Abstract

We demonstrate determination of the location of the distal-end of a fibre-optic device deep in tissue through the imaging of ballistic and snake photons using a time resolved single-photon detector array. The fibre was imaged with centimetre resolution, within clinically relevant settings and models. This technique can overcome the limitations imposed by tissue scattering in optically determining the in vivo location of fibre-optic medical instruments.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Time-resolved spectroscopy at 19,000 lines per second using a CMOS SPAD line array enables advanced biophotonics applications

A. Kufcsák, A. Erdogan, R. Walker, K. Ehrlich, M. Tanner, A. Megia-Fernandez, E. Scholefield, P. Emanuel, K. Dhaliwal, M. Bradley, R. K. Henderson, and N. Krstajić
Opt. Express 25(10) 11103-11123 (2017)

256 × 2 SPAD line sensor for time resolved fluorescence spectroscopy

Nikola Krstajić, James Levitt, Simon Poland, Simon Ameer-Beg, and Robert Henderson
Opt. Express 23(5) 5653-5669 (2015)

Enhanced performance photon-counting time-of-flight sensor

Ryan E. Warburton, Aongus McCarthy, Andrew M. Wallace, Sergio Hernandez-Marin, Sergio Cova, Robert A. Lamb, and Gerald S. Buller
Opt. Express 15(2) 423-429 (2007)

References

  • View by:
  • |
  • |
  • |

  1. E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle,” Opt. Lett. 38(5), 609–611 (2013).
    [Crossref] [PubMed]
  2. C. S. Carignan and Y. Yagi, “Optical endomicroscopy and the road to real-time, in vivo pathology: present and future,” Diagn. Pathol. 7(1), 98 (2012).
    [Crossref] [PubMed]
  3. M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
    [Crossref] [PubMed]
  4. G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, “Wireless capsule endoscopy,” Nature 405(6785), 417 (2000).
    [Crossref] [PubMed]
  5. N. Krstajic, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
    [Crossref] [PubMed]
  6. D. Choudhury, M. G. Tanner, S. McAughtrie, F. Yu, B. Mills, T. R. Choudhary, S. Seth, T. H. Craven, J. M. Stone, I. K. Mati, C. J. Campbell, M. Bradley, C. K. I. Williams, K. Dhaliwal, T. A. Birks, and R. R. Thomson, “Endoscopic sensing of alveolar pH,” Biomed. Opt. Express 8(1), 243–259 (2017).
    [Crossref] [PubMed]
  7. K. M. Yoo and R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15(6), 320 (1990).
    [Crossref] [PubMed]
  8. R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
    [Crossref] [PubMed]
  9. S. Stolik, J. A. Delgado, A. Pérez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues,” J. Photochem. Photobiol. Bol. Biol. 57, 90–93 (2000).
  10. V. Gopal, S. Mujumdar, H. Ramachandran, and A. K. Sood, “Imaging in turbid media using quasi-ballistic photons,” Opt. Commun. 170(4-6), 331–345 (1999).
    [Crossref]
  11. S. Farsiu, J. Christofferson, B. Eriksson, P. Milanfar, B. Friedlander, A. Shakouri, and R. Nowak, “Statistical detection and imaging of objects hidden in turbid media using ballistic photons,” Appl. Opt. 46(23), 5805–5822 (2007).
    [Crossref] [PubMed]
  12. J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32x32 50ps resolution 10 bit time to digital converter array in 130nm CMOS for time correlated imaging,” 2009 IEEE Cust. Integr. Circuits Conf. 77–80 (2009).
  13. J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low Dark Count Single-Photon Avalanche Diode Structure Compatible With Standard Nanometer Scale CMOS Technology,” IEEE Photonics Technol. Lett. 21(14), 1020–1022 (2009).
    [Crossref]
  14. D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, “Real-time fluorescence lifetime imaging system with a 32 x 32 0.13μm CMOS low dark-count single-photon avalanche diode array,” Opt. Express 18(10), 10257–10269 (2010).
    [Crossref] [PubMed]
  15. G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6, 6021 (2015).
    [Crossref] [PubMed]
  16. N. Krstajić, S. Poland, J. Levitt, R. Walker, A. Erdogan, S. Ameer-Beg, and R. K. Henderson, “0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays,” Opt. Lett. 40(18), 4305–4308 (2015).
    [Crossref] [PubMed]
  17. H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
    [Crossref] [PubMed]
  18. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, Springer Series in Chemical Physics (Springer Berlin Heidelberg, 2005), Vol. 81.
  19. N. Abramson, “Light-in-flight recording by holography,” Opt. Lett. 3(4), 121–123 (1978).
    [Crossref] [PubMed]
  20. R. Warburton, C. Aniculaesei, M. Clerici, Y. Altmann, G. Gariepy, R. McCracken, D. Reid, S. McLaughlin, M. Petrovich, J. Hayes, R. Henderson, D. Faccio, and J. Leach, “Observation of laser pulse propagation in optical fibers with a SPAD camera,” Sci. Rep. 7, 43302 (2017).
    [Crossref] [PubMed]
  21. T. A. Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83μm pitch in 3D-stacked CMOS technology,” 2016 IEEE Int. Electron Devices Meet. 8.1.1–8.1.4 (2016).
    [Crossref]
  22. K. Schicho, M. Figl, M. Donat, W. Birkfellner, R. Seemann, A. Wagner, H. Bergmann, and R. Ewers, “Stability of miniature electromagnetic tracking systems,” Phys. Med. Biol. 50(9), 2089–2098 (2005).
    [Crossref] [PubMed]
  23. A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-Photon Imaging,” Science 343(6166), 58–61 (2014).
    [Crossref] [PubMed]
  24. D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
    [Crossref] [PubMed]
  25. G. Satat, B. Heshmat, D. Raviv, and R. Raskar, “All Photons Imaging Through Volumetric Scattering,” Sci. Rep. 6(1), 33946 (2016).
    [Crossref] [PubMed]

2017 (3)

D. Choudhury, M. G. Tanner, S. McAughtrie, F. Yu, B. Mills, T. R. Choudhary, S. Seth, T. H. Craven, J. M. Stone, I. K. Mati, C. J. Campbell, M. Bradley, C. K. I. Williams, K. Dhaliwal, T. A. Birks, and R. R. Thomson, “Endoscopic sensing of alveolar pH,” Biomed. Opt. Express 8(1), 243–259 (2017).
[Crossref] [PubMed]

H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
[Crossref] [PubMed]

R. Warburton, C. Aniculaesei, M. Clerici, Y. Altmann, G. Gariepy, R. McCracken, D. Reid, S. McLaughlin, M. Petrovich, J. Hayes, R. Henderson, D. Faccio, and J. Leach, “Observation of laser pulse propagation in optical fibers with a SPAD camera,” Sci. Rep. 7, 43302 (2017).
[Crossref] [PubMed]

2016 (3)

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

G. Satat, B. Heshmat, D. Raviv, and R. Raskar, “All Photons Imaging Through Volumetric Scattering,” Sci. Rep. 6(1), 33946 (2016).
[Crossref] [PubMed]

N. Krstajic, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

2015 (2)

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref] [PubMed]

N. Krstajić, S. Poland, J. Levitt, R. Walker, A. Erdogan, S. Ameer-Beg, and R. K. Henderson, “0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays,” Opt. Lett. 40(18), 4305–4308 (2015).
[Crossref] [PubMed]

2014 (1)

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-Photon Imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

2013 (2)

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle,” Opt. Lett. 38(5), 609–611 (2013).
[Crossref] [PubMed]

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

2012 (1)

C. S. Carignan and Y. Yagi, “Optical endomicroscopy and the road to real-time, in vivo pathology: present and future,” Diagn. Pathol. 7(1), 98 (2012).
[Crossref] [PubMed]

2010 (1)

2009 (1)

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low Dark Count Single-Photon Avalanche Diode Structure Compatible With Standard Nanometer Scale CMOS Technology,” IEEE Photonics Technol. Lett. 21(14), 1020–1022 (2009).
[Crossref]

2007 (1)

2005 (1)

K. Schicho, M. Figl, M. Donat, W. Birkfellner, R. Seemann, A. Wagner, H. Bergmann, and R. Ewers, “Stability of miniature electromagnetic tracking systems,” Phys. Med. Biol. 50(9), 2089–2098 (2005).
[Crossref] [PubMed]

2001 (1)

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

2000 (2)

S. Stolik, J. A. Delgado, A. Pérez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues,” J. Photochem. Photobiol. Bol. Biol. 57, 90–93 (2000).

G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, “Wireless capsule endoscopy,” Nature 405(6785), 417 (2000).
[Crossref] [PubMed]

1999 (1)

V. Gopal, S. Mujumdar, H. Ramachandran, and A. K. Sood, “Imaging in turbid media using quasi-ballistic photons,” Opt. Commun. 170(4-6), 331–345 (1999).
[Crossref]

1990 (1)

1978 (1)

Abramson, N.

Akram, A. R.

N. Krstajic, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

Alfano, R. R.

Altmann, Y.

R. Warburton, C. Aniculaesei, M. Clerici, Y. Altmann, G. Gariepy, R. McCracken, D. Reid, S. McLaughlin, M. Petrovich, J. Hayes, R. Henderson, D. Faccio, and J. Leach, “Observation of laser pulse propagation in optical fibers with a SPAD camera,” Sci. Rep. 7, 43302 (2017).
[Crossref] [PubMed]

Ameer-Beg, S.

Anasagasti, L.

S. Stolik, J. A. Delgado, A. Pérez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues,” J. Photochem. Photobiol. Bol. Biol. 57, 90–93 (2000).

Andresen, E. R.

Aniculaesei, C.

R. Warburton, C. Aniculaesei, M. Clerici, Y. Altmann, G. Gariepy, R. McCracken, D. Reid, S. McLaughlin, M. Petrovich, J. Hayes, R. Henderson, D. Faccio, and J. Leach, “Observation of laser pulse propagation in optical fibers with a SPAD camera,” Sci. Rep. 7, 43302 (2017).
[Crossref] [PubMed]

Arlt, J.

Bergmann, H.

K. Schicho, M. Figl, M. Donat, W. Birkfellner, R. Seemann, A. Wagner, H. Bergmann, and R. Ewers, “Stability of miniature electromagnetic tracking systems,” Phys. Med. Biol. 50(9), 2089–2098 (2005).
[Crossref] [PubMed]

Birkfellner, W.

K. Schicho, M. Figl, M. Donat, W. Birkfellner, R. Seemann, A. Wagner, H. Bergmann, and R. Ewers, “Stability of miniature electromagnetic tracking systems,” Phys. Med. Biol. 50(9), 2089–2098 (2005).
[Crossref] [PubMed]

Birks, T. A.

H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
[Crossref] [PubMed]

D. Choudhury, M. G. Tanner, S. McAughtrie, F. Yu, B. Mills, T. R. Choudhary, S. Seth, T. H. Craven, J. M. Stone, I. K. Mati, C. J. Campbell, M. Bradley, C. K. I. Williams, K. Dhaliwal, T. A. Birks, and R. R. Thomson, “Endoscopic sensing of alveolar pH,” Biomed. Opt. Express 8(1), 243–259 (2017).
[Crossref] [PubMed]

Bouma, B. E.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Bouwmans, G.

Bradley, M.

D. Choudhury, M. G. Tanner, S. McAughtrie, F. Yu, B. Mills, T. R. Choudhary, S. Seth, T. H. Craven, J. M. Stone, I. K. Mati, C. J. Campbell, M. Bradley, C. K. I. Williams, K. Dhaliwal, T. A. Birks, and R. R. Thomson, “Endoscopic sensing of alveolar pH,” Biomed. Opt. Express 8(1), 243–259 (2017).
[Crossref] [PubMed]

N. Krstajic, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

Bridle, H. L.

H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
[Crossref] [PubMed]

Buller, G. S.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref] [PubMed]

Buts, A.

Campbell, C. J.

Carignan, C. S.

C. S. Carignan and Y. Yagi, “Optical endomicroscopy and the road to real-time, in vivo pathology: present and future,” Diagn. Pathol. 7(1), 98 (2012).
[Crossref] [PubMed]

Carruth, R. W.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Chandrasekharan, H. K.

H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
[Crossref] [PubMed]

Charbon, E.

Choudhary, T. R.

D. Choudhury, M. G. Tanner, S. McAughtrie, F. Yu, B. Mills, T. R. Choudhary, S. Seth, T. H. Craven, J. M. Stone, I. K. Mati, C. J. Campbell, M. Bradley, C. K. I. Williams, K. Dhaliwal, T. A. Birks, and R. R. Thomson, “Endoscopic sensing of alveolar pH,” Biomed. Opt. Express 8(1), 243–259 (2017).
[Crossref] [PubMed]

N. Krstajic, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

Choudhury, D.

Christofferson, J.

Clerici, M.

R. Warburton, C. Aniculaesei, M. Clerici, Y. Altmann, G. Gariepy, R. McCracken, D. Reid, S. McLaughlin, M. Petrovich, J. Hayes, R. Henderson, D. Faccio, and J. Leach, “Observation of laser pulse propagation in optical fibers with a SPAD camera,” Sci. Rep. 7, 43302 (2017).
[Crossref] [PubMed]

Colaço, A.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-Photon Imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Craven, T. H.

Dalgarno, P. A.

H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
[Crossref] [PubMed]

N. Krstajic, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

Delgado, J. A.

S. Stolik, J. A. Delgado, A. Pérez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues,” J. Photochem. Photobiol. Bol. Biol. 57, 90–93 (2000).

Dhaliwal, K.

D. Choudhury, M. G. Tanner, S. McAughtrie, F. Yu, B. Mills, T. R. Choudhary, S. Seth, T. H. Craven, J. M. Stone, I. K. Mati, C. J. Campbell, M. Bradley, C. K. I. Williams, K. Dhaliwal, T. A. Birks, and R. R. Thomson, “Endoscopic sensing of alveolar pH,” Biomed. Opt. Express 8(1), 243–259 (2017).
[Crossref] [PubMed]

N. Krstajic, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

Donat, M.

K. Schicho, M. Figl, M. Donat, W. Birkfellner, R. Seemann, A. Wagner, H. Bergmann, and R. Ewers, “Stability of miniature electromagnetic tracking systems,” Phys. Med. Biol. 50(9), 2089–2098 (2005).
[Crossref] [PubMed]

Erdogan, A.

Eriksson, B.

Ewers, R.

K. Schicho, M. Figl, M. Donat, W. Birkfellner, R. Seemann, A. Wagner, H. Bergmann, and R. Ewers, “Stability of miniature electromagnetic tracking systems,” Phys. Med. Biol. 50(9), 2089–2098 (2005).
[Crossref] [PubMed]

Faccio, D.

R. Warburton, C. Aniculaesei, M. Clerici, Y. Altmann, G. Gariepy, R. McCracken, D. Reid, S. McLaughlin, M. Petrovich, J. Hayes, R. Henderson, D. Faccio, and J. Leach, “Observation of laser pulse propagation in optical fibers with a SPAD camera,” Sci. Rep. 7, 43302 (2017).
[Crossref] [PubMed]

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref] [PubMed]

Farsiu, S.

Figl, M.

K. Schicho, M. Figl, M. Donat, W. Birkfellner, R. Seemann, A. Wagner, H. Bergmann, and R. Ewers, “Stability of miniature electromagnetic tracking systems,” Phys. Med. Biol. 50(9), 2089–2098 (2005).
[Crossref] [PubMed]

Friedlander, B.

Gallagher, K. A.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Gariepy, G.

R. Warburton, C. Aniculaesei, M. Clerici, Y. Altmann, G. Gariepy, R. McCracken, D. Reid, S. McLaughlin, M. Petrovich, J. Hayes, R. Henderson, D. Faccio, and J. Leach, “Observation of laser pulse propagation in optical fibers with a SPAD camera,” Sci. Rep. 7, 43302 (2017).
[Crossref] [PubMed]

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref] [PubMed]

Girkin, J. M.

N. Krstajic, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

Glukhovsky, A.

G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, “Wireless capsule endoscopy,” Nature 405(6785), 417 (2000).
[Crossref] [PubMed]

Gopal, V.

V. Gopal, S. Mujumdar, H. Ramachandran, and A. K. Sood, “Imaging in turbid media using quasi-ballistic photons,” Opt. Commun. 170(4-6), 331–345 (1999).
[Crossref]

Gora, M. J.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Goyal, V. K.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-Photon Imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Grant, L. A.

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low Dark Count Single-Photon Avalanche Diode Structure Compatible With Standard Nanometer Scale CMOS Technology,” IEEE Photonics Technol. Lett. 21(14), 1020–1022 (2009).
[Crossref]

Gris-Sánchez, I.

H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
[Crossref] [PubMed]

Hayes, J.

R. Warburton, C. Aniculaesei, M. Clerici, Y. Altmann, G. Gariepy, R. McCracken, D. Reid, S. McLaughlin, M. Petrovich, J. Hayes, R. Henderson, D. Faccio, and J. Leach, “Observation of laser pulse propagation in optical fibers with a SPAD camera,” Sci. Rep. 7, 43302 (2017).
[Crossref] [PubMed]

Henderson, R.

R. Warburton, C. Aniculaesei, M. Clerici, Y. Altmann, G. Gariepy, R. McCracken, D. Reid, S. McLaughlin, M. Petrovich, J. Hayes, R. Henderson, D. Faccio, and J. Leach, “Observation of laser pulse propagation in optical fibers with a SPAD camera,” Sci. Rep. 7, 43302 (2017).
[Crossref] [PubMed]

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref] [PubMed]

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, “Real-time fluorescence lifetime imaging system with a 32 x 32 0.13μm CMOS low dark-count single-photon avalanche diode array,” Opt. Express 18(10), 10257–10269 (2010).
[Crossref] [PubMed]

Henderson, R. K.

H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
[Crossref] [PubMed]

N. Krstajić, S. Poland, J. Levitt, R. Walker, A. Erdogan, S. Ameer-Beg, and R. K. Henderson, “0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays,” Opt. Lett. 40(18), 4305–4308 (2015).
[Crossref] [PubMed]

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low Dark Count Single-Photon Avalanche Diode Structure Compatible With Standard Nanometer Scale CMOS Technology,” IEEE Photonics Technol. Lett. 21(14), 1020–1022 (2009).
[Crossref]

Heshmat, B.

G. Satat, B. Heshmat, D. Raviv, and R. Raskar, “All Photons Imaging Through Volumetric Scattering,” Sci. Rep. 6(1), 33946 (2016).
[Crossref] [PubMed]

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref] [PubMed]

Iddan, G.

G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, “Wireless capsule endoscopy,” Nature 405(6785), 417 (2000).
[Crossref] [PubMed]

Izdebski, F.

H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
[Crossref] [PubMed]

Kava, L. E.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Kirmani, A.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-Photon Imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Krstajic, N.

H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
[Crossref] [PubMed]

N. Krstajic, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

N. Krstajić, S. Poland, J. Levitt, R. Walker, A. Erdogan, S. Ameer-Beg, and R. K. Henderson, “0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays,” Opt. Lett. 40(18), 4305–4308 (2015).
[Crossref] [PubMed]

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref] [PubMed]

Leach, J.

R. Warburton, C. Aniculaesei, M. Clerici, Y. Altmann, G. Gariepy, R. McCracken, D. Reid, S. McLaughlin, M. Petrovich, J. Hayes, R. Henderson, D. Faccio, and J. Leach, “Observation of laser pulse propagation in optical fibers with a SPAD camera,” Sci. Rep. 7, 43302 (2017).
[Crossref] [PubMed]

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref] [PubMed]

Levitt, J.

Li, C.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref] [PubMed]

Li, D.-U.

Lussana, R.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

MacPherson, W. N.

H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
[Crossref] [PubMed]

Mati, I. K.

McAughtrie, S.

McCracken, R.

R. Warburton, C. Aniculaesei, M. Clerici, Y. Altmann, G. Gariepy, R. McCracken, D. Reid, S. McLaughlin, M. Petrovich, J. Hayes, R. Henderson, D. Faccio, and J. Leach, “Observation of laser pulse propagation in optical fibers with a SPAD camera,” Sci. Rep. 7, 43302 (2017).
[Crossref] [PubMed]

McDonald, N.

N. Krstajic, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

McLaughlin, S.

R. Warburton, C. Aniculaesei, M. Clerici, Y. Altmann, G. Gariepy, R. McCracken, D. Reid, S. McLaughlin, M. Petrovich, J. Hayes, R. Henderson, D. Faccio, and J. Leach, “Observation of laser pulse propagation in optical fibers with a SPAD camera,” Sci. Rep. 7, 43302 (2017).
[Crossref] [PubMed]

Meron, G.

G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, “Wireless capsule endoscopy,” Nature 405(6785), 417 (2000).
[Crossref] [PubMed]

Milanfar, P.

Mills, B.

Monneret, S.

Moore, A.

N. Krstajic, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

Mujumdar, S.

V. Gopal, S. Mujumdar, H. Ramachandran, and A. K. Sood, “Imaging in turbid media using quasi-ballistic photons,” Opt. Commun. 170(4-6), 331–345 (1999).
[Crossref]

Nishioka, N. S.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Nowak, R.

Pedretti, E.

N. Krstajic, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

Pérez, A.

S. Stolik, J. A. Delgado, A. Pérez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues,” J. Photochem. Photobiol. Bol. Biol. 57, 90–93 (2000).

Petrovich, M.

R. Warburton, C. Aniculaesei, M. Clerici, Y. Altmann, G. Gariepy, R. McCracken, D. Reid, S. McLaughlin, M. Petrovich, J. Hayes, R. Henderson, D. Faccio, and J. Leach, “Observation of laser pulse propagation in optical fibers with a SPAD camera,” Sci. Rep. 7, 43302 (2017).
[Crossref] [PubMed]

Poland, S.

Ramachandran, H.

V. Gopal, S. Mujumdar, H. Ramachandran, and A. K. Sood, “Imaging in turbid media using quasi-ballistic photons,” Opt. Commun. 170(4-6), 331–345 (1999).
[Crossref]

Raskar, R.

G. Satat, B. Heshmat, D. Raviv, and R. Raskar, “All Photons Imaging Through Volumetric Scattering,” Sci. Rep. 6(1), 33946 (2016).
[Crossref] [PubMed]

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref] [PubMed]

Raviv, D.

G. Satat, B. Heshmat, D. Raviv, and R. Raskar, “All Photons Imaging Through Volumetric Scattering,” Sci. Rep. 6(1), 33946 (2016).
[Crossref] [PubMed]

Reid, D.

R. Warburton, C. Aniculaesei, M. Clerici, Y. Altmann, G. Gariepy, R. McCracken, D. Reid, S. McLaughlin, M. Petrovich, J. Hayes, R. Henderson, D. Faccio, and J. Leach, “Observation of laser pulse propagation in optical fibers with a SPAD camera,” Sci. Rep. 7, 43302 (2017).
[Crossref] [PubMed]

Richardson, J.

Richardson, J. A.

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low Dark Count Single-Photon Avalanche Diode Structure Compatible With Standard Nanometer Scale CMOS Technology,” IEEE Photonics Technol. Lett. 21(14), 1020–1022 (2009).
[Crossref]

Rigneault, H.

Rosenberg, M.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Satat, G.

G. Satat, B. Heshmat, D. Raviv, and R. Raskar, “All Photons Imaging Through Volumetric Scattering,” Sci. Rep. 6(1), 33946 (2016).
[Crossref] [PubMed]

Sauk, J. S.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Schicho, K.

K. Schicho, M. Figl, M. Donat, W. Birkfellner, R. Seemann, A. Wagner, H. Bergmann, and R. Ewers, “Stability of miniature electromagnetic tracking systems,” Phys. Med. Biol. 50(9), 2089–2098 (2005).
[Crossref] [PubMed]

Scholefield, E.

N. Krstajic, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

Seemann, R.

K. Schicho, M. Figl, M. Donat, W. Birkfellner, R. Seemann, A. Wagner, H. Bergmann, and R. Ewers, “Stability of miniature electromagnetic tracking systems,” Phys. Med. Biol. 50(9), 2089–2098 (2005).
[Crossref] [PubMed]

Seth, S.

Shakouri, A.

Shapiro, J. H.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-Photon Imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Shin, D.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-Photon Imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Sood, A. K.

V. Gopal, S. Mujumdar, H. Ramachandran, and A. K. Sood, “Imaging in turbid media using quasi-ballistic photons,” Opt. Commun. 170(4-6), 331–345 (1999).
[Crossref]

Stolik, S.

S. Stolik, J. A. Delgado, A. Pérez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues,” J. Photochem. Photobiol. Bol. Biol. 57, 90–93 (2000).

Stone, J. M.

Stoppa, D.

Suter, M. J.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Swain, P.

G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, “Wireless capsule endoscopy,” Nature 405(6785), 417 (2000).
[Crossref] [PubMed]

Tanner, M. G.

D. Choudhury, M. G. Tanner, S. McAughtrie, F. Yu, B. Mills, T. R. Choudhary, S. Seth, T. H. Craven, J. M. Stone, I. K. Mati, C. J. Campbell, M. Bradley, C. K. I. Williams, K. Dhaliwal, T. A. Birks, and R. R. Thomson, “Endoscopic sensing of alveolar pH,” Biomed. Opt. Express 8(1), 243–259 (2017).
[Crossref] [PubMed]

N. Krstajic, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

Tearney, G. J.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Thomson, R. R.

D. Choudhury, M. G. Tanner, S. McAughtrie, F. Yu, B. Mills, T. R. Choudhary, S. Seth, T. H. Craven, J. M. Stone, I. K. Mati, C. J. Campbell, M. Bradley, C. K. I. Williams, K. Dhaliwal, T. A. Birks, and R. R. Thomson, “Endoscopic sensing of alveolar pH,” Biomed. Opt. Express 8(1), 243–259 (2017).
[Crossref] [PubMed]

H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
[Crossref] [PubMed]

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref] [PubMed]

Venkatraman, D.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-Photon Imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Villa, F.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

Wagner, A.

K. Schicho, M. Figl, M. Donat, W. Birkfellner, R. Seemann, A. Wagner, H. Bergmann, and R. Ewers, “Stability of miniature electromagnetic tracking systems,” Phys. Med. Biol. 50(9), 2089–2098 (2005).
[Crossref] [PubMed]

Walker, R.

Warburton, R.

R. Warburton, C. Aniculaesei, M. Clerici, Y. Altmann, G. Gariepy, R. McCracken, D. Reid, S. McLaughlin, M. Petrovich, J. Hayes, R. Henderson, D. Faccio, and J. Leach, “Observation of laser pulse propagation in optical fibers with a SPAD camera,” Sci. Rep. 7, 43302 (2017).
[Crossref] [PubMed]

Weissleder, R.

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

Williams, C. K. I.

Wong, F. N. C.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-Photon Imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Xu, F.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

Yagi, Y.

C. S. Carignan and Y. Yagi, “Optical endomicroscopy and the road to real-time, in vivo pathology: present and future,” Diagn. Pathol. 7(1), 98 (2012).
[Crossref] [PubMed]

Yoo, K. M.

Yu, F.

Zappa, F.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Diagn. Pathol. (1)

C. S. Carignan and Y. Yagi, “Optical endomicroscopy and the road to real-time, in vivo pathology: present and future,” Diagn. Pathol. 7(1), 98 (2012).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low Dark Count Single-Photon Avalanche Diode Structure Compatible With Standard Nanometer Scale CMOS Technology,” IEEE Photonics Technol. Lett. 21(14), 1020–1022 (2009).
[Crossref]

J. Biomed. Opt. (1)

N. Krstajic, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

J. Photochem. Photobiol. Bol. Biol. (1)

S. Stolik, J. A. Delgado, A. Pérez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues,” J. Photochem. Photobiol. Bol. Biol. 57, 90–93 (2000).

Nat. Biotechnol. (1)

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

Nat. Commun. (3)

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref] [PubMed]

H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
[Crossref] [PubMed]

Nat. Med. (1)

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Nature (1)

G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, “Wireless capsule endoscopy,” Nature 405(6785), 417 (2000).
[Crossref] [PubMed]

Opt. Commun. (1)

V. Gopal, S. Mujumdar, H. Ramachandran, and A. K. Sood, “Imaging in turbid media using quasi-ballistic photons,” Opt. Commun. 170(4-6), 331–345 (1999).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Phys. Med. Biol. (1)

K. Schicho, M. Figl, M. Donat, W. Birkfellner, R. Seemann, A. Wagner, H. Bergmann, and R. Ewers, “Stability of miniature electromagnetic tracking systems,” Phys. Med. Biol. 50(9), 2089–2098 (2005).
[Crossref] [PubMed]

Sci. Rep. (2)

R. Warburton, C. Aniculaesei, M. Clerici, Y. Altmann, G. Gariepy, R. McCracken, D. Reid, S. McLaughlin, M. Petrovich, J. Hayes, R. Henderson, D. Faccio, and J. Leach, “Observation of laser pulse propagation in optical fibers with a SPAD camera,” Sci. Rep. 7, 43302 (2017).
[Crossref] [PubMed]

G. Satat, B. Heshmat, D. Raviv, and R. Raskar, “All Photons Imaging Through Volumetric Scattering,” Sci. Rep. 6(1), 33946 (2016).
[Crossref] [PubMed]

Science (1)

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-Photon Imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Other (3)

T. A. Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83μm pitch in 3D-stacked CMOS technology,” 2016 IEEE Int. Electron Devices Meet. 8.1.1–8.1.4 (2016).
[Crossref]

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, Springer Series in Chemical Physics (Springer Berlin Heidelberg, 2005), Vol. 81.

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32x32 50ps resolution 10 bit time to digital converter array in 130nm CMOS for time correlated imaging,” 2009 IEEE Cust. Integr. Circuits Conf. 77–80 (2009).

Supplementary Material (6)

NameDescription
» Visualization 1       Compilation of subsequent visualisations.
» Visualization 2       Observation of ‘light in flight’ through an optical fibre.
» Visualization 3       Laser pulse scattering through a uniform colloidal suspension (milk).
» Visualization 4       Fibre location in tissue models, a whole avian (chicken) model and an ovine lung with rib cage.
» Visualization 5       Fibre location in a ventilated and perfused ovine lung model with the camera on a tripod over the ‘patient’.
» Visualization 6       Fibre location through the human body.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fibre probe locating camera prototype for use in ambient lighting conditions. (a) Camera positioned over ventilated and perfused ovine lungs under normal laboratory lighting conditions; (b) Schematic of camera arrangement over the object to be imaged; (c) Internal lens, filter and detector setup; (d) Schematic representation of the expected observed image at different photon arrival times (purple), with lung image overlaid (orange); (e) Spectra of room lights from standard fluorescent bulbs (solid and dashed red lines) shown at two different measurement durations to provide 100X scaling, near infrared bandpass filter transmission measured and manufacturer reference data (blue solid and dashed lines) and ~785 nm laser emission spectrum (black line).

Fig. 2
Fig. 2

Observation of ‘light-in-flight’ along an optical fibre, demonstrating function of the camera. (a) Pulses of light travelling around a coil of fibre shown at 200 ps intervals. Pulses are travelling in a clockwise direction, observed to chase each other around the coil of fibre. Image is deliberately defocussed to enable easier viewing of the fibre coil; (b) Sum over time of the same data; (c) Schematic of fibre coil; (d) TCSPC traces from individual pixels labelled. Video accompanying this figure offers clearer visualization than the individual frames (see Visualization 2). In this example, transparent tape was used to fix the coil of fibre in position at the bottom left of the image, causing increased photon scattering in this region most easily observed as the brightest region in (b).

Fig. 3
Fig. 3

Time resolved images of light scattered through a colloidal suspension (milk). (a) Time resolved photon arrival at t ~0 ns, t ~3 ns, t ~6ns, and the total photon counts over all time intervals (see Visualization 3). Early arriving “ballistic” photons are observed in the top image; (b) & (c) Normalised profiles through the images showing the extent of the scattered spot of light with time in (b) and at various time points in (c); (d) Histograms of photon counting statistics for pixels at the centre of spot (22,15 – black line), moving to the edge of the spot (1,15 – pink line), and for all other pixels in the image (grey).

Fig. 4
Fig. 4

Fibre location in tissue models. (a) A whole avian (chicken) model; (c) An ovine lung and rib cage. (a) & (c) Early ballistic photon arrival image locates the end of the fibre, and the total photon image (sum over all arrival times) offers little location information (see Visualization 4); (b) & (d) TCSPC histograms confirm early arrival of ballistic photons and later arrival from other bright features in the image. (d) Excludes the data from the top right portion of the image, where light escaping from the fibre without passing through tissue was directly observed.

Fig. 5
Fig. 5

Fibre location in a ventilated and perfused ovine lung model with the camera on a tripod over the ‘patient’. (a) & (b) in the light and (c) & (d) in the ‘dark’. The fibre was repositioned to a neighbouring segment between experiments. (a) & (c) Early ballistic photon arrival images locate the end of the fibre in contrast to total photon images (sum over all arrival times) offering little location information (see Visualization 5). (b) & (d) TCSPC histograms confirm the ballistic arrival as compared to other bright features in the total photon image. Insets shown on shorter time scale for clarity of timing differences.

Fig. 6
Fig. 6

Fibre location through the human body. (a) & (b) Human hand and (c) & (d) Human torso, below ribs, imaged from the front of body with the fibre placed against back. (a) & (c) Location of the optical fibre probe through early ballistic photon arrival images, in contrast to total photon images (sum over all arrival times). In (c) three subsequent time resolved frames are shown to aid in determination of ballistic arrival bright point above the noise level (see Visualization 6). (b) & (d) TCSPC histograms demonstrating differences in photon arrival statistics, even in low photon count data for human torso.

Tables (1)

Tables Icon

Table 1 Experimental settings for data.

Metrics