Abstract

Superhydrophobic silver films were fabricated by silver-mirror reaction and surface functionalization with thiol. The thiol-functionalization significantly improved the hydrophobic property of the Ag films (AFS), and their contact angle values slightly increased with the extension of a thiol alkyl chain, reaching about 160°. The surface-enhanced Raman scattering (SERS) detection capacity of these films were investigated, and AFS-Dodec showed the best substrate for R6G molecule detection with the concentration limit of 10−11 M. AFS functionalized with dodecanethiol (AFS-Dodec) was applied for the SERS detection of uric acid and creatinine, it exhibited good linear dependence relationship between the Raman intensity and analyte concentration in the concentration range of 5~1000 μM.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reagent- and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS)

Ming Li, Yong Du, Fusheng Zhao, Jianbo Zeng, Chandra Mohan, and Wei-Chuan Shih
Biomed. Opt. Express 6(3) 849-858 (2015)

Label-free rapid identification of tumor cells and blood cells with silver film SERS substrate

Y. J. Zhang, Q. Y. Zeng, L. F. Li, M. N. Qi, Q. C. Qi, S. X. Li, and J. F. Xu
Opt. Express 26(25) 33044-33056 (2018)

In situ detection of trace pollutants: a cost-effective SERS substrate of blackberry-like silver/graphene oxide nanoparticle cluster based on quick self-assembly technology

Jing Yu, Yisheng Wei, Huijie Wang, Chao Zhang, Yunjia Wei, Minghui Wang, Baoyuan Man, and Fengcai Lei
Opt. Express 27(7) 9879-9894 (2019)

References

  • View by:
  • |
  • |
  • |

  1. V. F. Panoulas, H. J. Milionis, K. M. J. Douglas, P. Nightingale, M. D. Kita, R. Klocke, M. S. Elisaf, and G. D. Kitas, “Association of serum uric acid with cardiovascular disease in rheumatoid arthritis,” Rheumatology (Oxford) 46(9), 1466–1470 (2007).
    [Crossref] [PubMed]
  2. C. Borghi, E. A. Rosei, T. Bardin, J. Dawson, A. Dominiczak, J. T. Kielstein, A. J. Manolis, F. Perez-Ruiz, and G. Mancia, “Serum uric acid and the risk of cardiovascular and renal disease,” J. Hypertens. 33(9), 1729–1741 (2015).
    [Crossref] [PubMed]
  3. S. Liu, F. Perez-Ruiz, and J. N. Miner, “Patients with gout differ from healthy subjects in renal response to changes in serum uric acid,” Joint Bone Spine 84(2), 183–188 (2017).
    [Crossref] [PubMed]
  4. C. S. Buhimschi, E. R. Norwitz, E. Funai, S. Richman, S. Guller, C. J. Lockwood, and I. A. Buhimschi, “Urinary angiogenic factors cluster hypertensive disorders and identify women with severe preeclampsia,” Am. J. Obstet. Gynecol. 192(3), 734–741 (2005).
    [Crossref] [PubMed]
  5. E. J. Erlandsen and E. Randers, “Reference intervals for plasma cystatin C and plasma creatinine in adults using methods traceable to international calibrators and reference methods,” J. Clin. Lab. Anal. 32(6), e22433 (2018).
    [Crossref] [PubMed]
  6. K. Kneipp, H. Kneipp, and, H. G. Bohr, Single-Molecule SERS Spectroscopy (Springer, 2006), pp. 261–277.
  7. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
    [Crossref]
  8. J. A. Kellum, F. E. Sileanu, R. Murugan, N. Lucko, A. D. Shaw, and G. Clermont, “Classifying AKI by Urine Output versus Serum Creatinine Level,” J. Am. Soc. Nephrol. 26(9), 2231–2238 (2015).
    [Crossref] [PubMed]
  9. E. Cepeda-Pérez, T. López-Luke, P. Salas, G. Plascencia-Villa, A. Ponce, J. Vivero-Escoto, M. José-Yacamán, and E. de la Rosa, “SERS-active Au/SiO2 clouds in powder for rapid ex vivo breast adenocarcinoma diagnosis,” Biomed. Opt. Express 7(6), 2407–2418 (2016).
    [Crossref] [PubMed]
  10. T. Gong, K. V. Kong, D. Goh, M. Olivo, and K. T. Yong, “Sensitive surface enhanced Raman scattering multiplexed detection of matrix metalloproteinase 2 and 7 cancer markers,” Biomed. Opt. Express 6(6), 2076–2087 (2015).
    [Crossref] [PubMed]
  11. L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman Spectrosc. 45(7), 533–540 (2014).
    [Crossref]
  12. A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering,” J. Raman Spectrosc. 36(6-7), 497–509 (2005).
    [Crossref]
  13. E. C. L. Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement factors at a hot spot,” J. Raman Spectrosc. 39, 1127–1134 (2010).
  14. S. V. Gaponenkoa and D. V. Guzatovb, “Possible rationale for ultimate enhancement factor in single molecule Raman spectroscopy,” Chem. Phys. Lett. 477(4-6), 411–414 (2009).
    [Crossref]
  15. S. L. Kleinman, R. R. Frontiera, A. I. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15(1), 21–36 (2013).
    [Crossref] [PubMed]
  16. Y. Sun, Z. Han, H. Liu, S. He, L. Yang, and J. Liu, “Three-dimensional hotspots in evaporating nanoparticle sols for ultrahigh Raman scattering: solid-liquid interface effects,” Nanoscale 7(15), 6619–6626 (2015).
    [Crossref] [PubMed]
  17. A. Safaee, D. K. Sarkar, and M. Farzaneh, “Superhydrophobic properties of silver-coated films on copper surface by galvanic exchange reaction,” Appl. Surf. Sci. 254(8), 2493–2498 (2008).
    [Crossref]
  18. J. A. Huang, Y. L. Zhang, Y. Zhao, X. L. Zhang, M. L. Sun, and W. Zhang, “Superhydrophobic SERS chip based on a Ag coated natural taro-leaf,” Nanoscale 8(22), 11487–11493 (2016).
    [Crossref] [PubMed]
  19. K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, and R. P. Van Duyne, “Toward a glucose biosensor based on surface-enhanced Raman scattering,” J. Am. Chem. Soc. 125(2), 588–593 (2003).
    [Crossref] [PubMed]
  20. C. Zhu, G. Meng, Q. Huang, Z. Huang, and Z. Chu, “Au hierarchical micro/nanotower arrays and their improved SERS effect by Ag nanoparticle decoration,” Cryst. Growth Des. 11(3), 748–752 (2011).
    [Crossref]
  21. S. W. Han, Y. Kim, and K. Kim, “Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR Analysis,” J. Colloid Interface Sci. 208(1), 272–278 (1998).
    [Crossref] [PubMed]
  22. K. A. Mahmoud and M. Zourob, “Fe3O4/Au nanoparticles/lignin modified microspheres as effectual surface enhanced Raman scattering (SERS) substrates for highly selective and sensitive detection of 2,4,6-trinitrotoluene (TNT),” Analyst (Lond.) 138(9), 2712–2719 (2013).
    [Crossref] [PubMed]
  23. A. Y. Panarin, I. A. Khodasevich, O. L. Gladkova, and S. N. Terekhov, “Determination of Antimony by Surface-Enhanced Raman Spectroscopy,” Appl. Spectrosc. 68(3), 297–306 (2014).
    [Crossref] [PubMed]
  24. O. S. Kulakovich, E. V. Shabunya-Klyachkovskaya, A. S. Matsukovich, K. Rasool, K. A. Mahmoud, and S. V. Gaponenko, “Nanoplasmonic Raman detection of bromate in water,” Opt. Express 24(2), A174–A179 (2016).
    [Crossref] [PubMed]
  25. C. Westley, Y. Xu, B. Thilaganathan, A. J. Carnell, N. J. Turner, and R. Goodacre, “Absolute quantification of uric acid in human urine using surface enhanced Raman Scattering with the standard addition method,” Anal. Chem. 89(4), 2472–2477 (2017).
    [Crossref] [PubMed]
  26. M. Pucetaite, M. Velicka, J. Pilipavicius, A. Beganskiene, J. Ceponkusa, and V. Sablinskas, “Uric acid detection by means of SERS spectroscopy on dried Ag colloidal drops,” J. Raman Spectrosc. 47(6), 681–686 (2016).
    [Crossref]
  27. M. Li, Y. Du, F. Zhao, J. Zeng, C. Mohan, and W. C. Shih, “Reagent- and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS),” Biomed. Opt. Express 6(3), 849–858 (2015).
    [Crossref] [PubMed]
  28. H. Zhang, G. Li, S. Li, L. Xu, Y. Tian, A. Jiao, X. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457, 684–694 (2018).
    [Crossref]
  29. C. R. Yonzon, C. L. Haynes, X. Zhang, J. T. Walsh, and R. P. Van Duyne, “A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference,” Anal. Chem. 76(1), 78–85 (2004).
    [Crossref] [PubMed]
  30. S. Shin, J. Lee, S. Lee, H. Kim, J. Seo, D. Kim, J. Hong, S. Lee, and T. Lee, “A Droplet-based high-throughput SERS platform on a droplet-guiding-track-engraved superhydrophobic substrate,” Small 13(7), 1602865 (2017).
    [Crossref]
  31. L. Cao, T. P. Price, M. Weiss, and D. Gao, “Super water- and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films,” Langmuir 24(5), 1640–1643 (2008).
    [Crossref] [PubMed]
  32. S. F. Kingsmore, “Multiplexed protein measurement: technologies and applications of protein and antibody arrays,” Nat. Rev. Drug Discov. 5(4), 310–321 (2006).
    [Crossref] [PubMed]
  33. J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
    [Crossref] [PubMed]
  34. J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, C. Fan, and S. Song, “Multicolor gold-silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
    [Crossref] [PubMed]
  35. M. M. Harper, B. Robertson, A. Ricketts, and K. Faulds, “Specific detection of DNA through coupling of a TaqMan assay with surface enhanced Raman scattering (SERS),” Chem. Commun. (Camb.) 48(75), 9412–9414 (2012).
    [Crossref] [PubMed]

2018 (2)

E. J. Erlandsen and E. Randers, “Reference intervals for plasma cystatin C and plasma creatinine in adults using methods traceable to international calibrators and reference methods,” J. Clin. Lab. Anal. 32(6), e22433 (2018).
[Crossref] [PubMed]

H. Zhang, G. Li, S. Li, L. Xu, Y. Tian, A. Jiao, X. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457, 684–694 (2018).
[Crossref]

2017 (4)

S. Shin, J. Lee, S. Lee, H. Kim, J. Seo, D. Kim, J. Hong, S. Lee, and T. Lee, “A Droplet-based high-throughput SERS platform on a droplet-guiding-track-engraved superhydrophobic substrate,” Small 13(7), 1602865 (2017).
[Crossref]

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, C. Fan, and S. Song, “Multicolor gold-silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref] [PubMed]

C. Westley, Y. Xu, B. Thilaganathan, A. J. Carnell, N. J. Turner, and R. Goodacre, “Absolute quantification of uric acid in human urine using surface enhanced Raman Scattering with the standard addition method,” Anal. Chem. 89(4), 2472–2477 (2017).
[Crossref] [PubMed]

S. Liu, F. Perez-Ruiz, and J. N. Miner, “Patients with gout differ from healthy subjects in renal response to changes in serum uric acid,” Joint Bone Spine 84(2), 183–188 (2017).
[Crossref] [PubMed]

2016 (4)

E. Cepeda-Pérez, T. López-Luke, P. Salas, G. Plascencia-Villa, A. Ponce, J. Vivero-Escoto, M. José-Yacamán, and E. de la Rosa, “SERS-active Au/SiO2 clouds in powder for rapid ex vivo breast adenocarcinoma diagnosis,” Biomed. Opt. Express 7(6), 2407–2418 (2016).
[Crossref] [PubMed]

M. Pucetaite, M. Velicka, J. Pilipavicius, A. Beganskiene, J. Ceponkusa, and V. Sablinskas, “Uric acid detection by means of SERS spectroscopy on dried Ag colloidal drops,” J. Raman Spectrosc. 47(6), 681–686 (2016).
[Crossref]

J. A. Huang, Y. L. Zhang, Y. Zhao, X. L. Zhang, M. L. Sun, and W. Zhang, “Superhydrophobic SERS chip based on a Ag coated natural taro-leaf,” Nanoscale 8(22), 11487–11493 (2016).
[Crossref] [PubMed]

O. S. Kulakovich, E. V. Shabunya-Klyachkovskaya, A. S. Matsukovich, K. Rasool, K. A. Mahmoud, and S. V. Gaponenko, “Nanoplasmonic Raman detection of bromate in water,” Opt. Express 24(2), A174–A179 (2016).
[Crossref] [PubMed]

2015 (5)

M. Li, Y. Du, F. Zhao, J. Zeng, C. Mohan, and W. C. Shih, “Reagent- and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS),” Biomed. Opt. Express 6(3), 849–858 (2015).
[Crossref] [PubMed]

T. Gong, K. V. Kong, D. Goh, M. Olivo, and K. T. Yong, “Sensitive surface enhanced Raman scattering multiplexed detection of matrix metalloproteinase 2 and 7 cancer markers,” Biomed. Opt. Express 6(6), 2076–2087 (2015).
[Crossref] [PubMed]

C. Borghi, E. A. Rosei, T. Bardin, J. Dawson, A. Dominiczak, J. T. Kielstein, A. J. Manolis, F. Perez-Ruiz, and G. Mancia, “Serum uric acid and the risk of cardiovascular and renal disease,” J. Hypertens. 33(9), 1729–1741 (2015).
[Crossref] [PubMed]

J. A. Kellum, F. E. Sileanu, R. Murugan, N. Lucko, A. D. Shaw, and G. Clermont, “Classifying AKI by Urine Output versus Serum Creatinine Level,” J. Am. Soc. Nephrol. 26(9), 2231–2238 (2015).
[Crossref] [PubMed]

Y. Sun, Z. Han, H. Liu, S. He, L. Yang, and J. Liu, “Three-dimensional hotspots in evaporating nanoparticle sols for ultrahigh Raman scattering: solid-liquid interface effects,” Nanoscale 7(15), 6619–6626 (2015).
[Crossref] [PubMed]

2014 (2)

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman Spectrosc. 45(7), 533–540 (2014).
[Crossref]

A. Y. Panarin, I. A. Khodasevich, O. L. Gladkova, and S. N. Terekhov, “Determination of Antimony by Surface-Enhanced Raman Spectroscopy,” Appl. Spectrosc. 68(3), 297–306 (2014).
[Crossref] [PubMed]

2013 (2)

K. A. Mahmoud and M. Zourob, “Fe3O4/Au nanoparticles/lignin modified microspheres as effectual surface enhanced Raman scattering (SERS) substrates for highly selective and sensitive detection of 2,4,6-trinitrotoluene (TNT),” Analyst (Lond.) 138(9), 2712–2719 (2013).
[Crossref] [PubMed]

S. L. Kleinman, R. R. Frontiera, A. I. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15(1), 21–36 (2013).
[Crossref] [PubMed]

2012 (1)

M. M. Harper, B. Robertson, A. Ricketts, and K. Faulds, “Specific detection of DNA through coupling of a TaqMan assay with surface enhanced Raman scattering (SERS),” Chem. Commun. (Camb.) 48(75), 9412–9414 (2012).
[Crossref] [PubMed]

2011 (1)

C. Zhu, G. Meng, Q. Huang, Z. Huang, and Z. Chu, “Au hierarchical micro/nanotower arrays and their improved SERS effect by Ag nanoparticle decoration,” Cryst. Growth Des. 11(3), 748–752 (2011).
[Crossref]

2010 (2)

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
[Crossref] [PubMed]

E. C. L. Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement factors at a hot spot,” J. Raman Spectrosc. 39, 1127–1134 (2010).

2009 (1)

S. V. Gaponenkoa and D. V. Guzatovb, “Possible rationale for ultimate enhancement factor in single molecule Raman spectroscopy,” Chem. Phys. Lett. 477(4-6), 411–414 (2009).
[Crossref]

2008 (2)

A. Safaee, D. K. Sarkar, and M. Farzaneh, “Superhydrophobic properties of silver-coated films on copper surface by galvanic exchange reaction,” Appl. Surf. Sci. 254(8), 2493–2498 (2008).
[Crossref]

L. Cao, T. P. Price, M. Weiss, and D. Gao, “Super water- and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films,” Langmuir 24(5), 1640–1643 (2008).
[Crossref] [PubMed]

2007 (1)

V. F. Panoulas, H. J. Milionis, K. M. J. Douglas, P. Nightingale, M. D. Kita, R. Klocke, M. S. Elisaf, and G. D. Kitas, “Association of serum uric acid with cardiovascular disease in rheumatoid arthritis,” Rheumatology (Oxford) 46(9), 1466–1470 (2007).
[Crossref] [PubMed]

2006 (1)

S. F. Kingsmore, “Multiplexed protein measurement: technologies and applications of protein and antibody arrays,” Nat. Rev. Drug Discov. 5(4), 310–321 (2006).
[Crossref] [PubMed]

2005 (2)

C. S. Buhimschi, E. R. Norwitz, E. Funai, S. Richman, S. Guller, C. J. Lockwood, and I. A. Buhimschi, “Urinary angiogenic factors cluster hypertensive disorders and identify women with severe preeclampsia,” Am. J. Obstet. Gynecol. 192(3), 734–741 (2005).
[Crossref] [PubMed]

A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering,” J. Raman Spectrosc. 36(6-7), 497–509 (2005).
[Crossref]

2004 (1)

C. R. Yonzon, C. L. Haynes, X. Zhang, J. T. Walsh, and R. P. Van Duyne, “A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference,” Anal. Chem. 76(1), 78–85 (2004).
[Crossref] [PubMed]

2003 (1)

K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, and R. P. Van Duyne, “Toward a glucose biosensor based on surface-enhanced Raman scattering,” J. Am. Chem. Soc. 125(2), 588–593 (2003).
[Crossref] [PubMed]

2002 (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[Crossref]

1998 (1)

S. W. Han, Y. Kim, and K. Kim, “Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR Analysis,” J. Colloid Interface Sci. 208(1), 272–278 (1998).
[Crossref] [PubMed]

Bardin, T.

C. Borghi, E. A. Rosei, T. Bardin, J. Dawson, A. Dominiczak, J. T. Kielstein, A. J. Manolis, F. Perez-Ruiz, and G. Mancia, “Serum uric acid and the risk of cardiovascular and renal disease,” J. Hypertens. 33(9), 1729–1741 (2015).
[Crossref] [PubMed]

Beganskiene, A.

M. Pucetaite, M. Velicka, J. Pilipavicius, A. Beganskiene, J. Ceponkusa, and V. Sablinskas, “Uric acid detection by means of SERS spectroscopy on dried Ag colloidal drops,” J. Raman Spectrosc. 47(6), 681–686 (2016).
[Crossref]

Blackie, E.

E. C. L. Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement factors at a hot spot,” J. Raman Spectrosc. 39, 1127–1134 (2010).

Borghi, C.

C. Borghi, E. A. Rosei, T. Bardin, J. Dawson, A. Dominiczak, J. T. Kielstein, A. J. Manolis, F. Perez-Ruiz, and G. Mancia, “Serum uric acid and the risk of cardiovascular and renal disease,” J. Hypertens. 33(9), 1729–1741 (2015).
[Crossref] [PubMed]

Buhimschi, C. S.

C. S. Buhimschi, E. R. Norwitz, E. Funai, S. Richman, S. Guller, C. J. Lockwood, and I. A. Buhimschi, “Urinary angiogenic factors cluster hypertensive disorders and identify women with severe preeclampsia,” Am. J. Obstet. Gynecol. 192(3), 734–741 (2005).
[Crossref] [PubMed]

Buhimschi, I. A.

C. S. Buhimschi, E. R. Norwitz, E. Funai, S. Richman, S. Guller, C. J. Lockwood, and I. A. Buhimschi, “Urinary angiogenic factors cluster hypertensive disorders and identify women with severe preeclampsia,” Am. J. Obstet. Gynecol. 192(3), 734–741 (2005).
[Crossref] [PubMed]

Cao, L.

L. Cao, T. P. Price, M. Weiss, and D. Gao, “Super water- and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films,” Langmuir 24(5), 1640–1643 (2008).
[Crossref] [PubMed]

Carnell, A. J.

C. Westley, Y. Xu, B. Thilaganathan, A. J. Carnell, N. J. Turner, and R. Goodacre, “Absolute quantification of uric acid in human urine using surface enhanced Raman Scattering with the standard addition method,” Anal. Chem. 89(4), 2472–2477 (2017).
[Crossref] [PubMed]

Cepeda-Pérez, E.

Ceponkusa, J.

M. Pucetaite, M. Velicka, J. Pilipavicius, A. Beganskiene, J. Ceponkusa, and V. Sablinskas, “Uric acid detection by means of SERS spectroscopy on dried Ag colloidal drops,” J. Raman Spectrosc. 47(6), 681–686 (2016).
[Crossref]

Chen, F.

H. Zhang, G. Li, S. Li, L. Xu, Y. Tian, A. Jiao, X. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457, 684–694 (2018).
[Crossref]

Chen, M.

H. Zhang, G. Li, S. Li, L. Xu, Y. Tian, A. Jiao, X. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457, 684–694 (2018).
[Crossref]

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman Spectrosc. 45(7), 533–540 (2014).
[Crossref]

Chu, Z.

C. Zhu, G. Meng, Q. Huang, Z. Huang, and Z. Chu, “Au hierarchical micro/nanotower arrays and their improved SERS effect by Ag nanoparticle decoration,” Cryst. Growth Des. 11(3), 748–752 (2011).
[Crossref]

Clermont, G.

J. A. Kellum, F. E. Sileanu, R. Murugan, N. Lucko, A. D. Shaw, and G. Clermont, “Classifying AKI by Urine Output versus Serum Creatinine Level,” J. Am. Soc. Nephrol. 26(9), 2231–2238 (2015).
[Crossref] [PubMed]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[Crossref]

Dawson, J.

C. Borghi, E. A. Rosei, T. Bardin, J. Dawson, A. Dominiczak, J. T. Kielstein, A. J. Manolis, F. Perez-Ruiz, and G. Mancia, “Serum uric acid and the risk of cardiovascular and renal disease,” J. Hypertens. 33(9), 1729–1741 (2015).
[Crossref] [PubMed]

de la Rosa, E.

Dieringer, J. A.

S. L. Kleinman, R. R. Frontiera, A. I. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15(1), 21–36 (2013).
[Crossref] [PubMed]

Dominiczak, A.

C. Borghi, E. A. Rosei, T. Bardin, J. Dawson, A. Dominiczak, J. T. Kielstein, A. J. Manolis, F. Perez-Ruiz, and G. Mancia, “Serum uric acid and the risk of cardiovascular and renal disease,” J. Hypertens. 33(9), 1729–1741 (2015).
[Crossref] [PubMed]

Dou, Y.

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, C. Fan, and S. Song, “Multicolor gold-silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref] [PubMed]

Douglas, K. M. J.

V. F. Panoulas, H. J. Milionis, K. M. J. Douglas, P. Nightingale, M. D. Kita, R. Klocke, M. S. Elisaf, and G. D. Kitas, “Association of serum uric acid with cardiovascular disease in rheumatoid arthritis,” Rheumatology (Oxford) 46(9), 1466–1470 (2007).
[Crossref] [PubMed]

Du, Y.

Elisaf, M. S.

V. F. Panoulas, H. J. Milionis, K. M. J. Douglas, P. Nightingale, M. D. Kita, R. Klocke, M. S. Elisaf, and G. D. Kitas, “Association of serum uric acid with cardiovascular disease in rheumatoid arthritis,” Rheumatology (Oxford) 46(9), 1466–1470 (2007).
[Crossref] [PubMed]

Erlandsen, E. J.

E. J. Erlandsen and E. Randers, “Reference intervals for plasma cystatin C and plasma creatinine in adults using methods traceable to international calibrators and reference methods,” J. Clin. Lab. Anal. 32(6), e22433 (2018).
[Crossref] [PubMed]

Etchegoin, P. G.

E. C. L. Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement factors at a hot spot,” J. Raman Spectrosc. 39, 1127–1134 (2010).

Fan, C.

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, C. Fan, and S. Song, “Multicolor gold-silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref] [PubMed]

Farzaneh, M.

A. Safaee, D. K. Sarkar, and M. Farzaneh, “Superhydrophobic properties of silver-coated films on copper surface by galvanic exchange reaction,” Appl. Surf. Sci. 254(8), 2493–2498 (2008).
[Crossref]

Faulds, K.

M. M. Harper, B. Robertson, A. Ricketts, and K. Faulds, “Specific detection of DNA through coupling of a TaqMan assay with surface enhanced Raman scattering (SERS),” Chem. Commun. (Camb.) 48(75), 9412–9414 (2012).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[Crossref]

Frontiera, R. R.

S. L. Kleinman, R. R. Frontiera, A. I. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15(1), 21–36 (2013).
[Crossref] [PubMed]

Funai, E.

C. S. Buhimschi, E. R. Norwitz, E. Funai, S. Richman, S. Guller, C. J. Lockwood, and I. A. Buhimschi, “Urinary angiogenic factors cluster hypertensive disorders and identify women with severe preeclampsia,” Am. J. Obstet. Gynecol. 192(3), 734–741 (2005).
[Crossref] [PubMed]

Gao, D.

L. Cao, T. P. Price, M. Weiss, and D. Gao, “Super water- and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films,” Langmuir 24(5), 1640–1643 (2008).
[Crossref] [PubMed]

Gaponenko, S. V.

Gaponenkoa, S. V.

S. V. Gaponenkoa and D. V. Guzatovb, “Possible rationale for ultimate enhancement factor in single molecule Raman spectroscopy,” Chem. Phys. Lett. 477(4-6), 411–414 (2009).
[Crossref]

Gladkova, O. L.

Glucksberg, M. R.

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
[Crossref] [PubMed]

K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, and R. P. Van Duyne, “Toward a glucose biosensor based on surface-enhanced Raman scattering,” J. Am. Chem. Soc. 125(2), 588–593 (2003).
[Crossref] [PubMed]

Goh, D.

Gong, T.

Goodacre, R.

C. Westley, Y. Xu, B. Thilaganathan, A. J. Carnell, N. J. Turner, and R. Goodacre, “Absolute quantification of uric acid in human urine using surface enhanced Raman Scattering with the standard addition method,” Anal. Chem. 89(4), 2472–2477 (2017).
[Crossref] [PubMed]

Guller, S.

C. S. Buhimschi, E. R. Norwitz, E. Funai, S. Richman, S. Guller, C. J. Lockwood, and I. A. Buhimschi, “Urinary angiogenic factors cluster hypertensive disorders and identify women with severe preeclampsia,” Am. J. Obstet. Gynecol. 192(3), 734–741 (2005).
[Crossref] [PubMed]

Guzatovb, D. V.

S. V. Gaponenkoa and D. V. Guzatovb, “Possible rationale for ultimate enhancement factor in single molecule Raman spectroscopy,” Chem. Phys. Lett. 477(4-6), 411–414 (2009).
[Crossref]

Han, S. W.

S. W. Han, Y. Kim, and K. Kim, “Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR Analysis,” J. Colloid Interface Sci. 208(1), 272–278 (1998).
[Crossref] [PubMed]

Han, Z.

Y. Sun, Z. Han, H. Liu, S. He, L. Yang, and J. Liu, “Three-dimensional hotspots in evaporating nanoparticle sols for ultrahigh Raman scattering: solid-liquid interface effects,” Nanoscale 7(15), 6619–6626 (2015).
[Crossref] [PubMed]

Harper, M. M.

M. M. Harper, B. Robertson, A. Ricketts, and K. Faulds, “Specific detection of DNA through coupling of a TaqMan assay with surface enhanced Raman scattering (SERS),” Chem. Commun. (Camb.) 48(75), 9412–9414 (2012).
[Crossref] [PubMed]

Haynes, C. L.

C. R. Yonzon, C. L. Haynes, X. Zhang, J. T. Walsh, and R. P. Van Duyne, “A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference,” Anal. Chem. 76(1), 78–85 (2004).
[Crossref] [PubMed]

K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, and R. P. Van Duyne, “Toward a glucose biosensor based on surface-enhanced Raman scattering,” J. Am. Chem. Soc. 125(2), 588–593 (2003).
[Crossref] [PubMed]

He, S.

Y. Sun, Z. Han, H. Liu, S. He, L. Yang, and J. Liu, “Three-dimensional hotspots in evaporating nanoparticle sols for ultrahigh Raman scattering: solid-liquid interface effects,” Nanoscale 7(15), 6619–6626 (2015).
[Crossref] [PubMed]

Henry, A. I.

S. L. Kleinman, R. R. Frontiera, A. I. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15(1), 21–36 (2013).
[Crossref] [PubMed]

Hong, J.

S. Shin, J. Lee, S. Lee, H. Kim, J. Seo, D. Kim, J. Hong, S. Lee, and T. Lee, “A Droplet-based high-throughput SERS platform on a droplet-guiding-track-engraved superhydrophobic substrate,” Small 13(7), 1602865 (2017).
[Crossref]

Huang, J. A.

J. A. Huang, Y. L. Zhang, Y. Zhao, X. L. Zhang, M. L. Sun, and W. Zhang, “Superhydrophobic SERS chip based on a Ag coated natural taro-leaf,” Nanoscale 8(22), 11487–11493 (2016).
[Crossref] [PubMed]

Huang, Q.

C. Zhu, G. Meng, Q. Huang, Z. Huang, and Z. Chu, “Au hierarchical micro/nanotower arrays and their improved SERS effect by Ag nanoparticle decoration,” Cryst. Growth Des. 11(3), 748–752 (2011).
[Crossref]

Huang, Z.

C. Zhu, G. Meng, Q. Huang, Z. Huang, and Z. Chu, “Au hierarchical micro/nanotower arrays and their improved SERS effect by Ag nanoparticle decoration,” Cryst. Growth Des. 11(3), 748–752 (2011).
[Crossref]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[Crossref]

Jiao, A.

H. Zhang, G. Li, S. Li, L. Xu, Y. Tian, A. Jiao, X. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457, 684–694 (2018).
[Crossref]

José-Yacamán, M.

Kellum, J. A.

J. A. Kellum, F. E. Sileanu, R. Murugan, N. Lucko, A. D. Shaw, and G. Clermont, “Classifying AKI by Urine Output versus Serum Creatinine Level,” J. Am. Soc. Nephrol. 26(9), 2231–2238 (2015).
[Crossref] [PubMed]

Khodasevich, I. A.

Kielstein, J. T.

C. Borghi, E. A. Rosei, T. Bardin, J. Dawson, A. Dominiczak, J. T. Kielstein, A. J. Manolis, F. Perez-Ruiz, and G. Mancia, “Serum uric acid and the risk of cardiovascular and renal disease,” J. Hypertens. 33(9), 1729–1741 (2015).
[Crossref] [PubMed]

Kim, D.

S. Shin, J. Lee, S. Lee, H. Kim, J. Seo, D. Kim, J. Hong, S. Lee, and T. Lee, “A Droplet-based high-throughput SERS platform on a droplet-guiding-track-engraved superhydrophobic substrate,” Small 13(7), 1602865 (2017).
[Crossref]

Kim, H.

S. Shin, J. Lee, S. Lee, H. Kim, J. Seo, D. Kim, J. Hong, S. Lee, and T. Lee, “A Droplet-based high-throughput SERS platform on a droplet-guiding-track-engraved superhydrophobic substrate,” Small 13(7), 1602865 (2017).
[Crossref]

Kim, K.

S. W. Han, Y. Kim, and K. Kim, “Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR Analysis,” J. Colloid Interface Sci. 208(1), 272–278 (1998).
[Crossref] [PubMed]

Kim, Y.

S. W. Han, Y. Kim, and K. Kim, “Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR Analysis,” J. Colloid Interface Sci. 208(1), 272–278 (1998).
[Crossref] [PubMed]

Kingsmore, S. F.

S. F. Kingsmore, “Multiplexed protein measurement: technologies and applications of protein and antibody arrays,” Nat. Rev. Drug Discov. 5(4), 310–321 (2006).
[Crossref] [PubMed]

Kita, M. D.

V. F. Panoulas, H. J. Milionis, K. M. J. Douglas, P. Nightingale, M. D. Kita, R. Klocke, M. S. Elisaf, and G. D. Kitas, “Association of serum uric acid with cardiovascular disease in rheumatoid arthritis,” Rheumatology (Oxford) 46(9), 1466–1470 (2007).
[Crossref] [PubMed]

Kitas, G. D.

V. F. Panoulas, H. J. Milionis, K. M. J. Douglas, P. Nightingale, M. D. Kita, R. Klocke, M. S. Elisaf, and G. D. Kitas, “Association of serum uric acid with cardiovascular disease in rheumatoid arthritis,” Rheumatology (Oxford) 46(9), 1466–1470 (2007).
[Crossref] [PubMed]

Kleinman, S. L.

S. L. Kleinman, R. R. Frontiera, A. I. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15(1), 21–36 (2013).
[Crossref] [PubMed]

Klocke, R.

V. F. Panoulas, H. J. Milionis, K. M. J. Douglas, P. Nightingale, M. D. Kita, R. Klocke, M. S. Elisaf, and G. D. Kitas, “Association of serum uric acid with cardiovascular disease in rheumatoid arthritis,” Rheumatology (Oxford) 46(9), 1466–1470 (2007).
[Crossref] [PubMed]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[Crossref]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[Crossref]

Kong, K. V.

Kulakovich, O. S.

Lee, J.

S. Shin, J. Lee, S. Lee, H. Kim, J. Seo, D. Kim, J. Hong, S. Lee, and T. Lee, “A Droplet-based high-throughput SERS platform on a droplet-guiding-track-engraved superhydrophobic substrate,” Small 13(7), 1602865 (2017).
[Crossref]

Lee, S.

S. Shin, J. Lee, S. Lee, H. Kim, J. Seo, D. Kim, J. Hong, S. Lee, and T. Lee, “A Droplet-based high-throughput SERS platform on a droplet-guiding-track-engraved superhydrophobic substrate,” Small 13(7), 1602865 (2017).
[Crossref]

S. Shin, J. Lee, S. Lee, H. Kim, J. Seo, D. Kim, J. Hong, S. Lee, and T. Lee, “A Droplet-based high-throughput SERS platform on a droplet-guiding-track-engraved superhydrophobic substrate,” Small 13(7), 1602865 (2017).
[Crossref]

Lee, T.

S. Shin, J. Lee, S. Lee, H. Kim, J. Seo, D. Kim, J. Hong, S. Lee, and T. Lee, “A Droplet-based high-throughput SERS platform on a droplet-guiding-track-engraved superhydrophobic substrate,” Small 13(7), 1602865 (2017).
[Crossref]

Li, G.

H. Zhang, G. Li, S. Li, L. Xu, Y. Tian, A. Jiao, X. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457, 684–694 (2018).
[Crossref]

Li, M.

Li, S.

H. Zhang, G. Li, S. Li, L. Xu, Y. Tian, A. Jiao, X. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457, 684–694 (2018).
[Crossref]

Liu, H.

Y. Sun, Z. Han, H. Liu, S. He, L. Yang, and J. Liu, “Three-dimensional hotspots in evaporating nanoparticle sols for ultrahigh Raman scattering: solid-liquid interface effects,” Nanoscale 7(15), 6619–6626 (2015).
[Crossref] [PubMed]

Liu, J.

Y. Sun, Z. Han, H. Liu, S. He, L. Yang, and J. Liu, “Three-dimensional hotspots in evaporating nanoparticle sols for ultrahigh Raman scattering: solid-liquid interface effects,” Nanoscale 7(15), 6619–6626 (2015).
[Crossref] [PubMed]

Liu, S.

S. Liu, F. Perez-Ruiz, and J. N. Miner, “Patients with gout differ from healthy subjects in renal response to changes in serum uric acid,” Joint Bone Spine 84(2), 183–188 (2017).
[Crossref] [PubMed]

Liu, X.

H. Zhang, G. Li, S. Li, L. Xu, Y. Tian, A. Jiao, X. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457, 684–694 (2018).
[Crossref]

Lockwood, C. J.

C. S. Buhimschi, E. R. Norwitz, E. Funai, S. Richman, S. Guller, C. J. Lockwood, and I. A. Buhimschi, “Urinary angiogenic factors cluster hypertensive disorders and identify women with severe preeclampsia,” Am. J. Obstet. Gynecol. 192(3), 734–741 (2005).
[Crossref] [PubMed]

López-Luke, T.

Lucko, N.

J. A. Kellum, F. E. Sileanu, R. Murugan, N. Lucko, A. D. Shaw, and G. Clermont, “Classifying AKI by Urine Output versus Serum Creatinine Level,” J. Am. Soc. Nephrol. 26(9), 2231–2238 (2015).
[Crossref] [PubMed]

Mahmoud, K. A.

O. S. Kulakovich, E. V. Shabunya-Klyachkovskaya, A. S. Matsukovich, K. Rasool, K. A. Mahmoud, and S. V. Gaponenko, “Nanoplasmonic Raman detection of bromate in water,” Opt. Express 24(2), A174–A179 (2016).
[Crossref] [PubMed]

K. A. Mahmoud and M. Zourob, “Fe3O4/Au nanoparticles/lignin modified microspheres as effectual surface enhanced Raman scattering (SERS) substrates for highly selective and sensitive detection of 2,4,6-trinitrotoluene (TNT),” Analyst (Lond.) 138(9), 2712–2719 (2013).
[Crossref] [PubMed]

Mancia, G.

C. Borghi, E. A. Rosei, T. Bardin, J. Dawson, A. Dominiczak, J. T. Kielstein, A. J. Manolis, F. Perez-Ruiz, and G. Mancia, “Serum uric acid and the risk of cardiovascular and renal disease,” J. Hypertens. 33(9), 1729–1741 (2015).
[Crossref] [PubMed]

Manolis, A. J.

C. Borghi, E. A. Rosei, T. Bardin, J. Dawson, A. Dominiczak, J. T. Kielstein, A. J. Manolis, F. Perez-Ruiz, and G. Mancia, “Serum uric acid and the risk of cardiovascular and renal disease,” J. Hypertens. 33(9), 1729–1741 (2015).
[Crossref] [PubMed]

Mathur, S.

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, C. Fan, and S. Song, “Multicolor gold-silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref] [PubMed]

Matsukovich, A. S.

Meng, G.

C. Zhu, G. Meng, Q. Huang, Z. Huang, and Z. Chu, “Au hierarchical micro/nanotower arrays and their improved SERS effect by Ag nanoparticle decoration,” Cryst. Growth Des. 11(3), 748–752 (2011).
[Crossref]

Meyer, M.

E. C. L. Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement factors at a hot spot,” J. Raman Spectrosc. 39, 1127–1134 (2010).

Milionis, H. J.

V. F. Panoulas, H. J. Milionis, K. M. J. Douglas, P. Nightingale, M. D. Kita, R. Klocke, M. S. Elisaf, and G. D. Kitas, “Association of serum uric acid with cardiovascular disease in rheumatoid arthritis,” Rheumatology (Oxford) 46(9), 1466–1470 (2007).
[Crossref] [PubMed]

Miner, J. N.

S. Liu, F. Perez-Ruiz, and J. N. Miner, “Patients with gout differ from healthy subjects in renal response to changes in serum uric acid,” Joint Bone Spine 84(2), 183–188 (2017).
[Crossref] [PubMed]

Mohan, C.

Murugan, R.

J. A. Kellum, F. E. Sileanu, R. Murugan, N. Lucko, A. D. Shaw, and G. Clermont, “Classifying AKI by Urine Output versus Serum Creatinine Level,” J. Am. Soc. Nephrol. 26(9), 2231–2238 (2015).
[Crossref] [PubMed]

Nightingale, P.

V. F. Panoulas, H. J. Milionis, K. M. J. Douglas, P. Nightingale, M. D. Kita, R. Klocke, M. S. Elisaf, and G. D. Kitas, “Association of serum uric acid with cardiovascular disease in rheumatoid arthritis,” Rheumatology (Oxford) 46(9), 1466–1470 (2007).
[Crossref] [PubMed]

Nörbel, L.

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, C. Fan, and S. Song, “Multicolor gold-silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref] [PubMed]

Norwitz, E. R.

C. S. Buhimschi, E. R. Norwitz, E. Funai, S. Richman, S. Guller, C. J. Lockwood, and I. A. Buhimschi, “Urinary angiogenic factors cluster hypertensive disorders and identify women with severe preeclampsia,” Am. J. Obstet. Gynecol. 192(3), 734–741 (2005).
[Crossref] [PubMed]

Olivo, M.

Otto, A.

A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering,” J. Raman Spectrosc. 36(6-7), 497–509 (2005).
[Crossref]

Panarin, A. Y.

Panoulas, V. F.

V. F. Panoulas, H. J. Milionis, K. M. J. Douglas, P. Nightingale, M. D. Kita, R. Klocke, M. S. Elisaf, and G. D. Kitas, “Association of serum uric acid with cardiovascular disease in rheumatoid arthritis,” Rheumatology (Oxford) 46(9), 1466–1470 (2007).
[Crossref] [PubMed]

Peng, T.

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, C. Fan, and S. Song, “Multicolor gold-silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref] [PubMed]

Perez-Ruiz, F.

S. Liu, F. Perez-Ruiz, and J. N. Miner, “Patients with gout differ from healthy subjects in renal response to changes in serum uric acid,” Joint Bone Spine 84(2), 183–188 (2017).
[Crossref] [PubMed]

C. Borghi, E. A. Rosei, T. Bardin, J. Dawson, A. Dominiczak, J. T. Kielstein, A. J. Manolis, F. Perez-Ruiz, and G. Mancia, “Serum uric acid and the risk of cardiovascular and renal disease,” J. Hypertens. 33(9), 1729–1741 (2015).
[Crossref] [PubMed]

Pilipavicius, J.

M. Pucetaite, M. Velicka, J. Pilipavicius, A. Beganskiene, J. Ceponkusa, and V. Sablinskas, “Uric acid detection by means of SERS spectroscopy on dried Ag colloidal drops,” J. Raman Spectrosc. 47(6), 681–686 (2016).
[Crossref]

Plascencia-Villa, G.

Ponce, A.

Price, T. P.

L. Cao, T. P. Price, M. Weiss, and D. Gao, “Super water- and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films,” Langmuir 24(5), 1640–1643 (2008).
[Crossref] [PubMed]

Pucetaite, M.

M. Pucetaite, M. Velicka, J. Pilipavicius, A. Beganskiene, J. Ceponkusa, and V. Sablinskas, “Uric acid detection by means of SERS spectroscopy on dried Ag colloidal drops,” J. Raman Spectrosc. 47(6), 681–686 (2016).
[Crossref]

Randers, E.

E. J. Erlandsen and E. Randers, “Reference intervals for plasma cystatin C and plasma creatinine in adults using methods traceable to international calibrators and reference methods,” J. Clin. Lab. Anal. 32(6), e22433 (2018).
[Crossref] [PubMed]

Rasool, K.

Richman, S.

C. S. Buhimschi, E. R. Norwitz, E. Funai, S. Richman, S. Guller, C. J. Lockwood, and I. A. Buhimschi, “Urinary angiogenic factors cluster hypertensive disorders and identify women with severe preeclampsia,” Am. J. Obstet. Gynecol. 192(3), 734–741 (2005).
[Crossref] [PubMed]

Ricketts, A.

M. M. Harper, B. Robertson, A. Ricketts, and K. Faulds, “Specific detection of DNA through coupling of a TaqMan assay with surface enhanced Raman scattering (SERS),” Chem. Commun. (Camb.) 48(75), 9412–9414 (2012).
[Crossref] [PubMed]

Robertson, B.

M. M. Harper, B. Robertson, A. Ricketts, and K. Faulds, “Specific detection of DNA through coupling of a TaqMan assay with surface enhanced Raman scattering (SERS),” Chem. Commun. (Camb.) 48(75), 9412–9414 (2012).
[Crossref] [PubMed]

Rosei, E. A.

C. Borghi, E. A. Rosei, T. Bardin, J. Dawson, A. Dominiczak, J. T. Kielstein, A. J. Manolis, F. Perez-Ruiz, and G. Mancia, “Serum uric acid and the risk of cardiovascular and renal disease,” J. Hypertens. 33(9), 1729–1741 (2015).
[Crossref] [PubMed]

Ru, E. C. L.

E. C. L. Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement factors at a hot spot,” J. Raman Spectrosc. 39, 1127–1134 (2010).

Sablinskas, V.

M. Pucetaite, M. Velicka, J. Pilipavicius, A. Beganskiene, J. Ceponkusa, and V. Sablinskas, “Uric acid detection by means of SERS spectroscopy on dried Ag colloidal drops,” J. Raman Spectrosc. 47(6), 681–686 (2016).
[Crossref]

Safaee, A.

A. Safaee, D. K. Sarkar, and M. Farzaneh, “Superhydrophobic properties of silver-coated films on copper surface by galvanic exchange reaction,” Appl. Surf. Sci. 254(8), 2493–2498 (2008).
[Crossref]

Salas, P.

Sarkar, D. K.

A. Safaee, D. K. Sarkar, and M. Farzaneh, “Superhydrophobic properties of silver-coated films on copper surface by galvanic exchange reaction,” Appl. Surf. Sci. 254(8), 2493–2498 (2008).
[Crossref]

Seo, J.

S. Shin, J. Lee, S. Lee, H. Kim, J. Seo, D. Kim, J. Hong, S. Lee, and T. Lee, “A Droplet-based high-throughput SERS platform on a droplet-guiding-track-engraved superhydrophobic substrate,” Small 13(7), 1602865 (2017).
[Crossref]

Shabunya-Klyachkovskaya, E. V.

Shafer-Peltier, K. E.

K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, and R. P. Van Duyne, “Toward a glucose biosensor based on surface-enhanced Raman scattering,” J. Am. Chem. Soc. 125(2), 588–593 (2003).
[Crossref] [PubMed]

Shah, N. C.

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
[Crossref] [PubMed]

Shaw, A. D.

J. A. Kellum, F. E. Sileanu, R. Murugan, N. Lucko, A. D. Shaw, and G. Clermont, “Classifying AKI by Urine Output versus Serum Creatinine Level,” J. Am. Soc. Nephrol. 26(9), 2231–2238 (2015).
[Crossref] [PubMed]

Shen, J.

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, C. Fan, and S. Song, “Multicolor gold-silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref] [PubMed]

Shi, J.

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, C. Fan, and S. Song, “Multicolor gold-silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref] [PubMed]

Shih, W. C.

Shin, S.

S. Shin, J. Lee, S. Lee, H. Kim, J. Seo, D. Kim, J. Hong, S. Lee, and T. Lee, “A Droplet-based high-throughput SERS platform on a droplet-guiding-track-engraved superhydrophobic substrate,” Small 13(7), 1602865 (2017).
[Crossref]

Sileanu, F. E.

J. A. Kellum, F. E. Sileanu, R. Murugan, N. Lucko, A. D. Shaw, and G. Clermont, “Classifying AKI by Urine Output versus Serum Creatinine Level,” J. Am. Soc. Nephrol. 26(9), 2231–2238 (2015).
[Crossref] [PubMed]

Song, S.

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, C. Fan, and S. Song, “Multicolor gold-silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref] [PubMed]

Su, J.

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, C. Fan, and S. Song, “Multicolor gold-silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref] [PubMed]

Sun, M.

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman Spectrosc. 45(7), 533–540 (2014).
[Crossref]

Sun, M. L.

J. A. Huang, Y. L. Zhang, Y. Zhao, X. L. Zhang, M. L. Sun, and W. Zhang, “Superhydrophobic SERS chip based on a Ag coated natural taro-leaf,” Nanoscale 8(22), 11487–11493 (2016).
[Crossref] [PubMed]

Sun, Y.

Y. Sun, Z. Han, H. Liu, S. He, L. Yang, and J. Liu, “Three-dimensional hotspots in evaporating nanoparticle sols for ultrahigh Raman scattering: solid-liquid interface effects,” Nanoscale 7(15), 6619–6626 (2015).
[Crossref] [PubMed]

Terekhov, S. N.

Thilaganathan, B.

C. Westley, Y. Xu, B. Thilaganathan, A. J. Carnell, N. J. Turner, and R. Goodacre, “Absolute quantification of uric acid in human urine using surface enhanced Raman Scattering with the standard addition method,” Anal. Chem. 89(4), 2472–2477 (2017).
[Crossref] [PubMed]

Tian, Y.

H. Zhang, G. Li, S. Li, L. Xu, Y. Tian, A. Jiao, X. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457, 684–694 (2018).
[Crossref]

Turner, N. J.

C. Westley, Y. Xu, B. Thilaganathan, A. J. Carnell, N. J. Turner, and R. Goodacre, “Absolute quantification of uric acid in human urine using surface enhanced Raman Scattering with the standard addition method,” Anal. Chem. 89(4), 2472–2477 (2017).
[Crossref] [PubMed]

Van Duyne, R. P.

S. L. Kleinman, R. R. Frontiera, A. I. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15(1), 21–36 (2013).
[Crossref] [PubMed]

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
[Crossref] [PubMed]

C. R. Yonzon, C. L. Haynes, X. Zhang, J. T. Walsh, and R. P. Van Duyne, “A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference,” Anal. Chem. 76(1), 78–85 (2004).
[Crossref] [PubMed]

K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, and R. P. Van Duyne, “Toward a glucose biosensor based on surface-enhanced Raman scattering,” J. Am. Chem. Soc. 125(2), 588–593 (2003).
[Crossref] [PubMed]

Velicka, M.

M. Pucetaite, M. Velicka, J. Pilipavicius, A. Beganskiene, J. Ceponkusa, and V. Sablinskas, “Uric acid detection by means of SERS spectroscopy on dried Ag colloidal drops,” J. Raman Spectrosc. 47(6), 681–686 (2016).
[Crossref]

Vivero-Escoto, J.

Walsh, J. T.

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
[Crossref] [PubMed]

C. R. Yonzon, C. L. Haynes, X. Zhang, J. T. Walsh, and R. P. Van Duyne, “A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference,” Anal. Chem. 76(1), 78–85 (2004).
[Crossref] [PubMed]

Wang, D.

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, C. Fan, and S. Song, “Multicolor gold-silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref] [PubMed]

Weiss, M.

L. Cao, T. P. Price, M. Weiss, and D. Gao, “Super water- and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films,” Langmuir 24(5), 1640–1643 (2008).
[Crossref] [PubMed]

Westley, C.

C. Westley, Y. Xu, B. Thilaganathan, A. J. Carnell, N. J. Turner, and R. Goodacre, “Absolute quantification of uric acid in human urine using surface enhanced Raman Scattering with the standard addition method,” Anal. Chem. 89(4), 2472–2477 (2017).
[Crossref] [PubMed]

Xia, J.

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman Spectrosc. 45(7), 533–540 (2014).
[Crossref]

Xia, L.

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman Spectrosc. 45(7), 533–540 (2014).
[Crossref]

Xu, H.

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman Spectrosc. 45(7), 533–540 (2014).
[Crossref]

Xu, L.

H. Zhang, G. Li, S. Li, L. Xu, Y. Tian, A. Jiao, X. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457, 684–694 (2018).
[Crossref]

Xu, Y.

C. Westley, Y. Xu, B. Thilaganathan, A. J. Carnell, N. J. Turner, and R. Goodacre, “Absolute quantification of uric acid in human urine using surface enhanced Raman Scattering with the standard addition method,” Anal. Chem. 89(4), 2472–2477 (2017).
[Crossref] [PubMed]

Yang, L.

Y. Sun, Z. Han, H. Liu, S. He, L. Yang, and J. Liu, “Three-dimensional hotspots in evaporating nanoparticle sols for ultrahigh Raman scattering: solid-liquid interface effects,” Nanoscale 7(15), 6619–6626 (2015).
[Crossref] [PubMed]

Yong, K. T.

Yonzon, C. R.

C. R. Yonzon, C. L. Haynes, X. Zhang, J. T. Walsh, and R. P. Van Duyne, “A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference,” Anal. Chem. 76(1), 78–85 (2004).
[Crossref] [PubMed]

Yuen, J. M.

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
[Crossref] [PubMed]

Zeng, J.

Zhang, H.

H. Zhang, G. Li, S. Li, L. Xu, Y. Tian, A. Jiao, X. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457, 684–694 (2018).
[Crossref]

Zhang, W.

J. A. Huang, Y. L. Zhang, Y. Zhao, X. L. Zhang, M. L. Sun, and W. Zhang, “Superhydrophobic SERS chip based on a Ag coated natural taro-leaf,” Nanoscale 8(22), 11487–11493 (2016).
[Crossref] [PubMed]

Zhang, X.

C. R. Yonzon, C. L. Haynes, X. Zhang, J. T. Walsh, and R. P. Van Duyne, “A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference,” Anal. Chem. 76(1), 78–85 (2004).
[Crossref] [PubMed]

Zhang, X. L.

J. A. Huang, Y. L. Zhang, Y. Zhao, X. L. Zhang, M. L. Sun, and W. Zhang, “Superhydrophobic SERS chip based on a Ag coated natural taro-leaf,” Nanoscale 8(22), 11487–11493 (2016).
[Crossref] [PubMed]

Zhang, Y. L.

J. A. Huang, Y. L. Zhang, Y. Zhao, X. L. Zhang, M. L. Sun, and W. Zhang, “Superhydrophobic SERS chip based on a Ag coated natural taro-leaf,” Nanoscale 8(22), 11487–11493 (2016).
[Crossref] [PubMed]

Zhang, Z.

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman Spectrosc. 45(7), 533–540 (2014).
[Crossref]

Zhao, F.

Zhao, X.

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman Spectrosc. 45(7), 533–540 (2014).
[Crossref]

Zhao, Y.

J. A. Huang, Y. L. Zhang, Y. Zhao, X. L. Zhang, M. L. Sun, and W. Zhang, “Superhydrophobic SERS chip based on a Ag coated natural taro-leaf,” Nanoscale 8(22), 11487–11493 (2016).
[Crossref] [PubMed]

Zhao, Z.

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, C. Fan, and S. Song, “Multicolor gold-silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref] [PubMed]

Zhu, C.

C. Zhu, G. Meng, Q. Huang, Z. Huang, and Z. Chu, “Au hierarchical micro/nanotower arrays and their improved SERS effect by Ag nanoparticle decoration,” Cryst. Growth Des. 11(3), 748–752 (2011).
[Crossref]

Zourob, M.

K. A. Mahmoud and M. Zourob, “Fe3O4/Au nanoparticles/lignin modified microspheres as effectual surface enhanced Raman scattering (SERS) substrates for highly selective and sensitive detection of 2,4,6-trinitrotoluene (TNT),” Analyst (Lond.) 138(9), 2712–2719 (2013).
[Crossref] [PubMed]

Am. J. Obstet. Gynecol. (1)

C. S. Buhimschi, E. R. Norwitz, E. Funai, S. Richman, S. Guller, C. J. Lockwood, and I. A. Buhimschi, “Urinary angiogenic factors cluster hypertensive disorders and identify women with severe preeclampsia,” Am. J. Obstet. Gynecol. 192(3), 734–741 (2005).
[Crossref] [PubMed]

Anal. Chem. (4)

C. Westley, Y. Xu, B. Thilaganathan, A. J. Carnell, N. J. Turner, and R. Goodacre, “Absolute quantification of uric acid in human urine using surface enhanced Raman Scattering with the standard addition method,” Anal. Chem. 89(4), 2472–2477 (2017).
[Crossref] [PubMed]

C. R. Yonzon, C. L. Haynes, X. Zhang, J. T. Walsh, and R. P. Van Duyne, “A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference,” Anal. Chem. 76(1), 78–85 (2004).
[Crossref] [PubMed]

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
[Crossref] [PubMed]

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, C. Fan, and S. Song, “Multicolor gold-silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref] [PubMed]

Analyst (Lond.) (1)

K. A. Mahmoud and M. Zourob, “Fe3O4/Au nanoparticles/lignin modified microspheres as effectual surface enhanced Raman scattering (SERS) substrates for highly selective and sensitive detection of 2,4,6-trinitrotoluene (TNT),” Analyst (Lond.) 138(9), 2712–2719 (2013).
[Crossref] [PubMed]

Appl. Spectrosc. (1)

Appl. Surf. Sci. (2)

H. Zhang, G. Li, S. Li, L. Xu, Y. Tian, A. Jiao, X. Liu, F. Chen, and M. Chen, “Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced Raman spectroscopy,” Appl. Surf. Sci. 457, 684–694 (2018).
[Crossref]

A. Safaee, D. K. Sarkar, and M. Farzaneh, “Superhydrophobic properties of silver-coated films on copper surface by galvanic exchange reaction,” Appl. Surf. Sci. 254(8), 2493–2498 (2008).
[Crossref]

Biomed. Opt. Express (3)

Chem. Commun. (Camb.) (1)

M. M. Harper, B. Robertson, A. Ricketts, and K. Faulds, “Specific detection of DNA through coupling of a TaqMan assay with surface enhanced Raman scattering (SERS),” Chem. Commun. (Camb.) 48(75), 9412–9414 (2012).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

S. V. Gaponenkoa and D. V. Guzatovb, “Possible rationale for ultimate enhancement factor in single molecule Raman spectroscopy,” Chem. Phys. Lett. 477(4-6), 411–414 (2009).
[Crossref]

Cryst. Growth Des. (1)

C. Zhu, G. Meng, Q. Huang, Z. Huang, and Z. Chu, “Au hierarchical micro/nanotower arrays and their improved SERS effect by Ag nanoparticle decoration,” Cryst. Growth Des. 11(3), 748–752 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, and R. P. Van Duyne, “Toward a glucose biosensor based on surface-enhanced Raman scattering,” J. Am. Chem. Soc. 125(2), 588–593 (2003).
[Crossref] [PubMed]

J. Am. Soc. Nephrol. (1)

J. A. Kellum, F. E. Sileanu, R. Murugan, N. Lucko, A. D. Shaw, and G. Clermont, “Classifying AKI by Urine Output versus Serum Creatinine Level,” J. Am. Soc. Nephrol. 26(9), 2231–2238 (2015).
[Crossref] [PubMed]

J. Clin. Lab. Anal. (1)

E. J. Erlandsen and E. Randers, “Reference intervals for plasma cystatin C and plasma creatinine in adults using methods traceable to international calibrators and reference methods,” J. Clin. Lab. Anal. 32(6), e22433 (2018).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

S. W. Han, Y. Kim, and K. Kim, “Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR Analysis,” J. Colloid Interface Sci. 208(1), 272–278 (1998).
[Crossref] [PubMed]

J. Hypertens. (1)

C. Borghi, E. A. Rosei, T. Bardin, J. Dawson, A. Dominiczak, J. T. Kielstein, A. J. Manolis, F. Perez-Ruiz, and G. Mancia, “Serum uric acid and the risk of cardiovascular and renal disease,” J. Hypertens. 33(9), 1729–1741 (2015).
[Crossref] [PubMed]

J. Phys. Condens. Matter (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[Crossref]

J. Raman Spectrosc. (4)

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman Spectrosc. 45(7), 533–540 (2014).
[Crossref]

A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering,” J. Raman Spectrosc. 36(6-7), 497–509 (2005).
[Crossref]

E. C. L. Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement factors at a hot spot,” J. Raman Spectrosc. 39, 1127–1134 (2010).

M. Pucetaite, M. Velicka, J. Pilipavicius, A. Beganskiene, J. Ceponkusa, and V. Sablinskas, “Uric acid detection by means of SERS spectroscopy on dried Ag colloidal drops,” J. Raman Spectrosc. 47(6), 681–686 (2016).
[Crossref]

Joint Bone Spine (1)

S. Liu, F. Perez-Ruiz, and J. N. Miner, “Patients with gout differ from healthy subjects in renal response to changes in serum uric acid,” Joint Bone Spine 84(2), 183–188 (2017).
[Crossref] [PubMed]

Langmuir (1)

L. Cao, T. P. Price, M. Weiss, and D. Gao, “Super water- and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films,” Langmuir 24(5), 1640–1643 (2008).
[Crossref] [PubMed]

Nanoscale (2)

Y. Sun, Z. Han, H. Liu, S. He, L. Yang, and J. Liu, “Three-dimensional hotspots in evaporating nanoparticle sols for ultrahigh Raman scattering: solid-liquid interface effects,” Nanoscale 7(15), 6619–6626 (2015).
[Crossref] [PubMed]

J. A. Huang, Y. L. Zhang, Y. Zhao, X. L. Zhang, M. L. Sun, and W. Zhang, “Superhydrophobic SERS chip based on a Ag coated natural taro-leaf,” Nanoscale 8(22), 11487–11493 (2016).
[Crossref] [PubMed]

Nat. Rev. Drug Discov. (1)

S. F. Kingsmore, “Multiplexed protein measurement: technologies and applications of protein and antibody arrays,” Nat. Rev. Drug Discov. 5(4), 310–321 (2006).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

S. L. Kleinman, R. R. Frontiera, A. I. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15(1), 21–36 (2013).
[Crossref] [PubMed]

Rheumatology (Oxford) (1)

V. F. Panoulas, H. J. Milionis, K. M. J. Douglas, P. Nightingale, M. D. Kita, R. Klocke, M. S. Elisaf, and G. D. Kitas, “Association of serum uric acid with cardiovascular disease in rheumatoid arthritis,” Rheumatology (Oxford) 46(9), 1466–1470 (2007).
[Crossref] [PubMed]

Small (1)

S. Shin, J. Lee, S. Lee, H. Kim, J. Seo, D. Kim, J. Hong, S. Lee, and T. Lee, “A Droplet-based high-throughput SERS platform on a droplet-guiding-track-engraved superhydrophobic substrate,” Small 13(7), 1602865 (2017).
[Crossref]

Other (1)

K. Kneipp, H. Kneipp, and, H. G. Bohr, Single-Molecule SERS Spectroscopy (Springer, 2006), pp. 261–277.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic illustration of the synthetic process for superhydrophobic silver film and the detection spot of the mixture of analyte and Ag nanoparticles formed on the substrate for SERS measurement.
Fig. 2
Fig. 2 (a) UV-Vis absorption spectrum of Ag colloid; (b) TEM of the Ag Nps.
Fig. 3
Fig. 3 SEM images of AFS (a), commercial Ag foil (b) and AFS-Dodec (c); the inset is the optical image of the water droplet on the substrate.
Fig. 4
Fig. 4 FTIR-ATR spectra of AFS and AFS-Dodec.
Fig. 5
Fig. 5 (a) Optical images of water droplet on the AFS modified with different thiols, (b) Images of the time-evolution of a droplet on AFS and AFS-Dodec during natural evaporation.
Fig. 6
Fig. 6 (a) SERS spectra of 10−9 M R6G mixed with Ag colloid over AFS modified with different thiols. (b) Detection of R6G with R6G on glass. (c) Detection of R6G with R6G on AFS.
Fig. 7
Fig. 7 (a) SERS spectra obtained from 10−8~10−12 M R6G mixed with Ag colloid on AFS-Dodec, (b) the plots for SERS peak intensity at 1501 cm−1 as a function of R6G concentration
Fig. 8
Fig. 8 (a) SERS spectra obtained from 5~1000 μM uric acid mixed with Ag colloid on AFS-Dodec;(b) the plots for SERS peak intensity at 1133 cm−1 as a function of creatinine concentration
Fig. 9
Fig. 9 (a) SERS spectra obtained from 5~1000 μM creatinine mixed with Ag colloid on AFS-Dodec; (b) the plots for SERS peak intensity at 681 cm−1 as a function of creatinine concentration

Tables (1)

Tables Icon

Table 1 Band assignment for uric acid and creatinine

Metrics