H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58, 984–992 (2011).
[Crossref]
[PubMed]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
H. Wang, T. Akkin, C. Magnain, R. Wang, J. Dubb, W. J. Kostis, M. A. Yaseen, A. Cramer, S. Sakadžić, and D. Boas, “Polarization sensitive optical coherence microscopy for brain imaging,” Opt. Lett. 41, 2213–2216 (2016).
[Crossref]
[PubMed]
H. Wang, J. Zhu, and T. Akkin, “Serial optical coherence scanner for large-scale brain imaging at microscopic resolution,” Neuroimage 84, 1007–1017 (2014).
[Crossref]
C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: a comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).
[Crossref]
H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58, 984–992 (2011).
[Crossref]
[PubMed]
L. van Manen, P. L. Stegehuis, A. Fariña-Sarasqueta, L. M. de Haan, J. Eggermont, B. A. Bonsing, H. Morreau, B. P. Lelieveldt, C. J. van de Velde, D. J. Vahrmeijer, L Alexander, and J. S. Mieog, “Validation of full-field optical coherence tomography in distinguishing malignant and benign tissue in resected pancreatic cancer specimens,” PLoS ONE 12, e0175862 (2017).
[Crossref]
[PubMed]
H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58, 984–992 (2011).
[Crossref]
[PubMed]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W. Wadsworth, J. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[Crossref]
B. Baumann, A. Woehrer, G. Ricken, M. Augustin, C. Mitter, M. Pircher, G. G. Kovacs, and C. K. Hitzenberger, “Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy,” Sci. Rep. 7, 43477 (2017).
[Crossref]
A. Lichtenegger, D. J. Harper, M. Augustin, P. Eugui, S. Fialová, A. Woehrer, C. K. Hitzenberger, and B. Baumann, “Visible light spectral domain optical coherence microscopy system for ex vivo imaging,” Proc. SPIE 10051, 1005103 (2017).
[Crossref]
C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: a comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).
[Crossref]
A. Azaripour, T. Lagerweij, C. Scharfbillig, A. E. Jadczak, B. Willershausen, and C. J. Van Noorden, “A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue,” Prog. Histochem. Cytochem. 51, 9–23 (2016).
[Crossref]
[PubMed]
P. Babu, D. Chopra, T. G. Row, and U. Maitra, “Micellar aggregates and hydrogels from phosphonobile salts,” Org. Biomol. Chem 3, 3695–3700 (2005).
[Crossref]
[PubMed]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
E. Murray, J. H. Cho, D. Goodwin, T. Ku, J. Swaney, S.-Y. Kim, H. Choi, Y.-G. Park, J.-Y. Park, A. Hubbert, M. McCue, S. Vassallo, N. Bakh, M. P. Frosch, V. J. Wedeen, S. Seung, and K. Chung, “Simple, scalable proteomic imaging for high-dimensional profiling of intact systems,” Cell 163, 1500–1514 (2015).
[Crossref]
[PubMed]
M. Maria, I. Gonzalo, M. Bondu, R. Engelsholm, T. Feuchter, P. Moselund, L. Leick, O. Bang, and A. Podoleanu, “A comparative study of noise in supercontinuum light sources for ultra-high resolution optical coherence tomography,” Proc. SPIE 10056, 100560O (2017).
B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[Crossref]
B. Baumann, A. Woehrer, G. Ricken, M. Augustin, C. Mitter, M. Pircher, G. G. Kovacs, and C. K. Hitzenberger, “Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy,” Sci. Rep. 7, 43477 (2017).
[Crossref]
A. Lichtenegger, D. J. Harper, M. Augustin, P. Eugui, S. Fialová, A. Woehrer, C. K. Hitzenberger, and B. Baumann, “Visible light spectral domain optical coherence microscopy system for ex vivo imaging,” Proc. SPIE 10051, 1005103 (2017).
[Crossref]
W. Choi, B. Baumann, E. A. Swanson, and J. G. Fujimoto, “Extracting and compensating dispersion mismatch in ultrahigh-resolution Fourier domain OCT imaging of the retina,” Opt. Express 20, 25357–25368 (2012).
[Crossref]
[PubMed]
N. Jährling, K. Becker, B. M. Wegenast-Braun, S. A. Grathwohl, M. Jucker, and H.-U. Dodt, “Cerebral β-amyloidosis in mice investigated by ultramicroscopy,” PLoS ONE 10, e0125418 (2015).
[Crossref]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
A. G. Vlassenko, T. L. Benzinger, and J. C. Morris, “PET amyloid-beta imaging in preclinical Alzheimer’s disease,” Biochim. Biophys. Acta, Mol. Basis Dis. 1822, 370–379 (2012).
[Crossref]
T. Bolmont, A. Bouwens, C. Pache, M. Dimitrov, C. Berclaz, M. Villiger, B. M. Wegenast-Braun, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy,” J. Neurosci. 32, 14548–14556 (2012).
[Crossref]
[PubMed]
F. Li, Y. Song, A. Dryer, W. Cogguillo, Y. Berdichevsky, and C. Zhou, “Nondestructive evaluation of progressive neuronal changes in organotypic rat hippocampal slice cultures using ultrahigh-resolution optical coherence microscopy,” Neurophotonics 1, 025002 (2014).
[Crossref]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
T. Liebmann, N. Renier, K. Bettayeb, P. Greengard, M. Tessier-Lavigne, and M. Flajolet, “Three-dimensional study of Alzheimer’s disease hallmarks using the iDISCO clearing method,” Cell Rep. 16, 1138–1152 (2016).
[Crossref]
[PubMed]
K. Bizheva, A. Unterhuber, B. Hermann, B. Považay, H. Sattmann, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
[Crossref]
B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W. Wadsworth, J. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[Crossref]
H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58, 984–992 (2011).
[Crossref]
[PubMed]
R. P. McNabb, T. Blanco, H. M. Bomze, H. C. Tseng, D. R. Saban, J. A. Izatt, and A. N. Kuo, “Method for single illumination source combined optical coherence tomography and fluorescence imaging of fluorescently labeled ocular structures in transgenic mice,” Exp. Eye Res. 151, 68–74 (2016).
[Crossref]
[PubMed]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Foerster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep 6, 20658 (2016).
[Crossref]
[PubMed]
H. Wang, T. Akkin, C. Magnain, R. Wang, J. Dubb, W. J. Kostis, M. A. Yaseen, A. Cramer, S. Sakadžić, and D. Boas, “Polarization sensitive optical coherence microscopy for brain imaging,” Opt. Lett. 41, 2213–2216 (2016).
[Crossref]
[PubMed]
C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: a comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).
[Crossref]
T. Bolmont, A. Bouwens, C. Pache, M. Dimitrov, C. Berclaz, M. Villiger, B. M. Wegenast-Braun, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy,” J. Neurosci. 32, 14548–14556 (2012).
[Crossref]
[PubMed]
R. P. McNabb, T. Blanco, H. M. Bomze, H. C. Tseng, D. R. Saban, J. A. Izatt, and A. N. Kuo, “Method for single illumination source combined optical coherence tomography and fluorescence imaging of fluorescently labeled ocular structures in transgenic mice,” Exp. Eye Res. 151, 68–74 (2016).
[Crossref]
[PubMed]
M. Maria, I. Gonzalo, M. Bondu, R. Engelsholm, T. Feuchter, P. Moselund, L. Leick, O. Bang, and A. Podoleanu, “A comparative study of noise in supercontinuum light sources for ultra-high resolution optical coherence tomography,” Proc. SPIE 10056, 100560O (2017).
L. van Manen, P. L. Stegehuis, A. Fariña-Sarasqueta, L. M. de Haan, J. Eggermont, B. A. Bonsing, H. Morreau, B. P. Lelieveldt, C. J. van de Velde, D. J. Vahrmeijer, L Alexander, and J. S. Mieog, “Validation of full-field optical coherence tomography in distinguishing malignant and benign tissue in resected pancreatic cancer specimens,” PLoS ONE 12, e0175862 (2017).
[Crossref]
[PubMed]
S. Boppart, W. Drexler, U. Morgner, F. Kirtner, and J. Fujimoto, “Ultrahigh resolution and spectroscopic oct imaging of cellular morphology and function,” in “Proceedings of Inter-Institute Workshop on In Vivo Optical Imaging at the National Institutes of Health,” (1999).
B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[Crossref]
P. J. Marchand, A. Bouwens, D. Szlag, D. Nguyen, A. Descloux, M. Sison, S. Coquoz, J. Extermann, and T. Lasser, “Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography,” Biomed. Opt. Express 8, 3343–3359 (2017).
[Crossref]
[PubMed]
T. Bolmont, A. Bouwens, C. Pache, M. Dimitrov, C. Berclaz, M. Villiger, B. M. Wegenast-Braun, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy,” J. Neurosci. 32, 14548–14556 (2012).
[Crossref]
[PubMed]
A. J. Howie and D. B. Brewer, “Optical properties of amyloid stained by Congo red: history and mechanisms,” Micron 40, 285–301 (2009).
[Crossref]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
K. Bizheva, A. Unterhuber, B. Hermann, B. Považay, H. Sattmann, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
[Crossref]
B. Hyman, H. West, G. Rebeck, S. Buldyrev, R. Mantegna, M. Ukleja, S. Havlin, and H. Stanley, “Quantitative analysis of senile plaques in Alzheimer disease: observation of log-normal size distribution and molecular epidemiology of differences associated with apolipoprotein E genotype and trisomy 21 (Down syndrome),” Proc. Natl. Acad. Sci. U.S.A. 92, 3586–3590 (1995).
[Crossref]
[PubMed]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
J. Lefebvre, A. Castonguay, P. Pouliot, M. Descoteaux, and F. Lesage, “Whole mouse brain imaging using optical coherence tomography: reconstruction, normalization, segmentation, and comparison with diffusion MRI,” Neurophotonics 4, 041501 (2017).
[Crossref]
[PubMed]
J. Lefebvre, A. Castonguay, and F. Lesage, “White matter segmentation by estimating tissue optical attenuation from volumetric OCT massive histology of whole rodent brains,” Proc. SPIE 10070, 1007012 (2017).
[Crossref]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7, 292ra100 (2015).
[Crossref]
[PubMed]
J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6, 3701–3713 (2015).
[Crossref]
[PubMed]
J. Yi, S. Chen, V. Backman, and H. F. Zhang, “In vivo functional microangiography by visible-light optical coherence tomography,” Biomed. Opt. Express 5, 3603–3612 (2014).
[Crossref]
[PubMed]
G. Liu and Z. Chen, “Optical coherence tomography for brain imaging,” in Optical Methods and Instrumentation in Brain Imaging and Therapy (Springer, 2013), pp. 157–172.
[Crossref]
E. Murray, J. H. Cho, D. Goodwin, T. Ku, J. Swaney, S.-Y. Kim, H. Choi, Y.-G. Park, J.-Y. Park, A. Hubbert, M. McCue, S. Vassallo, N. Bakh, M. P. Frosch, V. J. Wedeen, S. Seung, and K. Chung, “Simple, scalable proteomic imaging for high-dimensional profiling of intact systems,” Cell 163, 1500–1514 (2015).
[Crossref]
[PubMed]
E. Murray, J. H. Cho, D. Goodwin, T. Ku, J. Swaney, S.-Y. Kim, H. Choi, Y.-G. Park, J.-Y. Park, A. Hubbert, M. McCue, S. Vassallo, N. Bakh, M. P. Frosch, V. J. Wedeen, S. Seung, and K. Chung, “Simple, scalable proteomic imaging for high-dimensional profiling of intact systems,” Cell 163, 1500–1514 (2015).
[Crossref]
[PubMed]
S. P. Chong, M. Bernucci, H. Radhakrishnan, and V. J. Srinivasan, “Structural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope,” Biomed. Opt. Express 8, 323–337 (2017).
[Crossref]
[PubMed]
S. P. Chong, C. W. Merkle, D. F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, and V. J. Srinivasan, “Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 μ m optical coherence tomography,” Opt. Lett. 40, 4911–4914 (2015).
[Crossref]
[PubMed]
P. Babu, D. Chopra, T. G. Row, and U. Maitra, “Micellar aggregates and hydrogels from phosphonobile salts,” Org. Biomol. Chem 3, 3695–3700 (2005).
[Crossref]
[PubMed]
E. Murray, J. H. Cho, D. Goodwin, T. Ku, J. Swaney, S.-Y. Kim, H. Choi, Y.-G. Park, J.-Y. Park, A. Hubbert, M. McCue, S. Vassallo, N. Bakh, M. P. Frosch, V. J. Wedeen, S. Seung, and K. Chung, “Simple, scalable proteomic imaging for high-dimensional profiling of intact systems,” Cell 163, 1500–1514 (2015).
[Crossref]
[PubMed]
F. Li, Y. Song, A. Dryer, W. Cogguillo, Y. Berdichevsky, and C. Zhou, “Nondestructive evaluation of progressive neuronal changes in organotypic rat hippocampal slice cultures using ultrahigh-resolution optical coherence microscopy,” Neurophotonics 1, 025002 (2014).
[Crossref]
S. P. Chong, C. W. Merkle, D. F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, and V. J. Srinivasan, “Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 μ m optical coherence tomography,” Opt. Lett. 40, 4911–4914 (2015).
[Crossref]
[PubMed]
P. J. Marchand, A. Bouwens, D. Szlag, D. Nguyen, A. Descloux, M. Sison, S. Coquoz, J. Extermann, and T. Lasser, “Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography,” Biomed. Opt. Express 8, 3343–3359 (2017).
[Crossref]
[PubMed]
S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Foerster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep 6, 20658 (2016).
[Crossref]
[PubMed]
H. Wang, T. Akkin, C. Magnain, R. Wang, J. Dubb, W. J. Kostis, M. A. Yaseen, A. Cramer, S. Sakadžić, and D. Boas, “Polarization sensitive optical coherence microscopy for brain imaging,” Opt. Lett. 41, 2213–2216 (2016).
[Crossref]
[PubMed]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
A. d’Esposito, D. Nikitichev, A. Desjardins, S. Walker-Samuel, and M. F. Lythgoe, “Quantification of light attenuation in optically cleared mouse brains,” J. Biomed. Opt. 20, 080503 (2015).
[Crossref]
J. Gallwas, A. Stanchi, N. Ditsch, T. Schwarz, C. Dannecker, S. Mueller, H. Stepp, and U. Mortensen, “Effect of optical clearing agents on optical coherence tomography images of cervical epithelium,” Lasers Med Sci. 30, 517–525 (2015).
[Crossref]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
K. Vermeer, et al. J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5, 322–337 (2014).
[Crossref]
[PubMed]
B. Ghafaryasl, K. A. Vermeer, J. F. de Boer, M. E. van Velthoven, and L. J. van Vliet, “Noise-adaptive attenuation coefficient estimation in spectral domain optical coherence tomography data,” Biomedical Imaging (ISBI), 2016 IEEE 13th International Symposium, pp. 706–709 (2016)
L. van Manen, P. L. Stegehuis, A. Fariña-Sarasqueta, L. M. de Haan, J. Eggermont, B. A. Bonsing, H. Morreau, B. P. Lelieveldt, C. J. van de Velde, D. J. Vahrmeijer, L Alexander, and J. S. Mieog, “Validation of full-field optical coherence tomography in distinguishing malignant and benign tissue in resected pancreatic cancer specimens,” PLoS ONE 12, e0175862 (2017).
[Crossref]
[PubMed]
P. J. Marchand, A. Bouwens, D. Szlag, D. Nguyen, A. Descloux, M. Sison, S. Coquoz, J. Extermann, and T. Lasser, “Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography,” Biomed. Opt. Express 8, 3343–3359 (2017).
[Crossref]
[PubMed]
J. Lefebvre, A. Castonguay, P. Pouliot, M. Descoteaux, and F. Lesage, “Whole mouse brain imaging using optical coherence tomography: reconstruction, normalization, segmentation, and comparison with diffusion MRI,” Neurophotonics 4, 041501 (2017).
[Crossref]
[PubMed]
A. d’Esposito, D. Nikitichev, A. Desjardins, S. Walker-Samuel, and M. F. Lythgoe, “Quantification of light attenuation in optically cleared mouse brains,” J. Biomed. Opt. 20, 080503 (2015).
[Crossref]
T. Bolmont, A. Bouwens, C. Pache, M. Dimitrov, C. Berclaz, M. Villiger, B. M. Wegenast-Braun, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy,” J. Neurosci. 32, 14548–14556 (2012).
[Crossref]
[PubMed]
J. Gallwas, A. Stanchi, N. Ditsch, T. Schwarz, C. Dannecker, S. Mueller, H. Stepp, and U. Mortensen, “Effect of optical clearing agents on optical coherence tomography images of cervical epithelium,” Lasers Med Sci. 30, 517–525 (2015).
[Crossref]
N. Jährling, K. Becker, B. M. Wegenast-Braun, S. A. Grathwohl, M. Jucker, and H.-U. Dodt, “Cerebral β-amyloidosis in mice investigated by ultramicroscopy,” PLoS ONE 10, e0125418 (2015).
[Crossref]
J. Dong, R. Revilla-Sanchez, S. Moss, and P. G. Haydon, “Multiphoton in vivo imaging of amyloid in animal models of Alzheimer’s disease,” Neuropharmacology 59, 268–275 (2010).
[Crossref]
[PubMed]
K. Bizheva, A. Unterhuber, B. Hermann, B. Považay, H. Sattmann, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
[Crossref]
B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W. Wadsworth, J. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[Crossref]
U. Morgner, W. Drexler, F. Kärtner, X. Li, C. Pitris, E. Ippen, and J. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[Crossref]
W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer Science & Business Media, 2008).
[Crossref]
S. Boppart, W. Drexler, U. Morgner, F. Kirtner, and J. Fujimoto, “Ultrahigh resolution and spectroscopic oct imaging of cellular morphology and function,” in “Proceedings of Inter-Institute Workshop on In Vivo Optical Imaging at the National Institutes of Health,” (1999).
F. Li, Y. Song, A. Dryer, W. Cogguillo, Y. Berdichevsky, and C. Zhou, “Nondestructive evaluation of progressive neuronal changes in organotypic rat hippocampal slice cultures using ultrahigh-resolution optical coherence microscopy,” Neurophotonics 1, 025002 (2014).
[Crossref]
L. Duan, M. D. McRaven, W. Liu, X. Shu, J. Hu, C. Sun, R. S. Veazey, T. J. Hope, and H. F. Zhang, “Colposcopic imaging using visible-light optical coherence tomography,” J. Biomed. Opt. 22, 056003 (2017).
[Crossref]
H. Wang, T. Akkin, C. Magnain, R. Wang, J. Dubb, W. J. Kostis, M. A. Yaseen, A. Cramer, S. Sakadžić, and D. Boas, “Polarization sensitive optical coherence microscopy for brain imaging,” Opt. Lett. 41, 2213–2216 (2016).
[Crossref]
[PubMed]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[Crossref]
[PubMed]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
L. van Manen, P. L. Stegehuis, A. Fariña-Sarasqueta, L. M. de Haan, J. Eggermont, B. A. Bonsing, H. Morreau, B. P. Lelieveldt, C. J. van de Velde, D. J. Vahrmeijer, L Alexander, and J. S. Mieog, “Validation of full-field optical coherence tomography in distinguishing malignant and benign tissue in resected pancreatic cancer specimens,” PLoS ONE 12, e0175862 (2017).
[Crossref]
[PubMed]
M. Maria, I. Gonzalo, M. Bondu, R. Engelsholm, T. Feuchter, P. Moselund, L. Leick, O. Bang, and A. Podoleanu, “A comparative study of noise in supercontinuum light sources for ultra-high resolution optical coherence tomography,” Proc. SPIE 10056, 100560O (2017).
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
A. Lichtenegger, D. J. Harper, M. Augustin, P. Eugui, S. Fialová, A. Woehrer, C. K. Hitzenberger, and B. Baumann, “Visible light spectral domain optical coherence microscopy system for ex vivo imaging,” Proc. SPIE 10051, 1005103 (2017).
[Crossref]
P. J. Marchand, A. Bouwens, D. Szlag, D. Nguyen, A. Descloux, M. Sison, S. Coquoz, J. Extermann, and T. Lasser, “Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography,” Biomed. Opt. Express 8, 3343–3359 (2017).
[Crossref]
[PubMed]
L. van Manen, P. L. Stegehuis, A. Fariña-Sarasqueta, L. M. de Haan, J. Eggermont, B. A. Bonsing, H. Morreau, B. P. Lelieveldt, C. J. van de Velde, D. J. Vahrmeijer, L Alexander, and J. S. Mieog, “Validation of full-field optical coherence tomography in distinguishing malignant and benign tissue in resected pancreatic cancer specimens,” PLoS ONE 12, e0175862 (2017).
[Crossref]
[PubMed]
R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-light optical coherence tomography angiography for monitoring laser-induced choroidal neovascularization in mice,” Invest. Ophthalmol. Vis. Sci. 57, OCT86–OCT95 (2016).
[Crossref]
[PubMed]
J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6, 3701–3713 (2015).
[Crossref]
[PubMed]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W. Wadsworth, J. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[Crossref]
R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. Hitzenberger, M. Sticker, and A. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25, 820–822 (2000).
[Crossref]
K. Bizheva, A. Unterhuber, B. Hermann, B. Považay, H. Sattmann, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
[Crossref]
M. Maria, I. Gonzalo, M. Bondu, R. Engelsholm, T. Feuchter, P. Moselund, L. Leick, O. Bang, and A. Podoleanu, “A comparative study of noise in supercontinuum light sources for ultra-high resolution optical coherence tomography,” Proc. SPIE 10056, 100560O (2017).
A. Lichtenegger, D. J. Harper, M. Augustin, P. Eugui, S. Fialová, A. Woehrer, C. K. Hitzenberger, and B. Baumann, “Visible light spectral domain optical coherence microscopy system for ex vivo imaging,” Proc. SPIE 10051, 1005103 (2017).
[Crossref]
C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: a comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).
[Crossref]
T. Liebmann, N. Renier, K. Bettayeb, P. Greengard, M. Tessier-Lavigne, and M. Flajolet, “Three-dimensional study of Alzheimer’s disease hallmarks using the iDISCO clearing method,” Cell Rep. 16, 1138–1152 (2016).
[Crossref]
[PubMed]
S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Foerster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep 6, 20658 (2016).
[Crossref]
[PubMed]
K. A. Johnson, N. C. Fox, R. A. Sperling, and W. E. Klunk, “Brain imaging in Alzheimer disease,” Cold Spring Harb. Perspect. Med. 2, a006213 (2012).
[Crossref]
[PubMed]
T. Bolmont, A. Bouwens, C. Pache, M. Dimitrov, C. Berclaz, M. Villiger, B. M. Wegenast-Braun, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy,” J. Neurosci. 32, 14548–14556 (2012).
[Crossref]
[PubMed]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
E. Murray, J. H. Cho, D. Goodwin, T. Ku, J. Swaney, S.-Y. Kim, H. Choi, Y.-G. Park, J.-Y. Park, A. Hubbert, M. McCue, S. Vassallo, N. Bakh, M. P. Frosch, V. J. Wedeen, S. Seung, and K. Chung, “Simple, scalable proteomic imaging for high-dimensional profiling of intact systems,” Cell 163, 1500–1514 (2015).
[Crossref]
[PubMed]
C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: a comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).
[Crossref]
S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Foerster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep 6, 20658 (2016).
[Crossref]
[PubMed]
S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Foerster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep 6, 20658 (2016).
[Crossref]
[PubMed]
U. Morgner, W. Drexler, F. Kärtner, X. Li, C. Pitris, E. Ippen, and J. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[Crossref]
S. Boppart, W. Drexler, U. Morgner, F. Kirtner, and J. Fujimoto, “Ultrahigh resolution and spectroscopic oct imaging of cellular morphology and function,” in “Proceedings of Inter-Institute Workshop on In Vivo Optical Imaging at the National Institutes of Health,” (1999).
W. Choi, B. Baumann, E. A. Swanson, and J. G. Fujimoto, “Extracting and compensating dispersion mismatch in ultrahigh-resolution Fourier domain OCT imaging of the retina,” Opt. Express 20, 25357–25368 (2012).
[Crossref]
[PubMed]
M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[Crossref]
[PubMed]
W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer Science & Business Media, 2008).
[Crossref]
B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[Crossref]
J. Gallwas, A. Stanchi, N. Ditsch, T. Schwarz, C. Dannecker, S. Mueller, H. Stepp, and U. Mortensen, “Effect of optical clearing agents on optical coherence tomography images of cervical epithelium,” Lasers Med Sci. 30, 517–525 (2015).
[Crossref]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
S. Gebhart, W. Lin, and A. Mahadevan-Jansen, “In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling,” Phys. Med. Biol. 51, 2011 (2006).
[Crossref]
[PubMed]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
B. Ghafaryasl, K. A. Vermeer, J. F. de Boer, M. E. van Velthoven, and L. J. van Vliet, “Noise-adaptive attenuation coefficient estimation in spectral domain optical coherence tomography data,” Biomedical Imaging (ISBI), 2016 IEEE 13th International Symposium, pp. 706–709 (2016)
S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Foerster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep 6, 20658 (2016).
[Crossref]
[PubMed]
M. Maria, I. Gonzalo, M. Bondu, R. Engelsholm, T. Feuchter, P. Moselund, L. Leick, O. Bang, and A. Podoleanu, “A comparative study of noise in supercontinuum light sources for ultra-high resolution optical coherence tomography,” Proc. SPIE 10056, 100560O (2017).
E. Murray, J. H. Cho, D. Goodwin, T. Ku, J. Swaney, S.-Y. Kim, H. Choi, Y.-G. Park, J.-Y. Park, A. Hubbert, M. McCue, S. Vassallo, N. Bakh, M. P. Frosch, V. J. Wedeen, S. Seung, and K. Chung, “Simple, scalable proteomic imaging for high-dimensional profiling of intact systems,” Cell 163, 1500–1514 (2015).
[Crossref]
[PubMed]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nature Photonics 5, 744–747 (2011).
[Crossref]
N. Jährling, K. Becker, B. M. Wegenast-Braun, S. A. Grathwohl, M. Jucker, and H.-U. Dodt, “Cerebral β-amyloidosis in mice investigated by ultramicroscopy,” PLoS ONE 10, e0125418 (2015).
[Crossref]
T. Liebmann, N. Renier, K. Bettayeb, P. Greengard, M. Tessier-Lavigne, and M. Flajolet, “Three-dimensional study of Alzheimer’s disease hallmarks using the iDISCO clearing method,” Cell Rep. 16, 1138–1152 (2016).
[Crossref]
[PubMed]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
A. Pitzschke, B. Lovisa, O. Seydoux, M. Haenggi, M. F. Oertel, M. Zellweger, Y. Tardy, and G. Wagnières, “Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen, and formalin-fixated conditions,” J. Biomed. Opt. 20, 025006 (2015).
[Crossref]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
A. Lichtenegger, D. J. Harper, M. Augustin, P. Eugui, S. Fialová, A. Woehrer, C. K. Hitzenberger, and B. Baumann, “Visible light spectral domain optical coherence microscopy system for ex vivo imaging,” Proc. SPIE 10051, 1005103 (2017).
[Crossref]
B. Hyman, H. West, G. Rebeck, S. Buldyrev, R. Mantegna, M. Ukleja, S. Havlin, and H. Stanley, “Quantitative analysis of senile plaques in Alzheimer disease: observation of log-normal size distribution and molecular epidemiology of differences associated with apolipoprotein E genotype and trisomy 21 (Down syndrome),” Proc. Natl. Acad. Sci. U.S.A. 92, 3586–3590 (1995).
[Crossref]
[PubMed]
J. Dong, R. Revilla-Sanchez, S. Moss, and P. G. Haydon, “Multiphoton in vivo imaging of amyloid in animal models of Alzheimer’s disease,” Neuropharmacology 59, 268–275 (2010).
[Crossref]
[PubMed]
K. Bizheva, A. Unterhuber, B. Hermann, B. Považay, H. Sattmann, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
[Crossref]
B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W. Wadsworth, J. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[Crossref]
S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Foerster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep 6, 20658 (2016).
[Crossref]
[PubMed]
E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12, 051402 (2007).
[Crossref]
[PubMed]
B. Baumann, A. Woehrer, G. Ricken, M. Augustin, C. Mitter, M. Pircher, G. G. Kovacs, and C. K. Hitzenberger, “Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy,” Sci. Rep. 7, 43477 (2017).
[Crossref]
A. Lichtenegger, D. J. Harper, M. Augustin, P. Eugui, S. Fialová, A. Woehrer, C. K. Hitzenberger, and B. Baumann, “Visible light spectral domain optical coherence microscopy system for ex vivo imaging,” Proc. SPIE 10051, 1005103 (2017).
[Crossref]
Y. Z. Wadghiri, D. M. Hoang, T. Wisniewski, and E. M. Sigurdsson, “In vivo magnetic resonance imaging of amyloid-β plaques in mice,” Amyloid Proteins: Methods and Protocols 492, 435–451 (2012).
[Crossref]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
L. Duan, M. D. McRaven, W. Liu, X. Shu, J. Hu, C. Sun, R. S. Veazey, T. J. Hope, and H. F. Zhang, “Colposcopic imaging using visible-light optical coherence tomography,” J. Biomed. Opt. 22, 056003 (2017).
[Crossref]
A. J. Howie and D. B. Brewer, “Optical properties of amyloid stained by Congo red: history and mechanisms,” Micron 40, 285–301 (2009).
[Crossref]
L. Duan, M. D. McRaven, W. Liu, X. Shu, J. Hu, C. Sun, R. S. Veazey, T. J. Hope, and H. F. Zhang, “Colposcopic imaging using visible-light optical coherence tomography,” J. Biomed. Opt. 22, 056003 (2017).
[Crossref]
E. Murray, J. H. Cho, D. Goodwin, T. Ku, J. Swaney, S.-Y. Kim, H. Choi, Y.-G. Park, J.-Y. Park, A. Hubbert, M. McCue, S. Vassallo, N. Bakh, M. P. Frosch, V. J. Wedeen, S. Seung, and K. Chung, “Simple, scalable proteomic imaging for high-dimensional profiling of intact systems,” Cell 163, 1500–1514 (2015).
[Crossref]
[PubMed]
C. Humpel, “Identifying and validating biomarkers for Alzheimer’s disease,” Trends Biotechnol. 29, 26–32 (2011).
[Crossref]
B. Hyman, H. West, G. Rebeck, S. Buldyrev, R. Mantegna, M. Ukleja, S. Havlin, and H. Stanley, “Quantitative analysis of senile plaques in Alzheimer disease: observation of log-normal size distribution and molecular epidemiology of differences associated with apolipoprotein E genotype and trisomy 21 (Down syndrome),” Proc. Natl. Acad. Sci. U.S.A. 92, 3586–3590 (1995).
[Crossref]
[PubMed]
R. P. McNabb, T. Blanco, H. M. Bomze, H. C. Tseng, D. R. Saban, J. A. Izatt, and A. N. Kuo, “Method for single illumination source combined optical coherence tomography and fluorescence imaging of fluorescently labeled ocular structures in transgenic mice,” Exp. Eye Res. 151, 68–74 (2016).
[Crossref]
[PubMed]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
X. Wen, S. L. Jacques, V. V. Tuchin, and D. Zhu, “Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging,” J. Biomed. Opt. 17, 066022 (2012).
[Crossref]
[PubMed]
A. Azaripour, T. Lagerweij, C. Scharfbillig, A. E. Jadczak, B. Willershausen, and C. J. Van Noorden, “A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue,” Prog. Histochem. Cytochem. 51, 9–23 (2016).
[Crossref]
[PubMed]
N. Jährling, K. Becker, B. M. Wegenast-Braun, S. A. Grathwohl, M. Jucker, and H.-U. Dodt, “Cerebral β-amyloidosis in mice investigated by ultramicroscopy,” PLoS ONE 10, e0125418 (2015).
[Crossref]
B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[Crossref]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
J. D. Johansson, “Spectroscopic method for determination of the absorption coefficient in brain tissue,” J. Biomed. Opt. 15, 057005 (2010).
[Crossref]
[PubMed]
K. A. Johnson, N. C. Fox, R. A. Sperling, and W. E. Klunk, “Brain imaging in Alzheimer disease,” Cold Spring Harb. Perspect. Med. 2, a006213 (2012).
[Crossref]
[PubMed]
N. Jährling, K. Becker, B. M. Wegenast-Braun, S. A. Grathwohl, M. Jucker, and H.-U. Dodt, “Cerebral β-amyloidosis in mice investigated by ultramicroscopy,” PLoS ONE 10, e0125418 (2015).
[Crossref]
E. Murray, J. H. Cho, D. Goodwin, T. Ku, J. Swaney, S.-Y. Kim, H. Choi, Y.-G. Park, J.-Y. Park, A. Hubbert, M. McCue, S. Vassallo, N. Bakh, M. P. Frosch, V. J. Wedeen, S. Seung, and K. Chung, “Simple, scalable proteomic imaging for high-dimensional profiling of intact systems,” Cell 163, 1500–1514 (2015).
[Crossref]
[PubMed]
S. Boppart, W. Drexler, U. Morgner, F. Kirtner, and J. Fujimoto, “Ultrahigh resolution and spectroscopic oct imaging of cellular morphology and function,” in “Proceedings of Inter-Institute Workshop on In Vivo Optical Imaging at the National Institutes of Health,” (1999).
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
K. A. Johnson, N. C. Fox, R. A. Sperling, and W. E. Klunk, “Brain imaging in Alzheimer disease,” Cold Spring Harb. Perspect. Med. 2, a006213 (2012).
[Crossref]
[PubMed]
B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W. Wadsworth, J. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[Crossref]
M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[Crossref]
[PubMed]
H. Wang, T. Akkin, C. Magnain, R. Wang, J. Dubb, W. J. Kostis, M. A. Yaseen, A. Cramer, S. Sakadžić, and D. Boas, “Polarization sensitive optical coherence microscopy for brain imaging,” Opt. Lett. 41, 2213–2216 (2016).
[Crossref]
[PubMed]
B. Baumann, A. Woehrer, G. Ricken, M. Augustin, C. Mitter, M. Pircher, G. G. Kovacs, and C. K. Hitzenberger, “Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy,” Sci. Rep. 7, 43477 (2017).
[Crossref]
G. G. Kovacs, “Can Creutzfeldt-Jakob disease unravel the mysteries of Alzheimer?” Prion 10, 369–376 (2016).
[Crossref]
[PubMed]
M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[Crossref]
[PubMed]
R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. Hitzenberger, M. Sticker, and A. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25, 820–822 (2000).
[Crossref]
S. P. Chong, C. W. Merkle, D. F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, and V. J. Srinivasan, “Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 μ m optical coherence tomography,” Opt. Lett. 40, 4911–4914 (2015).
[Crossref]
[PubMed]
E. Murray, J. H. Cho, D. Goodwin, T. Ku, J. Swaney, S.-Y. Kim, H. Choi, Y.-G. Park, J.-Y. Park, A. Hubbert, M. McCue, S. Vassallo, N. Bakh, M. P. Frosch, V. J. Wedeen, S. Seung, and K. Chung, “Simple, scalable proteomic imaging for high-dimensional profiling of intact systems,” Cell 163, 1500–1514 (2015).
[Crossref]
[PubMed]
D. M. Skovronsky, B. Zhang, M.-P. Kung, H. F. Kung, J. Q. Trojanowski, and V. M.-Y. Lee, “In vivo detection of amyloid plaques in a mouse model of Alzheimer’s disease,” Proc. Natl. Acad. Sci. U.S.A. 97, 7609–7614 (2000).
[Crossref]
D. M. Skovronsky, B. Zhang, M.-P. Kung, H. F. Kung, J. Q. Trojanowski, and V. M.-Y. Lee, “In vivo detection of amyloid plaques in a mouse model of Alzheimer’s disease,” Proc. Natl. Acad. Sci. U.S.A. 97, 7609–7614 (2000).
[Crossref]
R. P. McNabb, T. Blanco, H. M. Bomze, H. C. Tseng, D. R. Saban, J. A. Izatt, and A. N. Kuo, “Method for single illumination source combined optical coherence tomography and fluorescence imaging of fluorescently labeled ocular structures in transgenic mice,” Exp. Eye Res. 151, 68–74 (2016).
[Crossref]
[PubMed]
C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7, 292ra100 (2015).
[Crossref]
[PubMed]
A. Azaripour, T. Lagerweij, C. Scharfbillig, A. E. Jadczak, B. Willershausen, and C. J. Van Noorden, “A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue,” Prog. Histochem. Cytochem. 51, 9–23 (2016).
[Crossref]
[PubMed]
B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[Crossref]
P. J. Marchand, A. Bouwens, D. Szlag, D. Nguyen, A. Descloux, M. Sison, S. Coquoz, J. Extermann, and T. Lasser, “Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography,” Biomed. Opt. Express 8, 3343–3359 (2017).
[Crossref]
[PubMed]
T. Bolmont, A. Bouwens, C. Pache, M. Dimitrov, C. Berclaz, M. Villiger, B. M. Wegenast-Braun, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy,” J. Neurosci. 32, 14548–14556 (2012).
[Crossref]
[PubMed]
K. Bizheva, A. Unterhuber, B. Hermann, B. Považay, H. Sattmann, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
[Crossref]
D. M. Skovronsky, B. Zhang, M.-P. Kung, H. F. Kung, J. Q. Trojanowski, and V. M.-Y. Lee, “In vivo detection of amyloid plaques in a mouse model of Alzheimer’s disease,” Proc. Natl. Acad. Sci. U.S.A. 97, 7609–7614 (2000).
[Crossref]
J. Lefebvre, A. Castonguay, P. Pouliot, M. Descoteaux, and F. Lesage, “Whole mouse brain imaging using optical coherence tomography: reconstruction, normalization, segmentation, and comparison with diffusion MRI,” Neurophotonics 4, 041501 (2017).
[Crossref]
[PubMed]
J. Lefebvre, A. Castonguay, and F. Lesage, “White matter segmentation by estimating tissue optical attenuation from volumetric OCT massive histology of whole rodent brains,” Proc. SPIE 10070, 1007012 (2017).
[Crossref]
M. Maria, I. Gonzalo, M. Bondu, R. Engelsholm, T. Feuchter, P. Moselund, L. Leick, O. Bang, and A. Podoleanu, “A comparative study of noise in supercontinuum light sources for ultra-high resolution optical coherence tomography,” Proc. SPIE 10056, 100560O (2017).
L. van Manen, P. L. Stegehuis, A. Fariña-Sarasqueta, L. M. de Haan, J. Eggermont, B. A. Bonsing, H. Morreau, B. P. Lelieveldt, C. J. van de Velde, D. J. Vahrmeijer, L Alexander, and J. S. Mieog, “Validation of full-field optical coherence tomography in distinguishing malignant and benign tissue in resected pancreatic cancer specimens,” PLoS ONE 12, e0175862 (2017).
[Crossref]
[PubMed]
J. Lefebvre, A. Castonguay, P. Pouliot, M. Descoteaux, and F. Lesage, “Whole mouse brain imaging using optical coherence tomography: reconstruction, normalization, segmentation, and comparison with diffusion MRI,” Neurophotonics 4, 041501 (2017).
[Crossref]
[PubMed]
J. Lefebvre, A. Castonguay, and F. Lesage, “White matter segmentation by estimating tissue optical attenuation from volumetric OCT massive histology of whole rodent brains,” Proc. SPIE 10070, 1007012 (2017).
[Crossref]
F. Li, Y. Song, A. Dryer, W. Cogguillo, Y. Berdichevsky, and C. Zhou, “Nondestructive evaluation of progressive neuronal changes in organotypic rat hippocampal slice cultures using ultrahigh-resolution optical coherence microscopy,” Neurophotonics 1, 025002 (2014).
[Crossref]
C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7, 292ra100 (2015).
[Crossref]
[PubMed]
U. Morgner, W. Drexler, F. Kärtner, X. Li, C. Pitris, E. Ippen, and J. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[Crossref]
A. Lichtenegger, D. J. Harper, M. Augustin, P. Eugui, S. Fialová, A. Woehrer, C. K. Hitzenberger, and B. Baumann, “Visible light spectral domain optical coherence microscopy system for ex vivo imaging,” Proc. SPIE 10051, 1005103 (2017).
[Crossref]
D. S. Richardson and J. W. Lichtman, “Clarifying tissue clearing,” Cell 162, 246–257 (2015).
[Crossref]
[PubMed]
T. Liebmann, N. Renier, K. Bettayeb, P. Greengard, M. Tessier-Lavigne, and M. Flajolet, “Three-dimensional study of Alzheimer’s disease hallmarks using the iDISCO clearing method,” Cell Rep. 16, 1138–1152 (2016).
[Crossref]
[PubMed]
S. Gebhart, W. Lin, and A. Mahadevan-Jansen, “In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling,” Phys. Med. Biol. 51, 2011 (2006).
[Crossref]
[PubMed]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
G. Liu and Z. Chen, “Optical coherence tomography for brain imaging,” in Optical Methods and Instrumentation in Brain Imaging and Therapy (Springer, 2013), pp. 157–172.
[Crossref]
L. Duan, M. D. McRaven, W. Liu, X. Shu, J. Hu, C. Sun, R. S. Veazey, T. J. Hope, and H. F. Zhang, “Colposcopic imaging using visible-light optical coherence tomography,” J. Biomed. Opt. 22, 056003 (2017).
[Crossref]
R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-light optical coherence tomography angiography for monitoring laser-induced choroidal neovascularization in mice,” Invest. Ophthalmol. Vis. Sci. 57, OCT86–OCT95 (2016).
[Crossref]
[PubMed]
A. Pitzschke, B. Lovisa, O. Seydoux, M. Haenggi, M. F. Oertel, M. Zellweger, Y. Tardy, and G. Wagnières, “Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen, and formalin-fixated conditions,” J. Biomed. Opt. 20, 025006 (2015).
[Crossref]
A. d’Esposito, D. Nikitichev, A. Desjardins, S. Walker-Samuel, and M. F. Lythgoe, “Quantification of light attenuation in optically cleared mouse brains,” J. Biomed. Opt. 20, 080503 (2015).
[Crossref]
H. Wang, T. Akkin, C. Magnain, R. Wang, J. Dubb, W. J. Kostis, M. A. Yaseen, A. Cramer, S. Sakadžić, and D. Boas, “Polarization sensitive optical coherence microscopy for brain imaging,” Opt. Lett. 41, 2213–2216 (2016).
[Crossref]
[PubMed]
C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: a comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).
[Crossref]
S. Gebhart, W. Lin, and A. Mahadevan-Jansen, “In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling,” Phys. Med. Biol. 51, 2011 (2006).
[Crossref]
[PubMed]
P. Babu, D. Chopra, T. G. Row, and U. Maitra, “Micellar aggregates and hydrogels from phosphonobile salts,” Org. Biomol. Chem 3, 3695–3700 (2005).
[Crossref]
[PubMed]
B. Hyman, H. West, G. Rebeck, S. Buldyrev, R. Mantegna, M. Ukleja, S. Havlin, and H. Stanley, “Quantitative analysis of senile plaques in Alzheimer disease: observation of log-normal size distribution and molecular epidemiology of differences associated with apolipoprotein E genotype and trisomy 21 (Down syndrome),” Proc. Natl. Acad. Sci. U.S.A. 92, 3586–3590 (1995).
[Crossref]
[PubMed]
P. J. Marchand, A. Bouwens, D. Szlag, D. Nguyen, A. Descloux, M. Sison, S. Coquoz, J. Extermann, and T. Lasser, “Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography,” Biomed. Opt. Express 8, 3343–3359 (2017).
[Crossref]
[PubMed]
M. Maria, I. Gonzalo, M. Bondu, R. Engelsholm, T. Feuchter, P. Moselund, L. Leick, O. Bang, and A. Podoleanu, “A comparative study of noise in supercontinuum light sources for ultra-high resolution optical coherence tomography,” Proc. SPIE 10056, 100560O (2017).
E. Murray, J. H. Cho, D. Goodwin, T. Ku, J. Swaney, S.-Y. Kim, H. Choi, Y.-G. Park, J.-Y. Park, A. Hubbert, M. McCue, S. Vassallo, N. Bakh, M. P. Frosch, V. J. Wedeen, S. Seung, and K. Chung, “Simple, scalable proteomic imaging for high-dimensional profiling of intact systems,” Cell 163, 1500–1514 (2015).
[Crossref]
[PubMed]
R. P. McNabb, T. Blanco, H. M. Bomze, H. C. Tseng, D. R. Saban, J. A. Izatt, and A. N. Kuo, “Method for single illumination source combined optical coherence tomography and fluorescence imaging of fluorescently labeled ocular structures in transgenic mice,” Exp. Eye Res. 151, 68–74 (2016).
[Crossref]
[PubMed]
L. Duan, M. D. McRaven, W. Liu, X. Shu, J. Hu, C. Sun, R. S. Veazey, T. J. Hope, and H. F. Zhang, “Colposcopic imaging using visible-light optical coherence tomography,” J. Biomed. Opt. 22, 056003 (2017).
[Crossref]
C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7, 292ra100 (2015).
[Crossref]
[PubMed]
S. P. Chong, C. W. Merkle, D. F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, and V. J. Srinivasan, “Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 μ m optical coherence tomography,” Opt. Lett. 40, 4911–4914 (2015).
[Crossref]
[PubMed]
L. van Manen, P. L. Stegehuis, A. Fariña-Sarasqueta, L. M. de Haan, J. Eggermont, B. A. Bonsing, H. Morreau, B. P. Lelieveldt, C. J. van de Velde, D. J. Vahrmeijer, L Alexander, and J. S. Mieog, “Validation of full-field optical coherence tomography in distinguishing malignant and benign tissue in resected pancreatic cancer specimens,” PLoS ONE 12, e0175862 (2017).
[Crossref]
[PubMed]
B. Baumann, A. Woehrer, G. Ricken, M. Augustin, C. Mitter, M. Pircher, G. G. Kovacs, and C. K. Hitzenberger, “Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy,” Sci. Rep. 7, 43477 (2017).
[Crossref]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
U. Morgner, W. Drexler, F. Kärtner, X. Li, C. Pitris, E. Ippen, and J. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[Crossref]
S. Boppart, W. Drexler, U. Morgner, F. Kirtner, and J. Fujimoto, “Ultrahigh resolution and spectroscopic oct imaging of cellular morphology and function,” in “Proceedings of Inter-Institute Workshop on In Vivo Optical Imaging at the National Institutes of Health,” (1999).
L. van Manen, P. L. Stegehuis, A. Fariña-Sarasqueta, L. M. de Haan, J. Eggermont, B. A. Bonsing, H. Morreau, B. P. Lelieveldt, C. J. van de Velde, D. J. Vahrmeijer, L Alexander, and J. S. Mieog, “Validation of full-field optical coherence tomography in distinguishing malignant and benign tissue in resected pancreatic cancer specimens,” PLoS ONE 12, e0175862 (2017).
[Crossref]
[PubMed]
A. G. Vlassenko, T. L. Benzinger, and J. C. Morris, “PET amyloid-beta imaging in preclinical Alzheimer’s disease,” Biochim. Biophys. Acta, Mol. Basis Dis. 1822, 370–379 (2012).
[Crossref]
J. Gallwas, A. Stanchi, N. Ditsch, T. Schwarz, C. Dannecker, S. Mueller, H. Stepp, and U. Mortensen, “Effect of optical clearing agents on optical coherence tomography images of cervical epithelium,” Lasers Med Sci. 30, 517–525 (2015).
[Crossref]
M. Maria, I. Gonzalo, M. Bondu, R. Engelsholm, T. Feuchter, P. Moselund, L. Leick, O. Bang, and A. Podoleanu, “A comparative study of noise in supercontinuum light sources for ultra-high resolution optical coherence tomography,” Proc. SPIE 10056, 100560O (2017).
J. Dong, R. Revilla-Sanchez, S. Moss, and P. G. Haydon, “Multiphoton in vivo imaging of amyloid in animal models of Alzheimer’s disease,” Neuropharmacology 59, 268–275 (2010).
[Crossref]
[PubMed]
J. Gallwas, A. Stanchi, N. Ditsch, T. Schwarz, C. Dannecker, S. Mueller, H. Stepp, and U. Mortensen, “Effect of optical clearing agents on optical coherence tomography images of cervical epithelium,” Lasers Med Sci. 30, 517–525 (2015).
[Crossref]
B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[Crossref]
E. Murray, J. H. Cho, D. Goodwin, T. Ku, J. Swaney, S.-Y. Kim, H. Choi, Y.-G. Park, J.-Y. Park, A. Hubbert, M. McCue, S. Vassallo, N. Bakh, M. P. Frosch, V. J. Wedeen, S. Seung, and K. Chung, “Simple, scalable proteomic imaging for high-dimensional profiling of intact systems,” Cell 163, 1500–1514 (2015).
[Crossref]
[PubMed]
H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58, 984–992 (2011).
[Crossref]
[PubMed]
P. J. Marchand, A. Bouwens, D. Szlag, D. Nguyen, A. Descloux, M. Sison, S. Coquoz, J. Extermann, and T. Lasser, “Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography,” Biomed. Opt. Express 8, 3343–3359 (2017).
[Crossref]
[PubMed]
A. d’Esposito, D. Nikitichev, A. Desjardins, S. Walker-Samuel, and M. F. Lythgoe, “Quantification of light attenuation in optically cleared mouse brains,” J. Biomed. Opt. 20, 080503 (2015).
[Crossref]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
A. Pitzschke, B. Lovisa, O. Seydoux, M. Haenggi, M. F. Oertel, M. Zellweger, Y. Tardy, and G. Wagnières, “Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen, and formalin-fixated conditions,” J. Biomed. Opt. 20, 025006 (2015).
[Crossref]
T. Bolmont, A. Bouwens, C. Pache, M. Dimitrov, C. Berclaz, M. Villiger, B. M. Wegenast-Braun, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy,” J. Neurosci. 32, 14548–14556 (2012).
[Crossref]
[PubMed]
B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[Crossref]
E. Murray, J. H. Cho, D. Goodwin, T. Ku, J. Swaney, S.-Y. Kim, H. Choi, Y.-G. Park, J.-Y. Park, A. Hubbert, M. McCue, S. Vassallo, N. Bakh, M. P. Frosch, V. J. Wedeen, S. Seung, and K. Chung, “Simple, scalable proteomic imaging for high-dimensional profiling of intact systems,” Cell 163, 1500–1514 (2015).
[Crossref]
[PubMed]
E. Murray, J. H. Cho, D. Goodwin, T. Ku, J. Swaney, S.-Y. Kim, H. Choi, Y.-G. Park, J.-Y. Park, A. Hubbert, M. McCue, S. Vassallo, N. Bakh, M. P. Frosch, V. J. Wedeen, S. Seung, and K. Chung, “Simple, scalable proteomic imaging for high-dimensional profiling of intact systems,” Cell 163, 1500–1514 (2015).
[Crossref]
[PubMed]
S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Foerster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep 6, 20658 (2016).
[Crossref]
[PubMed]
B. Baumann, A. Woehrer, G. Ricken, M. Augustin, C. Mitter, M. Pircher, G. G. Kovacs, and C. K. Hitzenberger, “Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy,” Sci. Rep. 7, 43477 (2017).
[Crossref]
A. Pitzschke, B. Lovisa, O. Seydoux, M. Haenggi, M. F. Oertel, M. Zellweger, Y. Tardy, and G. Wagnières, “Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen, and formalin-fixated conditions,” J. Biomed. Opt. 20, 025006 (2015).
[Crossref]
M. Maria, I. Gonzalo, M. Bondu, R. Engelsholm, T. Feuchter, P. Moselund, L. Leick, O. Bang, and A. Podoleanu, “A comparative study of noise in supercontinuum light sources for ultra-high resolution optical coherence tomography,” Proc. SPIE 10056, 100560O (2017).
J. Lefebvre, A. Castonguay, P. Pouliot, M. Descoteaux, and F. Lesage, “Whole mouse brain imaging using optical coherence tomography: reconstruction, normalization, segmentation, and comparison with diffusion MRI,” Neurophotonics 4, 041501 (2017).
[Crossref]
[PubMed]
B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W. Wadsworth, J. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[Crossref]
K. Bizheva, A. Unterhuber, B. Hermann, B. Považay, H. Sattmann, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
[Crossref]
K. Bizheva, A. Unterhuber, B. Hermann, B. Považay, H. Sattmann, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
[Crossref]
C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7, 292ra100 (2015).
[Crossref]
[PubMed]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
S. P. Chong, M. Bernucci, H. Radhakrishnan, and V. J. Srinivasan, “Structural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope,” Biomed. Opt. Express 8, 323–337 (2017).
[Crossref]
[PubMed]
S. P. Chong, C. W. Merkle, D. F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, and V. J. Srinivasan, “Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 μ m optical coherence tomography,” Opt. Lett. 40, 4911–4914 (2015).
[Crossref]
[PubMed]
C. J. Goergen, H. Radhakrishnan, S. Sakadžić, E. T. Mandeville, E. H. Lo, D. E. Sosnovik, and V. J. Srinivasan, “Optical coherence tractography using intrinsic contrast,” Opt. Lett. 37, 3882–3884 (2012).
[Crossref]
[PubMed]
V. J. Srinivasan, H. Radhakrishnan, J. Y. Jiang, S. Barry, and A. E. Cable, “Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast,” Opt. Express 20, 2220–2239 (2012).
[Crossref]
[PubMed]
C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: a comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).
[Crossref]
C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7, 292ra100 (2015).
[Crossref]
[PubMed]
B. Hyman, H. West, G. Rebeck, S. Buldyrev, R. Mantegna, M. Ukleja, S. Havlin, and H. Stanley, “Quantitative analysis of senile plaques in Alzheimer disease: observation of log-normal size distribution and molecular epidemiology of differences associated with apolipoprotein E genotype and trisomy 21 (Down syndrome),” Proc. Natl. Acad. Sci. U.S.A. 92, 3586–3590 (1995).
[Crossref]
[PubMed]
T. Liebmann, N. Renier, K. Bettayeb, P. Greengard, M. Tessier-Lavigne, and M. Flajolet, “Three-dimensional study of Alzheimer’s disease hallmarks using the iDISCO clearing method,” Cell Rep. 16, 1138–1152 (2016).
[Crossref]
[PubMed]
C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: a comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).
[Crossref]
J. Dong, R. Revilla-Sanchez, S. Moss, and P. G. Haydon, “Multiphoton in vivo imaging of amyloid in animal models of Alzheimer’s disease,” Neuropharmacology 59, 268–275 (2010).
[Crossref]
[PubMed]
D. S. Richardson and J. W. Lichtman, “Clarifying tissue clearing,” Cell 162, 246–257 (2015).
[Crossref]
[PubMed]
B. Baumann, A. Woehrer, G. Ricken, M. Augustin, C. Mitter, M. Pircher, G. G. Kovacs, and C. K. Hitzenberger, “Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy,” Sci. Rep. 7, 43477 (2017).
[Crossref]
L. Rizzi, I. Rosset, and M. Roriz-Cruz, “Global epidemiology of dementia: Alzheimer’s and vascular types,” Biomed. Res. Int. 2014, 908915 (2014).
[Crossref]
F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nature Photonics 5, 744–747 (2011).
[Crossref]
S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Foerster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep 6, 20658 (2016).
[Crossref]
[PubMed]
C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7, 292ra100 (2015).
[Crossref]
[PubMed]
L. Rizzi, I. Rosset, and M. Roriz-Cruz, “Global epidemiology of dementia: Alzheimer’s and vascular types,” Biomed. Res. Int. 2014, 908915 (2014).
[Crossref]
L. Rizzi, I. Rosset, and M. Roriz-Cruz, “Global epidemiology of dementia: Alzheimer’s and vascular types,” Biomed. Res. Int. 2014, 908915 (2014).
[Crossref]
P. Babu, D. Chopra, T. G. Row, and U. Maitra, “Micellar aggregates and hydrogels from phosphonobile salts,” Org. Biomol. Chem 3, 3695–3700 (2005).
[Crossref]
[PubMed]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W. Wadsworth, J. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[Crossref]
R. P. McNabb, T. Blanco, H. M. Bomze, H. C. Tseng, D. R. Saban, J. A. Izatt, and A. N. Kuo, “Method for single illumination source combined optical coherence tomography and fluorescence imaging of fluorescently labeled ocular structures in transgenic mice,” Exp. Eye Res. 151, 68–74 (2016).
[Crossref]
[PubMed]
H. Wang, T. Akkin, C. Magnain, R. Wang, J. Dubb, W. J. Kostis, M. A. Yaseen, A. Cramer, S. Sakadžić, and D. Boas, “Polarization sensitive optical coherence microscopy for brain imaging,” Opt. Lett. 41, 2213–2216 (2016).
[Crossref]
[PubMed]
C. J. Goergen, H. Radhakrishnan, S. Sakadžić, E. T. Mandeville, E. H. Lo, D. E. Sosnovik, and V. J. Srinivasan, “Optical coherence tractography using intrinsic contrast,” Opt. Lett. 37, 3882–3884 (2012).
[Crossref]
[PubMed]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
K. Bizheva, A. Unterhuber, B. Hermann, B. Považay, H. Sattmann, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
[Crossref]
B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W. Wadsworth, J. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[Crossref]
A. Azaripour, T. Lagerweij, C. Scharfbillig, A. E. Jadczak, B. Willershausen, and C. J. Van Noorden, “A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue,” Prog. Histochem. Cytochem. 51, 9–23 (2016).
[Crossref]
[PubMed]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W. Wadsworth, J. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[Crossref]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
J. Gallwas, A. Stanchi, N. Ditsch, T. Schwarz, C. Dannecker, S. Mueller, H. Stepp, and U. Mortensen, “Effect of optical clearing agents on optical coherence tomography images of cervical epithelium,” Lasers Med Sci. 30, 517–525 (2015).
[Crossref]
E. Murray, J. H. Cho, D. Goodwin, T. Ku, J. Swaney, S.-Y. Kim, H. Choi, Y.-G. Park, J.-Y. Park, A. Hubbert, M. McCue, S. Vassallo, N. Bakh, M. P. Frosch, V. J. Wedeen, S. Seung, and K. Chung, “Simple, scalable proteomic imaging for high-dimensional profiling of intact systems,” Cell 163, 1500–1514 (2015).
[Crossref]
[PubMed]
A. Pitzschke, B. Lovisa, O. Seydoux, M. Haenggi, M. F. Oertel, M. Zellweger, Y. Tardy, and G. Wagnières, “Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen, and formalin-fixated conditions,” J. Biomed. Opt. 20, 025006 (2015).
[Crossref]
R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-light optical coherence tomography angiography for monitoring laser-induced choroidal neovascularization in mice,” Invest. Ophthalmol. Vis. Sci. 57, OCT86–OCT95 (2016).
[Crossref]
[PubMed]
L. Duan, M. D. McRaven, W. Liu, X. Shu, J. Hu, C. Sun, R. S. Veazey, T. J. Hope, and H. F. Zhang, “Colposcopic imaging using visible-light optical coherence tomography,” J. Biomed. Opt. 22, 056003 (2017).
[Crossref]
J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6, 3701–3713 (2015).
[Crossref]
[PubMed]
Y. Z. Wadghiri, D. M. Hoang, T. Wisniewski, and E. M. Sigurdsson, “In vivo magnetic resonance imaging of amyloid-β plaques in mice,” Amyloid Proteins: Methods and Protocols 492, 435–451 (2012).
[Crossref]
P. J. Marchand, A. Bouwens, D. Szlag, D. Nguyen, A. Descloux, M. Sison, S. Coquoz, J. Extermann, and T. Lasser, “Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography,” Biomed. Opt. Express 8, 3343–3359 (2017).
[Crossref]
[PubMed]
R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-light optical coherence tomography angiography for monitoring laser-induced choroidal neovascularization in mice,” Invest. Ophthalmol. Vis. Sci. 57, OCT86–OCT95 (2016).
[Crossref]
[PubMed]
D. M. Skovronsky, B. Zhang, M.-P. Kung, H. F. Kung, J. Q. Trojanowski, and V. M.-Y. Lee, “In vivo detection of amyloid plaques in a mouse model of Alzheimer’s disease,” Proc. Natl. Acad. Sci. U.S.A. 97, 7609–7614 (2000).
[Crossref]
R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-light optical coherence tomography angiography for monitoring laser-induced choroidal neovascularization in mice,” Invest. Ophthalmol. Vis. Sci. 57, OCT86–OCT95 (2016).
[Crossref]
[PubMed]
F. Li, Y. Song, A. Dryer, W. Cogguillo, Y. Berdichevsky, and C. Zhou, “Nondestructive evaluation of progressive neuronal changes in organotypic rat hippocampal slice cultures using ultrahigh-resolution optical coherence microscopy,” Neurophotonics 1, 025002 (2014).
[Crossref]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
K. A. Johnson, N. C. Fox, R. A. Sperling, and W. E. Klunk, “Brain imaging in Alzheimer disease,” Cold Spring Harb. Perspect. Med. 2, a006213 (2012).
[Crossref]
[PubMed]
S. P. Chong, M. Bernucci, H. Radhakrishnan, and V. J. Srinivasan, “Structural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope,” Biomed. Opt. Express 8, 323–337 (2017).
[Crossref]
[PubMed]
S. P. Chong, C. W. Merkle, D. F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, and V. J. Srinivasan, “Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 μ m optical coherence tomography,” Opt. Lett. 40, 4911–4914 (2015).
[Crossref]
[PubMed]
C. J. Goergen, H. Radhakrishnan, S. Sakadžić, E. T. Mandeville, E. H. Lo, D. E. Sosnovik, and V. J. Srinivasan, “Optical coherence tractography using intrinsic contrast,” Opt. Lett. 37, 3882–3884 (2012).
[Crossref]
[PubMed]
V. J. Srinivasan, H. Radhakrishnan, J. Y. Jiang, S. Barry, and A. E. Cable, “Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast,” Opt. Express 20, 2220–2239 (2012).
[Crossref]
[PubMed]
M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[Crossref]
[PubMed]
J. Gallwas, A. Stanchi, N. Ditsch, T. Schwarz, C. Dannecker, S. Mueller, H. Stepp, and U. Mortensen, “Effect of optical clearing agents on optical coherence tomography images of cervical epithelium,” Lasers Med Sci. 30, 517–525 (2015).
[Crossref]
B. Hyman, H. West, G. Rebeck, S. Buldyrev, R. Mantegna, M. Ukleja, S. Havlin, and H. Stanley, “Quantitative analysis of senile plaques in Alzheimer disease: observation of log-normal size distribution and molecular epidemiology of differences associated with apolipoprotein E genotype and trisomy 21 (Down syndrome),” Proc. Natl. Acad. Sci. U.S.A. 92, 3586–3590 (1995).
[Crossref]
[PubMed]
L. van Manen, P. L. Stegehuis, A. Fariña-Sarasqueta, L. M. de Haan, J. Eggermont, B. A. Bonsing, H. Morreau, B. P. Lelieveldt, C. J. van de Velde, D. J. Vahrmeijer, L Alexander, and J. S. Mieog, “Validation of full-field optical coherence tomography in distinguishing malignant and benign tissue in resected pancreatic cancer specimens,” PLoS ONE 12, e0175862 (2017).
[Crossref]
[PubMed]
J. Gallwas, A. Stanchi, N. Ditsch, T. Schwarz, C. Dannecker, S. Mueller, H. Stepp, and U. Mortensen, “Effect of optical clearing agents on optical coherence tomography images of cervical epithelium,” Lasers Med Sci. 30, 517–525 (2015).
[Crossref]
H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58, 984–992 (2011).
[Crossref]
[PubMed]
K. Bizheva, A. Unterhuber, B. Hermann, B. Považay, H. Sattmann, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
[Crossref]
B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[Crossref]
L. Duan, M. D. McRaven, W. Liu, X. Shu, J. Hu, C. Sun, R. S. Veazey, T. J. Hope, and H. F. Zhang, “Colposcopic imaging using visible-light optical coherence tomography,” J. Biomed. Opt. 22, 056003 (2017).
[Crossref]
E. Murray, J. H. Cho, D. Goodwin, T. Ku, J. Swaney, S.-Y. Kim, H. Choi, Y.-G. Park, J.-Y. Park, A. Hubbert, M. McCue, S. Vassallo, N. Bakh, M. P. Frosch, V. J. Wedeen, S. Seung, and K. Chung, “Simple, scalable proteomic imaging for high-dimensional profiling of intact systems,” Cell 163, 1500–1514 (2015).
[Crossref]
[PubMed]
P. J. Marchand, A. Bouwens, D. Szlag, D. Nguyen, A. Descloux, M. Sison, S. Coquoz, J. Extermann, and T. Lasser, “Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography,” Biomed. Opt. Express 8, 3343–3359 (2017).
[Crossref]
[PubMed]
A. Pitzschke, B. Lovisa, O. Seydoux, M. Haenggi, M. F. Oertel, M. Zellweger, Y. Tardy, and G. Wagnières, “Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen, and formalin-fixated conditions,” J. Biomed. Opt. 20, 025006 (2015).
[Crossref]
B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[Crossref]
B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, C. Dartigues, Jean-Fracois, Duyckaerts, S. Epdelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O’Bryant, G. D. Rabinovivi, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and C. R. Jack, “Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria,” Alzheimers Dement 12, 292–323 (2016).
[Crossref]
[PubMed]
T. Liebmann, N. Renier, K. Bettayeb, P. Greengard, M. Tessier-Lavigne, and M. Flajolet, “Three-dimensional study of Alzheimer’s disease hallmarks using the iDISCO clearing method,” Cell Rep. 16, 1138–1152 (2016).
[Crossref]
[PubMed]
D. M. Skovronsky, B. Zhang, M.-P. Kung, H. F. Kung, J. Q. Trojanowski, and V. M.-Y. Lee, “In vivo detection of amyloid plaques in a mouse model of Alzheimer’s disease,” Proc. Natl. Acad. Sci. U.S.A. 97, 7609–7614 (2000).
[Crossref]
R. P. McNabb, T. Blanco, H. M. Bomze, H. C. Tseng, D. R. Saban, J. A. Izatt, and A. N. Kuo, “Method for single illumination source combined optical coherence tomography and fluorescence imaging of fluorescently labeled ocular structures in transgenic mice,” Exp. Eye Res. 151, 68–74 (2016).
[Crossref]
[PubMed]
X. Wen, S. L. Jacques, V. V. Tuchin, and D. Zhu, “Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging,” J. Biomed. Opt. 17, 066022 (2012).
[Crossref]
[PubMed]
B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[Crossref]
B. Hyman, H. West, G. Rebeck, S. Buldyrev, R. Mantegna, M. Ukleja, S. Havlin, and H. Stanley, “Quantitative analysis of senile plaques in Alzheimer disease: observation of log-normal size distribution and molecular epidemiology of differences associated with apolipoprotein E genotype and trisomy 21 (Down syndrome),” Proc. Natl. Acad. Sci. U.S.A. 92, 3586–3590 (1995).
[Crossref]
[PubMed]
K. Bizheva, A. Unterhuber, B. Hermann, B. Považay, H. Sattmann, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
[Crossref]
B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W. Wadsworth, J. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[Crossref]
L. van Manen, P. L. Stegehuis, A. Fariña-Sarasqueta, L. M. de Haan, J. Eggermont, B. A. Bonsing, H. Morreau, B. P. Lelieveldt, C. J. van de Velde, D. J. Vahrmeijer, L Alexander, and J. S. Mieog, “Validation of full-field optical coherence tomography in distinguishing malignant and benign tissue in resected pancreatic cancer specimens,” PLoS ONE 12, e0175862 (2017).
[Crossref]
[PubMed]
B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[Crossref]
L. van Manen, P. L. Stegehuis, A. Fariña-Sarasqueta, L. M. de Haan, J. Eggermont, B. A. Bonsing, H. Morreau, B. P. Lelieveldt, C. J. van de Velde, D. J. Vahrmeijer, L Alexander, and J. S. Mieog, “Validation of full-field optical coherence tomography in distinguishing malignant and benign tissue in resected pancreatic cancer specimens,” PLoS ONE 12, e0175862 (2017).
[Crossref]
[PubMed]
L. van Manen, P. L. Stegehuis, A. Fariña-Sarasqueta, L. M. de Haan, J. Eggermont, B. A. Bonsing, H. Morreau, B. P. Lelieveldt, C. J. van de Velde, D. J. Vahrmeijer, L Alexander, and J. S. Mieog, “Validation of full-field optical coherence tomography in distinguishing malignant and benign tissue in resected pancreatic cancer specimens,” PLoS ONE 12, e0175862 (2017).
[Crossref]
[PubMed]
A. Azaripour, T. Lagerweij, C. Scharfbillig, A. E. Jadczak, B. Willershausen, and C. J. Van Noorden, “A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue,” Prog. Histochem. Cytochem. 51, 9–23 (2016).
[Crossref]
[PubMed]
B. Ghafaryasl, K. A. Vermeer, J. F. de Boer, M. E. van Velthoven, and L. J. van Vliet, “Noise-adaptive attenuation coefficient estimation in spectral domain optical coherence tomography data,” Biomedical Imaging (ISBI), 2016 IEEE 13th International Symposium, pp. 706–709 (2016)
B. Ghafaryasl, K. A. Vermeer, J. F. de Boer, M. E. van Velthoven, and L. J. van Vliet, “Noise-adaptive attenuation coefficient estimation in spectral domain optical coherence tomography data,” Biomedical Imaging (ISBI), 2016 IEEE 13th International Symposium, pp. 706–709 (2016)
E. Murray, J. H. Cho, D. Goodwin, T. Ku, J. Swaney, S.-Y. Kim, H. Choi, Y.-G. Park, J.-Y. Park, A. Hubbert, M. McCue, S. Vassallo, N. Bakh, M. P. Frosch, V. J. Wedeen, S. Seung, and K. Chung, “Simple, scalable proteomic imaging for high-dimensional profiling of intact systems,” Cell 163, 1500–1514 (2015).
[Crossref]
[PubMed]
L. Duan, M. D. McRaven, W. Liu, X. Shu, J. Hu, C. Sun, R. S. Veazey, T. J. Hope, and H. F. Zhang, “Colposcopic imaging using visible-light optical coherence tomography,” J. Biomed. Opt. 22, 056003 (2017).
[Crossref]
B. Ghafaryasl, K. A. Vermeer, J. F. de Boer, M. E. van Velthoven, and L. J. van Vliet, “Noise-adaptive attenuation coefficient estimation in spectral domain optical coherence tomography data,” Biomedical Imaging (ISBI), 2016 IEEE 13th International Symposium, pp. 706–709 (2016)
B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W. Wadsworth, J. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[Crossref]
S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Foerster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep 6, 20658 (2016).
[Crossref]
[PubMed]
T. Bolmont, A. Bouwens, C. Pache, M. Dimitrov, C. Berclaz, M. Villiger, B. M. Wegenast-Braun, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy,” J. Neurosci. 32, 14548–14556 (2012).
[Crossref]
[PubMed]
A. G. Vlassenko, T. L. Benzinger, and J. C. Morris, “PET amyloid-beta imaging in preclinical Alzheimer’s disease,” Biochim. Biophys. Acta, Mol. Basis Dis. 1822, 370–379 (2012).
[Crossref]
C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: a comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).
[Crossref]
Y. Z. Wadghiri, D. M. Hoang, T. Wisniewski, and E. M. Sigurdsson, “In vivo magnetic resonance imaging of amyloid-β plaques in mice,” Amyloid Proteins: Methods and Protocols 492, 435–451 (2012).
[Crossref]
B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W. Wadsworth, J. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[Crossref]
A. Pitzschke, B. Lovisa, O. Seydoux, M. Haenggi, M. F. Oertel, M. Zellweger, Y. Tardy, and G. Wagnières, “Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen, and formalin-fixated conditions,” J. Biomed. Opt. 20, 025006 (2015).
[Crossref]
A. d’Esposito, D. Nikitichev, A. Desjardins, S. Walker-Samuel, and M. F. Lythgoe, “Quantification of light attenuation in optically cleared mouse brains,” J. Biomed. Opt. 20, 080503 (2015).
[Crossref]
H. Wang, T. Akkin, C. Magnain, R. Wang, J. Dubb, W. J. Kostis, M. A. Yaseen, A. Cramer, S. Sakadžić, and D. Boas, “Polarization sensitive optical coherence microscopy for brain imaging,” Opt. Lett. 41, 2213–2216 (2016).
[Crossref]
[PubMed]
H. Wang, J. Zhu, and T. Akkin, “Serial optical coherence scanner for large-scale brain imaging at microscopic resolution,” Neuroimage 84, 1007–1017 (2014).
[Crossref]
H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58, 984–992 (2011).
[Crossref]
[PubMed]
H. Wang, T. Akkin, C. Magnain, R. Wang, J. Dubb, W. J. Kostis, M. A. Yaseen, A. Cramer, S. Sakadžić, and D. Boas, “Polarization sensitive optical coherence microscopy for brain imaging,” Opt. Lett. 41, 2213–2216 (2016).
[Crossref]
[PubMed]
W. J. Brown, S. Kim, and A. Wax, “Noise characterization of supercontinuum sources for low-coherence interferometry applications,” J. Opt. Soc. Am. A 31, 2703–2710 (2014).
[Crossref]
F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nature Photonics 5, 744–747 (2011).
[Crossref]
E. Murray, J. H. Cho, D. Goodwin, T. Ku, J. Swaney, S.-Y. Kim, H. Choi, Y.-G. Park, J.-Y. Park, A. Hubbert, M. McCue, S. Vassallo, N. Bakh, M. P. Frosch, V. J. Wedeen, S. Seung, and K. Chung, “Simple, scalable proteomic imaging for high-dimensional profiling of intact systems,” Cell 163, 1500–1514 (2015).
[Crossref]
[PubMed]
C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: a comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).
[Crossref]
N. Jährling, K. Becker, B. M. Wegenast-Braun, S. A. Grathwohl, M. Jucker, and H.-U. Dodt, “Cerebral β-amyloidosis in mice investigated by ultramicroscopy,” PLoS ONE 10, e0125418 (2015).
[Crossref]
T. Bolmont, A. Bouwens, C. Pache, M. Dimitrov, C. Berclaz, M. Villiger, B. M. Wegenast-Braun, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy,” J. Neurosci. 32, 14548–14556 (2012).
[Crossref]
[PubMed]
X. Wen, S. L. Jacques, V. V. Tuchin, and D. Zhu, “Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging,” J. Biomed. Opt. 17, 066022 (2012).
[Crossref]
[PubMed]
B. Hyman, H. West, G. Rebeck, S. Buldyrev, R. Mantegna, M. Ukleja, S. Havlin, and H. Stanley, “Quantitative analysis of senile plaques in Alzheimer disease: observation of log-normal size distribution and molecular epidemiology of differences associated with apolipoprotein E genotype and trisomy 21 (Down syndrome),” Proc. Natl. Acad. Sci. U.S.A. 92, 3586–3590 (1995).
[Crossref]
[PubMed]
A. Azaripour, T. Lagerweij, C. Scharfbillig, A. E. Jadczak, B. Willershausen, and C. J. Van Noorden, “A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue,” Prog. Histochem. Cytochem. 51, 9–23 (2016).
[Crossref]
[PubMed]
F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nature Photonics 5, 744–747 (2011).
[Crossref]
Y. Z. Wadghiri, D. M. Hoang, T. Wisniewski, and E. M. Sigurdsson, “In vivo magnetic resonance imaging of amyloid-β plaques in mice,” Amyloid Proteins: Methods and Protocols 492, 435–451 (2012).
[Crossref]
A. Lichtenegger, D. J. Harper, M. Augustin, P. Eugui, S. Fialová, A. Woehrer, C. K. Hitzenberger, and B. Baumann, “Visible light spectral domain optical coherence microscopy system for ex vivo imaging,” Proc. SPIE 10051, 1005103 (2017).
[Crossref]
B. Baumann, A. Woehrer, G. Ricken, M. Augustin, C. Mitter, M. Pircher, G. G. Kovacs, and C. K. Hitzenberger, “Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy,” Sci. Rep. 7, 43477 (2017).
[Crossref]
M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[Crossref]
[PubMed]
R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. Hitzenberger, M. Sticker, and A. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25, 820–822 (2000).
[Crossref]
S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Foerster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep 6, 20658 (2016).
[Crossref]
[PubMed]
C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7, 292ra100 (2015).
[Crossref]
[PubMed]
H. Wang, T. Akkin, C. Magnain, R. Wang, J. Dubb, W. J. Kostis, M. A. Yaseen, A. Cramer, S. Sakadžić, and D. Boas, “Polarization sensitive optical coherence microscopy for brain imaging,” Opt. Lett. 41, 2213–2216 (2016).
[Crossref]
[PubMed]
C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7, 292ra100 (2015).
[Crossref]
[PubMed]
R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-light optical coherence tomography angiography for monitoring laser-induced choroidal neovascularization in mice,” Invest. Ophthalmol. Vis. Sci. 57, OCT86–OCT95 (2016).
[Crossref]
[PubMed]
J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6, 3701–3713 (2015).
[Crossref]
[PubMed]
J. Yi, S. Chen, V. Backman, and H. F. Zhang, “In vivo functional microangiography by visible-light optical coherence tomography,” Biomed. Opt. Express 5, 3603–3612 (2014).
[Crossref]
[PubMed]
J. Yi and V. Backman, “Imaging a full set of optical scattering properties of biological tissue by inverse spectroscopic optical coherence tomography,” Opt. Lett. 37, 4443–4445 (2012).
[Crossref]
[PubMed]
S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Foerster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep 6, 20658 (2016).
[Crossref]
[PubMed]
A. Pitzschke, B. Lovisa, O. Seydoux, M. Haenggi, M. F. Oertel, M. Zellweger, Y. Tardy, and G. Wagnières, “Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen, and formalin-fixated conditions,” J. Biomed. Opt. 20, 025006 (2015).
[Crossref]
D. M. Skovronsky, B. Zhang, M.-P. Kung, H. F. Kung, J. Q. Trojanowski, and V. M.-Y. Lee, “In vivo detection of amyloid plaques in a mouse model of Alzheimer’s disease,” Proc. Natl. Acad. Sci. U.S.A. 97, 7609–7614 (2000).
[Crossref]
L. Duan, M. D. McRaven, W. Liu, X. Shu, J. Hu, C. Sun, R. S. Veazey, T. J. Hope, and H. F. Zhang, “Colposcopic imaging using visible-light optical coherence tomography,” J. Biomed. Opt. 22, 056003 (2017).
[Crossref]
R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-light optical coherence tomography angiography for monitoring laser-induced choroidal neovascularization in mice,” Invest. Ophthalmol. Vis. Sci. 57, OCT86–OCT95 (2016).
[Crossref]
[PubMed]
J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6, 3701–3713 (2015).
[Crossref]
[PubMed]
J. Yi, S. Chen, V. Backman, and H. F. Zhang, “In vivo functional microangiography by visible-light optical coherence tomography,” Biomed. Opt. Express 5, 3603–3612 (2014).
[Crossref]
[PubMed]
S. P. Chong, C. W. Merkle, D. F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, and V. J. Srinivasan, “Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 μ m optical coherence tomography,” Opt. Lett. 40, 4911–4914 (2015).
[Crossref]
[PubMed]
F. Li, Y. Song, A. Dryer, W. Cogguillo, Y. Berdichevsky, and C. Zhou, “Nondestructive evaluation of progressive neuronal changes in organotypic rat hippocampal slice cultures using ultrahigh-resolution optical coherence microscopy,” Neurophotonics 1, 025002 (2014).
[Crossref]
X. Wen, S. L. Jacques, V. V. Tuchin, and D. Zhu, “Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging,” J. Biomed. Opt. 17, 066022 (2012).
[Crossref]
[PubMed]
H. Wang, J. Zhu, and T. Akkin, “Serial optical coherence scanner for large-scale brain imaging at microscopic resolution,” Neuroimage 84, 1007–1017 (2014).
[Crossref]
H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58, 984–992 (2011).
[Crossref]
[PubMed]