMed]

Kiesslich, R.

M. Goetz, I. Deris, M. Vieth, E. Murr, A. Hoffman, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “Near-infrared confocal imaging during mini-laparoscopy: a novel rigid endomicroscope with increased imaging plane depth,” J. Hepatol. 53(1), 84–90 (2010).
[Crossref] [PubMed]

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Kino, G. S.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350 – 2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

Kohli, D.

T. Shah, R. Lippman, D. Kohli, P. Mutha, S. Solomon, and A. Zfass, “Accuracy of probe-based confocal laser endomicroscopy (pCLE) compared to random biopsies during endoscopic surveillance of Barrett’s esophagus,” Endosc. Int. Open 6(4), E414–E420 (2018).
[Crossref] [PubMed]

Koike, K.

Y. Nakai, H. Isayama, S. Shinoura, T. Iwashita, J. B. Samarasena, K. J. Chang, and K. Koike, “Confocal laser endomicroscopy in gastrointestinal and pancreatobiliary diseases,” Dig. Endosc. 26(1), 86–94 (2014).
[Crossref] [PubMed]

Kolesnikova, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350 – 2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

Koller, T.

T. Hlavaty, M. Huorka, T. Koller, P. Zita, E. Kresanova, B. Rychly, and J. Toth, “Colorectal cancer screening in patients with ulcerative and Crohn’s colitis with use of colonoscopy, chromoendoscopy and confocal endomicroscopy,” Eur. J. Gastroenterol. Hepatol. 23(8), 680–689 (2011).
[Crossref] [PubMed]

Komatsu, Y.

S. Yoneya, T. Saito, Y. Komatsu, I. Koyama, K. Takahashi, and J. Duvoll-Young, “Binding properties of indocyanine green in human blood,” Invest. Ophthalmol. Vis. Sci. 39(7), 1286–1290 (1998).
[PubMed]

Koutsoumpos, S.

P. Giannios, S. Koutsoumpos, K. G. Toutouzas, M. Matiatou, G. C. Zografos, and K. Moutzouris, “Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared,” J. Biophotonics 10(2), 303–310 (2017).
[Crossref] [PubMed]

Koyama, I.

S. Yoneya, T. Saito, Y. Komatsu, I. Koyama, K. Takahashi, and J. Duvoll-Young, “Binding properties of indocyanine green in human blood,” Invest. Ophthalmol. Vis. Sci. 39(7), 1286–1290 (1998).
[PubMed]

Kresanova, E.

T. Hlavaty, M. Huorka, T. Koller, P. Zita, E. Kresanova, B. Rychly, and J. Toth, “Colorectal cancer screening in patients with ulcerative and Crohn’s colitis with use of colonoscopy, chromoendoscopy and confocal endomicroscopy,” Eur. J. Gastroenterol. Hepatol. 23(8), 680–689 (2011).
[Crossref] [PubMed]

Laemmel, E.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J. F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy,” J. Vasc. Res. 41(5), 400–411 (2004).
[Crossref] [PubMed]

Lam, S.

C. Schlosser, N. Bodenschatz, S. Lam, M. Lee, J. N. McAlpine, D. M. Miller, D. J. T. Van Niekerk, M. Follen, M. Guillaud, C. E. MacAulay, and P. M. Lane, “Fluorescence confocal endomicroscopy of the cervix: pilot study on the potential and limitations for clinical implementation,” J. Biomed. Opt. 21(12), 126011 (2016).
[Crossref] [PubMed]

Lane, P. M.

C. Schlosser, N. Bodenschatz, S. Lam, M. Lee, J. N. McAlpine, D. M. Miller, D. J. T. Van Niekerk, M. Follen, M. Guillaud, C. E. MacAulay, and P. M. Lane, “Fluorescence confocal endomicroscopy of the cervix: pilot study on the potential and limitations for clinical implementation,” J. Biomed. Opt. 21(12), 126011 (2016).
[Crossref] [PubMed]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Le Gargasson, J. F.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J. F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy,” J. Vasc. Res. 41(5), 400–411 (2004).
[Crossref] [PubMed]

Le Goualher, G.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J. F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy,” J. Vasc. Res. 41(5), 400–411 (2004).
[Crossref] [PubMed]

Lee, M.

C. Schlosser, N. Bodenschatz, S. Lam, M. Lee, J. N. McAlpine, D. M. Miller, D. J. T. Van Niekerk, M. Follen, M. Guillaud, C. E. MacAulay, and P. M. Lane, “Fluorescence confocal endomicroscopy of the cervix: pilot study on the potential and limitations for clinical implementation,” J. Biomed. Opt. 21(12), 126011 (2016).
[Crossref] [PubMed]

Li, G.

G. Li, H. Li, X. Duan, Q. Zhou, J. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression in vertical and horizontal planes with dual axes confocal endomicroscope using compact distal scanner,” IEEE Trans. Med. Imaging 36(7), 1482–1490 (2017).
[Crossref] [PubMed]

Li, H.

G. Li, H. Li, X. Duan, Q. Zhou, J. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression in vertical and horizontal planes with dual axes confocal endomicroscope using compact distal scanner,” IEEE Trans. Med. Imaging 36(7), 1482–1490 (2017).
[Crossref] [PubMed]

Li, T.

J. Lv, B. Xue, T. Li, Y.-h. He, X.-l. Ma, and X.-t. Yan, “Optical system design of subminiature endoscope with imaging fiber bundle,” Proc. SPIE 10153101530L (2016).

Liang, G.

Liao, J.

D. N. Seril, J. Liao, G. Y. Yang, and C. S. Yang, “Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models,” Carcinogenesis 24(3), 353–362 (2003).
[Crossref] [PubMed]

Lippman, R.

T. Shah, R. Lippman, D. Kohli, P. Mutha, S. Solomon, and A. Zfass, “Accuracy of probe-based confocal laser endomicroscopy (pCLE) compared to random biopsies during endoscopic surveillance of Barrett’s esophagus,” Endosc. Int. Open 6(4), E414–E420 (2018).
[Crossref] [PubMed]

Liu, J. T. C.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Liu, Q.

L. Yang, J. Wang, G. Tian, J. Yuan, Q. Liu, and L. Fu, “Five-lens, easy-to-implement miniature objective for a fluorescence confocal microendoscope,” Opt. Express 24(1), 473–484 (2016).
[Crossref] [PubMed]

J. F. Wang, M. Yang, L. Yang, Y. Zhang, J. Yuan, Q. Liu, X. H. Hou, and L. Fu, “A confocal endoscope for cellular imaging,” Engineering 1(3), 351–360 (2015).
[Crossref]

Liu, T.

T. Liu, H. Zheng, W. Gong, C. Chen, and B. Jiang, “The accuracy of confocal laser endomicroscopy, narrow band imaging, and chromoendoscopy for the detection of atrophic gastritis,” J. Clin. Gastroenterol. 49(5), 379–386 (2015).
[Crossref] [PubMed]

Loewke, K.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Lv, J.

J. Lv, B. Xue, T. Li, Y.-h. He, X.-l. Ma, and X.-t. Yan, “Optical system design of subminiature endoscope with imaging fiber bundle,” Proc. SPIE 10153101530L (2016).

Ma, X.-l.

J. Lv, B. Xue, T. Li, Y.-h. He, X.-l. Ma, and X.-t. Yan, “Optical system design of subminiature endoscope with imaging fiber bundle,” Proc. SPIE 10153101530L (2016).

MacAulay, C. E.

C. Schlosser, N. Bodenschatz, S. Lam, M. Lee, J. N. McAlpine, D. M. Miller, D. J. T. Van Niekerk, M. Follen, M. Guillaud, C. E. MacAulay, and P. M. Lane, “Fluorescence confocal endomicroscopy of the cervix: pilot study on the potential and limitations for clinical implementation,” J. Biomed. Opt. 21(12), 126011 (2016).
[Crossref] [PubMed]

Maeda, T.

T. Maeda, N. Arakawa, M. Takahashi, and Y. Aizu, “Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model,” Opt. Rev. 17(3), 223–229 (2010).
[Crossref]

Maitland, K. C.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Makhlouf, H.

Mandella, M. J.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Manner, H.

O. Pech, T. Rabenstein, H. Manner, M. C. Petrone, J. Pohl, M. Vieth, M. Stolte, and C. Ell, “Confocal laser endomicroscopy for in vivo diagnosis of early squamous cell carcinoma in the esophagus,” Clin. Gastroenterol. Hepatol. 6(1), 89–94 (2008).
[Crossref] [PubMed]

Matiatou, M.

P. Giannios, S. Koutsoumpos, K. G. Toutouzas, M. Matiatou, G. C. Zografos, and K. Moutzouris, “Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared,” J. Biophotonics 10(2), 303–310 (2017).
[Crossref] [PubMed]

McAlpine, J. N.

C. Schlosser, N. Bodenschatz, S. Lam, M. Lee, J. N. McAlpine, D. M. Miller, D. J. T. Van Niekerk, M. Follen, M. Guillaud, C. E. MacAulay, and P. M. Lane, “Fluorescence confocal endomicroscopy of the cervix: pilot study on the potential and limitations for clinical implementation,” J. Biomed. Opt. 21(12), 126011 (2016).
[Crossref] [PubMed]

McLaren, W.

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

McLaren, W. J.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

Meuwissen, S. G. M.

L. A. Dieleman, M. J. Palmen, H. Akol, E. Bloemena, A. S. Peña, S. G. M. Meuwissen, and E. P. Van Rees, “Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines,” Clin. Exp. Immunol. 114(3), 385–391 (1998).
[Crossref] [PubMed]

Michida, T.

C. Katada, M. Muto, K. Momma, M. Arima, H. Tajiri, C. Kanamaru, H. Ooyanagi, H. Endo, T. Michida, N. Hasuike, I. Oda, T. Fujii, and D. Saito, “Clinical outcome after endoscopic mucosal resection for esophageal squamous cell carcinoma invading the muscularis mucosae--a multicenter retrospective cohort study,” Endoscopy 39(9), 779–783 (2007).
[Crossref] [PubMed]

Miller, D. M.

C. Schlosser, N. Bodenschatz, S. Lam, M. Lee, J. N. McAlpine, D. M. Miller, D. J. T. Van Niekerk, M. Follen, M. Guillaud, C. E. MacAulay, and P. M. Lane, “Fluorescence confocal endomicroscopy of the cervix: pilot study on the potential and limitations for clinical implementation,” J. Biomed. Opt. 21(12), 126011 (2016).
[Crossref] [PubMed]

Miwa, M.

M. Miwa and T. Shikayama, “ICG fluorescence imaging and its medical applications,” Proc. SPIE 7160, 373–378 (2008).
[Crossref]

Momma, K.

C. Katada, M. Muto, K. Momma, M. Arima, H. Tajiri, C. Kanamaru, H. Ooyanagi, H. Endo, T. Michida, N. Hasuike, I. Oda, T. Fujii, and D. Saito, “Clinical outcome after endoscopic mucosal resection for esophageal squamous cell carcinoma invading the muscularis mucosae--a multicenter retrospective cohort study,” Endoscopy 39(9), 779–783 (2007).
[Crossref] [PubMed]

Moutzouris, K.

P. Giannios, S. Koutsoumpos, K. G. Toutouzas, M. Matiatou, G. C. Zografos, and K. Moutzouris, “Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared,” J. Biophotonics 10(2), 303–310 (2017).
[Crossref] [PubMed]

Murr, E.

M. Goetz, I. Deris, M. Vieth, E. Murr, A. Hoffman, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “Near-infrared confocal imaging during mini-laparoscopy: a novel rigid endomicroscope with increased imaging plane depth,” J. Hepatol. 53(1), 84–90 (2010).
[Crossref] [PubMed]

Mutha, P.

T. Shah, R. Lippman, D. Kohli, P. Mutha, S. Solomon, and A. Zfass, “Accuracy of probe-based confocal laser endomicroscopy (pCLE) compared to random biopsies during endoscopic surveillance of Barrett’s esophagus,” Endosc. Int. Open 6(4), E414–E420 (2018).
[Crossref] [PubMed]

Muto, M.

C. Katada, M. Muto, K. Momma, M. Arima, H. Tajiri, C. Kanamaru, H. Ooyanagi, H. Endo, T. Michida, N. Hasuike, I. Oda, T. Fujii, and D. Saito, “Clinical outcome after endoscopic mucosal resection for esophageal squamous cell carcinoma invading the muscularis mucosae--a multicenter retrospective cohort study,” Endoscopy 39(9), 779–783 (2007).
[Crossref] [PubMed]

Nafe, B.

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Nakai, Y.

Y. Nakai, H. Isayama, S. Shinoura, T. Iwashita, J. B. Samarasena, K. J. Chang, and K. Koike, “Confocal laser endomicroscopy in gastrointestinal and pancreatobiliary diseases,” Dig. Endosc. 26(1), 86–94 (2014).
[Crossref] [PubMed]

Neurath, M. F.

F. S. Fuchs, S. Zirlik, K. Hildner, J. Schubert, M. Vieth, and M. F. Neurath, “Confocal laser endomicroscopy for diagnosing lung cancer in vivo,” Eur. Respir. J. 41(6), 1401–1408 (2013).
[Crossref] [PubMed]

M. Goetz, I. Deris, M. Vieth, E. Murr, A. Hoffman, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “Near-infrared confocal imaging during mini-laparoscopy: a novel rigid endomicroscope with increased imaging plane depth,” J. Hepatol. 53(1), 84–90 (2010).
[Crossref] [PubMed]

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Nogueira, E.

S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, and V. Tuchin, “Wavelength dependence of the refractive index of human colorectal tissues: comparison between healthy mucosa and cancer,” J. Biomed. Photon. Eng. 2(4), 040307 (2016).
[Crossref]

Oda, I.

C. Katada, M. Muto, K. Momma, M. Arima, H. Tajiri, C. Kanamaru, H. Ooyanagi, H. Endo, T. Michida, N. Hasuike, I. Oda, T. Fujii, and D. Saito, “Clinical outcome after endoscopic mucosal resection for esophageal squamous cell carcinoma invading the muscularis mucosae--a multicenter retrospective cohort study,” Endoscopy 39(9), 779–783 (2007).
[Crossref] [PubMed]

Oldham, K. R.

G. Li, H. Li, X. Duan, Q. Zhou, J. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression in vertical and horizontal planes with dual axes confocal endomicroscope using compact distal scanner,” IEEE Trans. Med. Imaging 36(7), 1482–1490 (2017).
[Crossref] [PubMed]

Oliveira, L.

S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, and V. Tuchin, “Wavelength dependence of the refractive index of human colorectal tissues: comparison between healthy mucosa and cancer,” J. Biomed. Photon. Eng. 2(4), 040307 (2016).
[Crossref]

Ooyanagi, H.

C. Katada, M. Muto, K. Momma, M. Arima, H. Tajiri, C. Kanamaru, H. Ooyanagi, H. Endo, T. Michida, N. Hasuike, I. Oda, T. Fujii, and D. Saito, “Clinical outcome after endoscopic mucosal resection for esophageal squamous cell carcinoma invading the muscularis mucosae--a multicenter retrospective cohort study,” Endoscopy 39(9), 779–783 (2007).
[Crossref] [PubMed]

Palmen, M. J.

L. A. Dieleman, M. J. Palmen, H. Akol, E. Bloemena, A. S. Peña, S. G. M. Meuwissen, and E. P. Van Rees, “Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines,” Clin. Exp. Immunol. 114(3), 385–391 (1998).
[Crossref] [PubMed]

Pech, O.

O. Pech, T. Rabenstein, H. Manner, M. C. Petrone, J. Pohl, M. Vieth, M. Stolte, and C. Ell, “Confocal laser endomicroscopy for in vivo diagnosis of early squamous cell carcinoma in the esophagus,” Clin. Gastroenterol. Hepatol. 6(1), 89–94 (2008).
[Crossref] [PubMed]

Peña, A. S.

L. A. Dieleman, M. J. Palmen, H. Akol, E. Bloemena, A. S. Peña, S. G. M. Meuwissen, and E. P. Van Rees, “Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines,” Clin. Exp. Immunol. 114(3), 385–391 (1998).
[Crossref] [PubMed]

Perchant, A.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J. F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy,” J. Vasc. Res. 41(5), 400–411 (2004).
[Crossref] [PubMed]

Petrone, M. C.

O. Pech, T. Rabenstein, H. Manner, M. C. Petrone, J. Pohl, M. Vieth, M. Stolte, and C. Ell, “Confocal laser endomicroscopy for in vivo diagnosis of early squamous cell carcinoma in the esophagus,” Clin. Gastroenterol. Hepatol. 6(1), 89–94 (2008).
[Crossref] [PubMed]

Pierangelo, A.

A. Pierangelo, D. Fuks, P. Validire, A. Benali, and B. Gayet, “Diagnostic accuracy of confocal laser endomicroscopy for the characterization of liver nodules,” Eur. J. Gastroenterol. Hepatol. 29(1), 42–47 (2017).
[Crossref] [PubMed]

Piyawattanametha, W.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Pohl, J.

O. Pech, T. Rabenstein, H. Manner, M. C. Petrone, J. Pohl, M. Vieth, M. Stolte, and C. Ell, “Confocal laser endomicroscopy for in vivo diagnosis of early squamous cell carcinoma in the esophagus,” Clin. Gastroenterol. Hepatol. 6(1), 89–94 (2008).
[Crossref] [PubMed]

Polglase, A.

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Polglase, A. L.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

Prahl, S. A.

Qiu, Z.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Ra, H.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Rabenstein, T.

O. Pech, T. Rabenstein, H. Manner, M. C. Petrone, J. Pohl, M. Vieth, M. Stolte, and C. Ell, “Confocal laser endomicroscopy for in vivo diagnosis of early squamous cell carcinoma in the esophagus,” Clin. Gastroenterol. Hepatol. 6(1), 89–94 (2008).
[Crossref] [PubMed]

Risi, M. D.

M. D. Risi, A. R. Rouse, S. K. Chambers, K. D. Hatch, W. Zheng, and A. F. Gmitro, “Pilot clinical evaluation of a confocal microlaparoscope for ovarian cancer detection,” Int. J. Gynecol. Cancer 26(2), 248–254 (2016).
[Crossref] [PubMed]

Rodríguez-Contreras, A.

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9(1-2), 38–43 (2016).
[Crossref] [PubMed]

Rouse, A. R.

Rubtsov, V. S.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350 – 2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

Rychly, B.

T. Hlavaty, M. Huorka, T. Koller, P. Zita, E. Kresanova, B. Rychly, and J. Toth, “Colorectal cancer screening in patients with ulcerative and Crohn’s colitis with use of colonoscopy, chromoendoscopy and confocal endomicroscopy,” Eur. J. Gastroenterol. Hepatol. 23(8), 680–689 (2011).
[Crossref] [PubMed]

Sabharwal, Y. S.

Saito, D.

C. Katada, M. Muto, K. Momma, M. Arima, H. Tajiri, C. Kanamaru, H. Ooyanagi, H. Endo, T. Michida, N. Hasuike, I. Oda, T. Fujii, and D. Saito, “Clinical outcome after endoscopic mucosal resection for esophageal squamous cell carcinoma invading the muscularis mucosae--a multicenter retrospective cohort study,” Endoscopy 39(9), 779–783 (2007).
[Crossref] [PubMed]

Saito, T.

S. Yoneya, T. Saito, Y. Komatsu, I. Koyama, K. Takahashi, and J. Duvoll-Young, “Binding properties of indocyanine green in human blood,” Invest. Ophthalmol. Vis. Sci. 39(7), 1286–1290 (1998).
[PubMed]

Saldua, M. A.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Samarasena, J. B.

Y. Nakai, H. Isayama, S. Shinoura, T. Iwashita, J. B. Samarasena, K. J. Chang, and K. Koike, “Confocal laser endomicroscopy in gastrointestinal and pancreatobiliary diseases,” Dig. Endosc. 26(1), 86–94 (2014).
[Crossref] [PubMed]

Schlosser, C.

C. Schlosser, N. Bodenschatz, S. Lam, M. Lee, J. N. McAlpine, D. M. Miller, D. J. T. Van Niekerk, M. Follen, M. Guillaud, C. E. MacAulay, and P. M. Lane, “Fluorescence confocal endomicroscopy of the cervix: pilot study on the potential and limitations for clinical implementation,” J. Biomed. Opt. 21(12), 126011 (2016).
[Crossref] [PubMed]

Schubert, J.

F. S. Fuchs, S. Zirlik, K. Hildner, J. Schubert, M. Vieth, and M. F. Neurath, “Confocal laser endomicroscopy for diagnosing lung cancer in vivo,” Eur. Respir. J. 41(6), 1401–1408 (2013).
[Crossref] [PubMed]

Seker, K.

K. Seker and M. Engin, “Deep tissue near-infrared imaging for vascular network analysis,” J. Innov. Opt. Health Sci. 10(3), 1650051 (2017).
[Crossref]

Seril, D. N.

D. N. Seril, J. Liao, G. Y. Yang, and C. S. Yang, “Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models,” Carcinogenesis 24(3), 353–362 (2003).
[Crossref] [PubMed]

Shabo, I.

N. Haj-Hosseini, P. Behm, I. Shabo, and K. Wardell, “Fluorescence spectroscopy using indocyanine green for lymph node mapping,” Proc. SPIE 8935, 1–6 (2014).

Shah, T.

T. Shah, R. Lippman, D. Kohli, P. Mutha, S. Solomon, and A. Zfass, “Accuracy of probe-based confocal laser endomicroscopy (pCLE) compared to random biopsies during endoscopic surveillance of Barrett’s esophagus,” Endosc. Int. Open 6(4), E414–E420 (2018).
[Crossref] [PubMed]

Shi, L.

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9(1-2), 38–43 (2016).
[Crossref] [PubMed]

Shikayama, T.

M. Miwa and T. Shikayama, “ICG fluorescence imaging and its medical applications,” Proc. SPIE 7160, 373–378 (2008).
[Crossref]

Shinoura, S.

Y. Nakai, H. Isayama, S. Shinoura, T. Iwashita, J. B. Samarasena, K. J. Chang, and K. Koike, “Confocal laser endomicroscopy in gastrointestinal and pancreatobiliary diseases,” Dig. Endosc. 26(1), 86–94 (2014).
[Crossref] [PubMed]

Skinner, S. A.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

Solgaard, O.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Solomon, S.

T. Shah, R. Lippman, D. Kohli, P. Mutha, S. Solomon, and A. Zfass, “Accuracy of probe-based confocal laser endomicroscopy (pCLE) compared to random biopsies during endoscopic surveillance of Barrett’s esophagus,” Endosc. Int. Open 6(4), E414–E420 (2018).
[Crossref] [PubMed]

Sordillo, L. A.

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9(1-2), 38–43 (2016).
[Crossref] [PubMed]

Squier, J. A.

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

Stolte, M.

O. Pech, T. Rabenstein, H. Manner, M. C. Petrone, J. Pohl, M. Vieth, M. Stolte, and C. Ell, “Confocal laser endomicroscopy for in vivo diagnosis of early squamous cell carcinoma in the esophagus,” Clin. Gastroenterol. Hepatol. 6(1), 89–94 (2008).
[Crossref] [PubMed]

Tajiri, H.

C. Katada, M. Muto, K. Momma, M. Arima, H. Tajiri, C. Kanamaru, H. Ooyanagi, H. Endo, T. Michida, N. Hasuike, I. Oda, T. Fujii, and D. Saito, “Clinical outcome after endoscopic mucosal resection for esophageal squamous cell carcinoma invading the muscularis mucosae--a multicenter retrospective cohort study,” Endoscopy 39(9), 779–783 (2007).
[Crossref] [PubMed]

Takahashi, K.

S. Yoneya, T. Saito, Y. Komatsu, I. Koyama, K. Takahashi, and J. Duvoll-Young, “Binding properties of indocyanine green in human blood,” Invest. Ophthalmol. Vis. Sci. 39(7), 1286–1290 (1998).
[PubMed]

Takahashi, M.

T. Maeda, N. Arakawa, M. Takahashi, and Y. Aizu, “Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model,” Opt. Rev. 17(3), 223–229 (2010).
[Crossref]

Theodossiou, T. A.

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections,” Biophys. J. 91(12), 4665–4677 (2006).
[Crossref] [PubMed]

Thomas, S.

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Thrasivoulou, C.

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections,” Biophys. J. 91(12), 4665–4677 (2006).
[Crossref] [PubMed]

Tian, G.

Toth, J.

T. Hlavaty, M. Huorka, T. Koller, P. Zita, E. Kresanova, B. Rychly, and J. Toth, “Colorectal cancer screening in patients with ulcerative and Crohn’s colitis with use of colonoscopy, chromoendoscopy and confocal endomicroscopy,” Eur. J. Gastroenterol. Hepatol. 23(8), 680–689 (2011).
[Crossref] [PubMed]

Toutouzas, K. G.

P. Giannios, S. Koutsoumpos, K. G. Toutouzas, M. Matiatou, G. C. Zografos, and K. Moutzouris, “Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared,” J. Biophotonics 10(2), 303–310 (2017).
[Crossref] [PubMed]

Trier, J. S.

J. S. Trier and T. H. Browning, “Morphologic response of the mucosa of human small intestine to x-ray exposure,” J. Clin. Invest. 45(2), 194–204 (1966).
[Crossref] [PubMed]

Tuchin, V.

S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, and V. Tuchin, “Wavelength dependence of the refractive index of human colorectal tissues: comparison between healthy mucosa and cancer,” J. Biomed. Photon. Eng. 2(4), 040307 (2016).
[Crossref]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350 – 2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

Validire, P.

A. Pierangelo, D. Fuks, P. Validire, A. Benali, and B. Gayet, “Diagnostic accuracy of confocal laser endomicroscopy for the characterization of liver nodules,” Eur. J. Gastroenterol. Hepatol. 29(1), 42–47 (2017).
[Crossref] [PubMed]

van Gemert, M. J. C.

Van Niekerk, D. J. T.

C. Schlosser, N. Bodenschatz, S. Lam, M. Lee, J. N. McAlpine, D. M. Miller, D. J. T. Van Niekerk, M. Follen, M. Guillaud, C. E. MacAulay, and P. M. Lane, “Fluorescence confocal endomicroscopy of the cervix: pilot study on the potential and limitations for clinical implementation,” J. Biomed. Opt. 21(12), 126011 (2016).
[Crossref] [PubMed]

Van Rees, E. P.

L. A. Dieleman, M. J. Palmen, H. Akol, E. Bloemena, A. S. Peña, S. G. M. Meuwissen, and E. P. Van Rees, “Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines,” Clin. Exp. Immunol. 114(3), 385–391 (1998).
[Crossref] [PubMed]

Vicaut, E.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J. F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy,” J. Vasc. Res. 41(5), 400–411 (2004).
[Crossref] [PubMed]

Vieth, M.

F. S. Fuchs, S. Zirlik, K. Hildner, J. Schubert, M. Vieth, and M. F. Neurath, “Confocal laser endomicroscopy for diagnosing lung cancer in vivo,” Eur. Respir. J. 41(6), 1401–1408 (2013).
[Crossref] [PubMed]

M. Goetz, I. Deris, M. Vieth, E. Murr, A. Hoffman, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “Near-infrared confocal imaging during mini-laparoscopy: a novel rigid endomicroscope with increased imaging plane depth,” J. Hepatol. 53(1), 84–90 (2010).
[Crossref] [PubMed]

O. Pech, T. Rabenstein, H. Manner, M. C. Petrone, J. Pohl, M. Vieth, M. Stolte, and C. Ell, “Confocal laser endomicroscopy for in vivo diagnosis of early squamous cell carcinoma in the esophagus,” Clin. Gastroenterol. Hepatol. 6(1), 89–94 (2008).
[Crossref] [PubMed]

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Wang, J.

Wang, J. F.

J. F. Wang, M. Yang, L. Yang, Y. Zhang, J. Yuan, Q. Liu, X. H. Hou, and L. Fu, “A confocal endoscope for cellular imaging,” Engineering 1(3), 351–360 (2015).
[Crossref]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Wang, L. V.

Wang, T. D.

G. Li, H. Li, X. Duan, Q. Zhou, J. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression in vertical and horizontal planes with dual axes confocal endomicroscope using compact distal scanner,” IEEE Trans. Med. Imaging 36(7), 1482–1490 (2017).
[Crossref] [PubMed]

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Wardell, K.

N. Haj-Hosseini, P. Behm, I. Shabo, and K. Wardell, “Fluorescence spectroscopy using indocyanine green for lymph node mapping,” Proc. SPIE 8935, 1–6 (2014).

Welch, A. J.

Xue, B.

J. Lv, B. Xue, T. Li, Y.-h. He, X.-l. Ma, and X.-t. Yan, “Optical system design of subminiature endoscope with imaging fiber bundle,” Proc. SPIE 10153101530L (2016).

Yan, X.-t.

J. Lv, B. Xue, T. Li, Y.-h. He, X.-l. Ma, and X.-t. Yan, “Optical system design of subminiature endoscope with imaging fiber bundle,” Proc. SPIE 10153101530L (2016).

Yang, C. S.

D. N. Seril, J. Liao, G. Y. Yang, and C. S. Yang, “Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models,” Carcinogenesis 24(3), 353–362 (2003).
[Crossref] [PubMed]

Yang, G. Y.

D. N. Seril, J. Liao, G. Y. Yang, and C. S. Yang, “Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models,” Carcinogenesis 24(3), 353–362 (2003).
[Crossref] [PubMed]

Yang, L.

L. Yang, J. Wang, G. Tian, J. Yuan, Q. Liu, and L. Fu, “Five-lens, easy-to-implement miniature objective for a fluorescence confocal microendoscope,” Opt. Express 24(1), 473–484 (2016).
[Crossref] [PubMed]

J. F. Wang, M. Yang, L. Yang, Y. Zhang, J. Yuan, Q. Liu, X. H. Hou, and L. Fu, “A confocal endoscope for cellular imaging,” Engineering 1(3), 351–360 (2015).
[Crossref]

Yang, M.

J. F. Wang, M. Yang, L. Yang, Y. Zhang, J. Yuan, Q. Liu, X. H. Hou, and L. Fu, “A confocal endoscope for cellular imaging,” Engineering 1(3), 351–360 (2015).
[Crossref]

Yoneya, S.

S. Yoneya, T. Saito, Y. Komatsu, I. Koyama, K. Takahashi, and J. Duvoll-Young, “Binding properties of indocyanine green in human blood,” Invest. Ophthalmol. Vis. Sci. 39(7), 1286–1290 (1998).
[PubMed]

Yuan, J.

Zfass, A.

T. Shah, R. Lippman, D. Kohli, P. Mutha, S. Solomon, and A. Zfass, “Accuracy of probe-based confocal laser endomicroscopy (pCLE) compared to random biopsies during endoscopic surveillance of Barrett’s esophagus,” Endosc. Int. Open 6(4), E414–E420 (2018).
[Crossref] [PubMed]

Zhang, H.

Zhang, Y.

J. F. Wang, M. Yang, L. Yang, Y. Zhang, J. Yuan, Q. Liu, X. H. Hou, and L. Fu, “A confocal endoscope for cellular imaging,” Engineering 1(3), 351–360 (2015).
[Crossref]

Zheng, H.

T. Liu, H. Zheng, W. Gong, C. Chen, and B. Jiang, “The accuracy of confocal laser endomicroscopy, narrow band imaging, and chromoendoscopy for the detection of atrophic gastritis,” J. Clin. Gastroenterol. 49(5), 379–386 (2015).
[Crossref] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Zheng, W.

M. D. Risi, A. R. Rouse, S. K. Chambers, K. D. Hatch, W. Zheng, and A. F. Gmitro, “Pilot clinical evaluation of a confocal microlaparoscope for ovarian cancer detection,” Int. J. Gynecol. Cancer 26(2), 248–254 (2016).
[Crossref] [PubMed]

Zhou, J.

G. Li, H. Li, X. Duan, Q. Zhou, J. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression in vertical and horizontal planes with dual axes confocal endomicroscope using compact distal scanner,” IEEE Trans. Med. Imaging 36(7), 1482–1490 (2017).
[Crossref] [PubMed]

Zhou, Q.

G. Li, H. Li, X. Duan, Q. Zhou, J. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression in vertical and horizontal planes with dual axes confocal endomicroscope using compact distal scanner,” IEEE Trans. Med. Imaging 36(7), 1482–1490 (2017).
[Crossref] [PubMed]

Zirlik, S.

F. S. Fuchs, S. Zirlik, K. Hildner, J. Schubert, M. Vieth, and M. F. Neurath, “Confocal laser endomicroscopy for diagnosing lung cancer in vivo,” Eur. Respir. J. 41(6), 1401–1408 (2013).
[Crossref] [PubMed]

Zita, P.

T. Hlavaty, M. Huorka, T. Koller, P. Zita, E. Kresanova, B. Rychly, and J. Toth, “Colorectal cancer screening in patients with ulcerative and Crohn’s colitis with use of colonoscopy, chromoendoscopy and confocal endomicroscopy,” Eur. J. Gastroenterol. Hepatol. 23(8), 680–689 (2011).
[Crossref] [PubMed]

Zografos, G. C.

P. Giannios, S. Koutsoumpos, K. G. Toutouzas, M. Matiatou, G. C. Zografos, and K. Moutzouris, “Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared,” J. Biophotonics 10(2), 303–310 (2017).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Appl. Opt. (3)

Biomed. Opt. Express (1)

Biophys. J. (1)

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections,” Biophys. J. 91(12), 4665–4677 (2006).
[Crossref] [PubMed]

Carcinogenesis (1)

D. N. Seril, J. Liao, G. Y. Yang, and C. S. Yang, “Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models,” Carcinogenesis 24(3), 353–362 (2003).
[Crossref] [PubMed]

Clin. Exp. Immunol. (1)

L. A. Dieleman, M. J. Palmen, H. Akol, E. Bloemena, A. S. Peña, S. G. M. Meuwissen, and E. P. Van Rees, “Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines,” Clin. Exp. Immunol. 114(3), 385–391 (1998).
[Crossref] [PubMed]

Clin. Gastroenterol. Hepatol. (1)

O. Pech, T. Rabenstein, H. Manner, M. C. Petrone, J. Pohl, M. Vieth, M. Stolte, and C. Ell, “Confocal laser endomicroscopy for in vivo diagnosis of early squamous cell carcinoma in the esophagus,” Clin. Gastroenterol. Hepatol. 6(1), 89–94 (2008).
[Crossref] [PubMed]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Curr. Opin. Chem. Biol. (1)

J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7(5), 626–634 (2003).
[Crossref] [PubMed]

Dig. Endosc. (1)

Y. Nakai, H. Isayama, S. Shinoura, T. Iwashita, J. B. Samarasena, K. J. Chang, and K. Koike, “Confocal laser endomicroscopy in gastrointestinal and pancreatobiliary diseases,” Dig. Endosc. 26(1), 86–94 (2014).
[Crossref] [PubMed]

Endosc. Int. Open (1)

T. Shah, R. Lippman, D. Kohli, P. Mutha, S. Solomon, and A. Zfass, “Accuracy of probe-based confocal laser endomicroscopy (pCLE) compared to random biopsies during endoscopic surveillance of Barrett’s esophagus,” Endosc. Int. Open 6(4), E414–E420 (2018).
[Crossref] [PubMed]

Endoscopy (1)

C. Katada, M. Muto, K. Momma, M. Arima, H. Tajiri, C. Kanamaru, H. Ooyanagi, H. Endo, T. Michida, N. Hasuike, I. Oda, T. Fujii, and D. Saito, “Clinical outcome after endoscopic mucosal resection for esophageal squamous cell carcinoma invading the muscularis mucosae--a multicenter retrospective cohort study,” Endoscopy 39(9), 779–783 (2007).
[Crossref] [PubMed]

Engineering (1)

J. F. Wang, M. Yang, L. Yang, Y. Zhang, J. Yuan, Q. Liu, X. H. Hou, and L. Fu, “A confocal endoscope for cellular imaging,” Engineering 1(3), 351–360 (2015).
[Crossref]

Eur. J. Gastroenterol. Hepatol. (2)

A. Pierangelo, D. Fuks, P. Validire, A. Benali, and B. Gayet, “Diagnostic accuracy of confocal laser endomicroscopy for the characterization of liver nodules,” Eur. J. Gastroenterol. Hepatol. 29(1), 42–47 (2017).
[Crossref] [PubMed]

T. Hlavaty, M. Huorka, T. Koller, P. Zita, E. Kresanova, B. Rychly, and J. Toth, “Colorectal cancer screening in patients with ulcerative and Crohn’s colitis with use of colonoscopy, chromoendoscopy and confocal endomicroscopy,” Eur. J. Gastroenterol. Hepatol. 23(8), 680–689 (2011).
[Crossref] [PubMed]

Eur. Respir. J. (1)

F. S. Fuchs, S. Zirlik, K. Hildner, J. Schubert, M. Vieth, and M. F. Neurath, “Confocal laser endomicroscopy for diagnosing lung cancer in vivo,” Eur. Respir. J. 41(6), 1401–1408 (2013).
[Crossref] [PubMed]

Gastroenterology (1)

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Gastrointest. Endosc. (1)

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

G. Li, H. Li, X. Duan, Q. Zhou, J. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression in vertical and horizontal planes with dual axes confocal endomicroscope using compact distal scanner,” IEEE Trans. Med. Imaging 36(7), 1482–1490 (2017).
[Crossref] [PubMed]

Int. J. Gynecol. Cancer (1)

M. D. Risi, A. R. Rouse, S. K. Chambers, K. D. Hatch, W. Zheng, and A. F. Gmitro, “Pilot clinical evaluation of a confocal microlaparoscope for ovarian cancer detection,” Int. J. Gynecol. Cancer 26(2), 248–254 (2016).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

S. Yoneya, T. Saito, Y. Komatsu, I. Koyama, K. Takahashi, and J. Duvoll-Young, “Binding properties of indocyanine green in human blood,” Invest. Ophthalmol. Vis. Sci. 39(7), 1286–1290 (1998).
[PubMed]

J. Biomed. Opt. (2)

C. Schlosser, N. Bodenschatz, S. Lam, M. Lee, J. N. McAlpine, D. M. Miller, D. J. T. Van Niekerk, M. Follen, M. Guillaud, C. E. MacAulay, and P. M. Lane, “Fluorescence confocal endomicroscopy of the cervix: pilot study on the potential and limitations for clinical implementation,” J. Biomed. Opt. 21(12), 126011 (2016).
[Crossref] [PubMed]

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

J. Biomed. Photon. Eng. (1)

S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, and V. Tuchin, “Wavelength dependence of the refractive index of human colorectal tissues: comparison between healthy mucosa and cancer,” J. Biomed. Photon. Eng. 2(4), 040307 (2016).
[Crossref]

J. Biophotonics (2)

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9(1-2), 38–43 (2016).
[Crossref] [PubMed]

P. Giannios, S. Koutsoumpos, K. G. Toutouzas, M. Matiatou, G. C. Zografos, and K. Moutzouris, “Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared,” J. Biophotonics 10(2), 303–310 (2017).
[Crossref] [PubMed]

J. Clin. Gastroenterol. (1)

T. Liu, H. Zheng, W. Gong, C. Chen, and B. Jiang, “The accuracy of confocal laser endomicroscopy, narrow band imaging, and chromoendoscopy for the detection of atrophic gastritis,” J. Clin. Gastroenterol. 49(5), 379–386 (2015).
[Crossref] [PubMed]

J. Clin. Invest. (1)

J. S. Trier and T. H. Browning, “Morphologic response of the mucosa of human small intestine to x-ray exposure,” J. Clin. Invest. 45(2), 194–204 (1966).
[Crossref] [PubMed]

J. Hepatol. (1)

M. Goetz, I. Deris, M. Vieth, E. Murr, A. Hoffman, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “Near-infrared confocal imaging during mini-laparoscopy: a novel rigid endomicroscope with increased imaging plane depth,” J. Hepatol. 53(1), 84–90 (2010).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (1)

K. Seker and M. Engin, “Deep tissue near-infrared imaging for vascular network analysis,” J. Innov. Opt. Health Sci. 10(3), 1650051 (2017).
[Crossref]

J. Opt. Soc. Am. (1)

J. Vasc. Res. (1)

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J. F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy,” J. Vasc. Res. 41(5), 400–411 (2004).
[Crossref] [PubMed]

Nat. Photonics (1)

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Rev. (1)

T. Maeda, N. Arakawa, M. Takahashi, and Y. Aizu, “Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model,” Opt. Rev. 17(3), 223–229 (2010).
[Crossref]

Proc. SPIE (3)

M. Miwa and T. Shikayama, “ICG fluorescence imaging and its medical applications,” Proc. SPIE 7160, 373–378 (2008).
[Crossref]

N. Haj-Hosseini, P. Behm, I. Shabo, and K. Wardell, “Fluorescence spectroscopy using indocyanine green for lymph node mapping,” Proc. SPIE 8935, 1–6 (2014).

J. Lv, B. Xue, T. Li, Y.-h. He, X.-l. Ma, and X.-t. Yan, “Optical system design of subminiature endoscope with imaging fiber bundle,” Proc. SPIE 10153101530L (2016).

Quantum Electron. (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350 – 2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Other (2)

L. Wang and S. L. Jacques, “Monte Carlo Modeling of light transport in multi-layered tissues in standard C,” University of Texas M. D. Anderson Cancer Center (1992).

J. B. Pawley, in Handbook of Biological Confocal Microscopy (Springer, 2008), Chap. 10.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Distributions of the absorption density of illumination light at (a) 488 nm, (b) 785 nm, and (c) 1064 nm in mouse colon.
Fig. 2
Fig. 2 Schematic diagram of the near-infrared miniature objective.
Fig. 3
Fig. 3 Spot diagrams of four radial image positions: 0.000 mm, 0.180 mm, 0.250 mm, and 0.360 mm. Airy disk radius is 1.930 μm.
Fig. 4
Fig. 4 Polychromatic diffraction MTFs of the near-infrared miniature objective. DIFF LIMIT: diffraction limit, T: tangential plane, S: sagittal plane.
Fig. 5
Fig. 5 Near-infrared miniature objective and its resolution measurement. (a) Near-infrared miniature objective and one of the lenses in it. (b) Resolution measurement of near-infrared miniature objective.
Fig. 6
Fig. 6 Optical fiber probe and imaging of mouse in vivo. (a) Probe goes through the biopsy channel in conventional endoscope. (b) End face of probe in conventional endoscope. (c) Optical fiber probe with a near-infrared miniature objective. (d) Optical fiber probe is compatible with conventional endoscope. (e) Photograph of optical fiber probe placed into the stomach of a mouse.
Fig. 7
Fig. 7 Lateral resolution and FOV measurement. (a) Image of the USAF target. (b) Enlarged details of the red rectangle in (a). (c) Image of the grating.
Fig. 8
Fig. 8 Image contrast measurement of colon by visible pCM and near-infrared pCM. (a,b) Images of colon by visible pCM and near-infrared pCM. (c) Normalized intensity values along the lines in (a) and (b). (d, e) Histograms of gray values in the rectangles of (a) and (b). Scale bars: 50 μm.
Fig. 9
Fig. 9 Images of various tissues by visible pCM and near-infrared pCM. (a-c) and (d-f) show the images obtained by 488 nm excitation and 785 nm excitation, respectively. (a) and (d) are images of the esophagus. White arrows show the squamous epithelium. (b) and (e) are images of the stomach. Red arrows indicate superficial epithelial cells and blue arrows indicate gastric pits. (c) and (f) show images of the liver. Red arrows indicate the sinusoidal architecture of the liver and yellow arrow indicates the nucleus of the hepatocyte. (g-i) Corresponding histologic specimens. Scale bars: 50 μm.
Fig. 10
Fig. 10 Deep tissue images of mouse esophagus by visible pCM and near-infrared pCM. (a-d) Images were obtained by 488 nm excitation. (e-j) Images were obtained by 785 nm excitation. (k) H&E staining. Red arrows: cells in stratum spinosum layer, yellow arrows: blood vessels. Scale bars: 50 μm.
Fig. 11
Fig. 11 Different depth images of tissues of normal colon and colon with ulcerative colitis. (a-f) Different depth images of ulcerative colitis. (g-l) Different depths images of normal tissues of colon. (a) and (g) Columnar epithelial cells (black arrows) and crypts can be seen on the surface of both tissues. (c) Ulcerative colitis shows ICG leakage (green arrow) between crypts. (d) Ulcerative colitis shows irregular crypts with ICG leakage. (e) Blood vessel (yellow arrow) can be seen without crypt structures. (f) Fibers with strong fluorescence in layer of muscularis mucosae can be seen in ulcerative colitis (white arrow and blue arrow). (g-l) Signal intensity falls and there is hardly a change in the structure with increasing imaging penetration depth. (m) and (n) correspond to histologic specimens of normal and ulcerative colitis tissues. In (m) and (n), black arrows: crypts; blue arrows: columnar epithelial cells; yellow arrow: blood vessel; red arrow: fiber in muscularis mucosae. Scale bars: 50 μm.

Tables (1)

Tables Icon

Table 1 Optical parameters of mouse colon

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

M= N A obj N A ima ,
r Airy = 0.61λ N A ima ,
r Airy = 0.61λ N A obj M.
f= 1 3 d .

Metrics