Abstract

Photothermal treatment (PTT) using gold nanoshells (gold-NSs) is accepted as a method for treating cancer. However, owing to restrictions in therapeutic depth and skin damage caused by excessive light exposure, its application has been limited to lesions close to the epidermis. Here, we demonstrate an in vivo PTT method that uses gold-NSs with a flexible optical fiber-needle array (OFNA), which is an array of multiple needles in which multimode optical fibers are inserted, one in each, for light delivery. The light for PTT was directly administrated to subcutaneous tissues through the OFNA, causing negligible thermal damage to the skin. Enhancement of light energy delivery assisted by the OFNA in a target area was confirmed by investigation using artificial tissues. The ability of OFNA to treat cancer without causing cutaneous thermal damage was also verified by hematoxylin and eosin (H&E) staining and optical coherence tomography in cancer models in mice. In addition, the OFNA allowed for observation of the target site through an imaging fiber bundle. By imaging the activation of the injected gold-NSs, we were able to obtain information on the PTT process in real-time.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

7 July 2017: Typographical corrections were made to the caption of Fig. 3, paragraph 3 of Section 3.1, paragraph 1 of Section 3.3, and paragraph 1 of Section 3.4.


OSA Recommended Articles
In vivo photothermal treatment by the peritumoral injection of macrophages loaded with gold nanoshells

Taeseok Daniel Yang, Wonshik Choi, Tai Hyun Yoon, Kyoung Jin Lee, Jae-Seung Lee, Jang Ho Joo, Min-Goo Lee, Hong Soon Yim, Kyung Min Choi, Byoungjae Kim, Jung Joo Lee, Heejin Kim, Doh Young Lee, Kwang-Yoon Jung, and Seung-Kuk Baek
Biomed. Opt. Express 7(1) 185-193 (2016)

Photothermal lesions in soft tissue induced by optical fiber microheaters

Reinher Pimentel-Domínguez, Paola Moreno-Álvarez, Mathieu Hautefeuille, Anahí Chavarría, and Juan Hernández-Cordero
Biomed. Opt. Express 7(4) 1138-1148 (2016)

Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system

Wei-Cheng Kuo, Jongsik Kim, Nathan D. Shemonski, Eric J. Chaney, Darold R. Spillman, and Stephen A. Boppart
Biomed. Opt. Express 3(6) 1149-1161 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Fang and Y.-C. Chen, “Nanomaterials for photohyperthermia: A Review,” Curr. Pharm. Des. 19(37), 6622–6634 (2013).
    [Crossref]
  2. S. K. Baek, A. R. Makkouk, T. Krasieva, C. H. Sun, S. J. Madsen, and H. Hirschberg, “Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells,” J. Neurooncol. 104(2), 439–448 (2011).
    [Crossref]
  3. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239(1), 129–135 (2006).
    [Crossref]
  4. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
    [Crossref]
  5. T. D. Yang, W. Choi, T. H. Yoon, K. J. Lee, J. S. Lee, J. H. Joo, M. G. Lee, H. S. Yim, K. M. Choi, B. Kim, J. J. Lee, H. Kim, D. Y. Lee, K. Y. Jung, and S. K. Baek, “In vivo photothermal treatment by the peritumoral injection of macrophages loaded with gold nanoshells,” Biomed. Opt. Express 7(1), 185–193 (2016).
    [Crossref]
  6. T. D. Yang, W. Choi, T. H. Yoon, K. J. Lee, J. S. Lee, S. H. Han, M. G. Lee, H. S. Yim, K. M. Choi, M. W. Park, K. Y. Jung, and S. K. Baek, “Real-time phase-contrast imaging of photothermal treatment of head and neck squamous cell carcinoma: an in vitro study of macrophages as a vector for the delivery of gold nanoshells,” J. Biomed. Opt. 17(12), 128003 (2012).
    [Crossref]
  7. M. Kim, J. An, K. Kim, M. Choi, M. Humar, S. Kwok, T. Dai, and S. Yun, “Optical lens-microneedle array for percutaneous light delivery,” Biomed. Opt. Express 7(10), 4220–4227 (2016).
    [Crossref]
  8. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
    [Crossref]
  9. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref]
  10. Y.-H. Rhee, J.-H. Moon, S.-H. Choi, and J.-C. Ahn, “Low-Level Laser Therapy Promoted Aggressive Proliferation and Angiogenesis Through Decreasing of Transforming Growth Factor-β1 and Increasing of Akt/Hypoxia Inducible Factor-1α in Anaplastic Thyroid Cancer,” Photomed. Laser Surg. 34(6), 229–235 (2016).
    [Crossref]
  11. H. Chung, T. Dai, S. K. Sharma, Y.-Y. Huang, J. D. Carroll, and M. R. Hamblin, “The nuts and bolts of lowlevel laser (light) therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
    [Crossref]
  12. C. Guo, H. Yu, B. Feng, W. Gao, M. Yan, Z. Zhang, Y. Li, and S. Liu, “Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064 nm-laser-driven photothermal agent,” Biomaterials 52, 407–416 (2015).
    [Crossref]
  13. T. Okuno, S. Katoa, Y. Hatakeyamaa, J. Okajimab, S. Maruyamab, M. Sakamotoc, S. Morid, and T. Kodamaa, “Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light,” J. Control. Release 172(3), 879–884 (2013).
    [Crossref]
  14. J. T. Robinson, K. Welsher, S. M. Tabakman, S. P. Sherlock, H. Wang, R. Luong, and H. Dai, “High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes,” Nano Res. 3(11), 779–793 (2010).
    [Crossref]
  15. M. A. Kosoglu, R. L. Hood, Y. Chen, Y. Xu, M. N. Rylander, and C. G. Rylander, “Fiber optic microneedles for transdermal light delivery: ex vivo porcine skin penetration experiments,” J. Biomech. Eng. 132(9), 091014 (2010).
    [Crossref]
  16. I. V. W. Small, P. R. Buckley, T. S. Wilson, J. M. Loge, K. D. Maitland, and D. J. Maitland, “Fabrication and characterization of cylindrical light diffusers comprised of shape memory polymer,” J. Biomed. Opt. 13(2), 024018 (2008).
    [Crossref]
  17. C. Kim, H. Park, and H. Lee, “Comparison of laser-induced damage with forward-firing and diffusing optical fiber during laser-assisted lipoplasty,” Lasers Surg. Med. 45(7), 437–449 (2013).
    [Crossref]
  18. M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7(12), 987–994 (2013).
    [Crossref]
  19. D. Huo, J. He, H. Li, A. J. Huang, H. Y. Zhao, Y. Ding, Z. Y. Zhou, and Y. Hu, “X-ray CT guided fault-free photothermal ablation of metastatic lymph nodes with ultrafine HER-2 targeting W18O49 nanoparticles,” Biomaterials 35(33), 9155–9166 (2014).
    [Crossref]
  20. S. Wang, Q. Zhang, X. F. Luo, J. Li, H. He, F. Yang, D. Yang, C. Jin, X. G. Jiang, S. Shen, and D. L. Fu, “Magnetic graphene-based nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer,” Biomaterials 35(35), 9473–9483 (2014).
    [Crossref]
  21. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7(7), 1929–1934 (2007).
    [Crossref]
  22. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4(2), 260–270 (2013).
    [Crossref]
  23. D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixilation-free diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
    [Crossref]
  24. A. M. Caravaca-Aguirre and R. Piestun, “Single multimode fiber endoscope,” Opt. Express 25(3), 1656–1665 (2017).
    [Crossref]

2017 (1)

2016 (3)

2015 (1)

C. Guo, H. Yu, B. Feng, W. Gao, M. Yan, Z. Zhang, Y. Li, and S. Liu, “Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064 nm-laser-driven photothermal agent,” Biomaterials 52, 407–416 (2015).
[Crossref]

2014 (3)

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixilation-free diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref]

D. Huo, J. He, H. Li, A. J. Huang, H. Y. Zhao, Y. Ding, Z. Y. Zhou, and Y. Hu, “X-ray CT guided fault-free photothermal ablation of metastatic lymph nodes with ultrafine HER-2 targeting W18O49 nanoparticles,” Biomaterials 35(33), 9155–9166 (2014).
[Crossref]

S. Wang, Q. Zhang, X. F. Luo, J. Li, H. He, F. Yang, D. Yang, C. Jin, X. G. Jiang, S. Shen, and D. L. Fu, “Magnetic graphene-based nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer,” Biomaterials 35(35), 9473–9483 (2014).
[Crossref]

2013 (6)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4(2), 260–270 (2013).
[Crossref]

T. Okuno, S. Katoa, Y. Hatakeyamaa, J. Okajimab, S. Maruyamab, M. Sakamotoc, S. Morid, and T. Kodamaa, “Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light,” J. Control. Release 172(3), 879–884 (2013).
[Crossref]

C. Kim, H. Park, and H. Lee, “Comparison of laser-induced damage with forward-firing and diffusing optical fiber during laser-assisted lipoplasty,” Lasers Surg. Med. 45(7), 437–449 (2013).
[Crossref]

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7(12), 987–994 (2013).
[Crossref]

J. Fang and Y.-C. Chen, “Nanomaterials for photohyperthermia: A Review,” Curr. Pharm. Des. 19(37), 6622–6634 (2013).
[Crossref]

2012 (2)

T. D. Yang, W. Choi, T. H. Yoon, K. J. Lee, J. S. Lee, S. H. Han, M. G. Lee, H. S. Yim, K. M. Choi, M. W. Park, K. Y. Jung, and S. K. Baek, “Real-time phase-contrast imaging of photothermal treatment of head and neck squamous cell carcinoma: an in vitro study of macrophages as a vector for the delivery of gold nanoshells,” J. Biomed. Opt. 17(12), 128003 (2012).
[Crossref]

H. Chung, T. Dai, S. K. Sharma, Y.-Y. Huang, J. D. Carroll, and M. R. Hamblin, “The nuts and bolts of lowlevel laser (light) therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

2011 (1)

S. K. Baek, A. R. Makkouk, T. Krasieva, C. H. Sun, S. J. Madsen, and H. Hirschberg, “Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells,” J. Neurooncol. 104(2), 439–448 (2011).
[Crossref]

2010 (3)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref]

J. T. Robinson, K. Welsher, S. M. Tabakman, S. P. Sherlock, H. Wang, R. Luong, and H. Dai, “High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes,” Nano Res. 3(11), 779–793 (2010).
[Crossref]

M. A. Kosoglu, R. L. Hood, Y. Chen, Y. Xu, M. N. Rylander, and C. G. Rylander, “Fiber optic microneedles for transdermal light delivery: ex vivo porcine skin penetration experiments,” J. Biomech. Eng. 132(9), 091014 (2010).
[Crossref]

2008 (1)

I. V. W. Small, P. R. Buckley, T. S. Wilson, J. M. Loge, K. D. Maitland, and D. J. Maitland, “Fabrication and characterization of cylindrical light diffusers comprised of shape memory polymer,” J. Biomed. Opt. 13(2), 024018 (2008).
[Crossref]

2007 (1)

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref]

2006 (1)

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239(1), 129–135 (2006).
[Crossref]

2003 (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref]

Ahn, J.-C.

Y.-H. Rhee, J.-H. Moon, S.-H. Choi, and J.-C. Ahn, “Low-Level Laser Therapy Promoted Aggressive Proliferation and Angiogenesis Through Decreasing of Transforming Growth Factor-β1 and Increasing of Akt/Hypoxia Inducible Factor-1α in Anaplastic Thyroid Cancer,” Photomed. Laser Surg. 34(6), 229–235 (2016).
[Crossref]

An, J.

Baek, S. K.

T. D. Yang, W. Choi, T. H. Yoon, K. J. Lee, J. S. Lee, J. H. Joo, M. G. Lee, H. S. Yim, K. M. Choi, B. Kim, J. J. Lee, H. Kim, D. Y. Lee, K. Y. Jung, and S. K. Baek, “In vivo photothermal treatment by the peritumoral injection of macrophages loaded with gold nanoshells,” Biomed. Opt. Express 7(1), 185–193 (2016).
[Crossref]

T. D. Yang, W. Choi, T. H. Yoon, K. J. Lee, J. S. Lee, S. H. Han, M. G. Lee, H. S. Yim, K. M. Choi, M. W. Park, K. Y. Jung, and S. K. Baek, “Real-time phase-contrast imaging of photothermal treatment of head and neck squamous cell carcinoma: an in vitro study of macrophages as a vector for the delivery of gold nanoshells,” J. Biomed. Opt. 17(12), 128003 (2012).
[Crossref]

S. K. Baek, A. R. Makkouk, T. Krasieva, C. H. Sun, S. J. Madsen, and H. Hirschberg, “Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells,” J. Neurooncol. 104(2), 439–448 (2011).
[Crossref]

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref]

Buckley, P. R.

I. V. W. Small, P. R. Buckley, T. S. Wilson, J. M. Loge, K. D. Maitland, and D. J. Maitland, “Fabrication and characterization of cylindrical light diffusers comprised of shape memory polymer,” J. Biomed. Opt. 13(2), 024018 (2008).
[Crossref]

Caravaca-Aguirre, A. M.

Carroll, J. D.

H. Chung, T. Dai, S. K. Sharma, Y.-Y. Huang, J. D. Carroll, and M. R. Hamblin, “The nuts and bolts of lowlevel laser (light) therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

Chen, Y.

M. A. Kosoglu, R. L. Hood, Y. Chen, Y. Xu, M. N. Rylander, and C. G. Rylander, “Fiber optic microneedles for transdermal light delivery: ex vivo porcine skin penetration experiments,” J. Biomech. Eng. 132(9), 091014 (2010).
[Crossref]

Chen, Y.-C.

J. Fang and Y.-C. Chen, “Nanomaterials for photohyperthermia: A Review,” Curr. Pharm. Des. 19(37), 6622–6634 (2013).
[Crossref]

Choi, J. W.

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7(12), 987–994 (2013).
[Crossref]

Choi, K. M.

T. D. Yang, W. Choi, T. H. Yoon, K. J. Lee, J. S. Lee, J. H. Joo, M. G. Lee, H. S. Yim, K. M. Choi, B. Kim, J. J. Lee, H. Kim, D. Y. Lee, K. Y. Jung, and S. K. Baek, “In vivo photothermal treatment by the peritumoral injection of macrophages loaded with gold nanoshells,” Biomed. Opt. Express 7(1), 185–193 (2016).
[Crossref]

T. D. Yang, W. Choi, T. H. Yoon, K. J. Lee, J. S. Lee, S. H. Han, M. G. Lee, H. S. Yim, K. M. Choi, M. W. Park, K. Y. Jung, and S. K. Baek, “Real-time phase-contrast imaging of photothermal treatment of head and neck squamous cell carcinoma: an in vitro study of macrophages as a vector for the delivery of gold nanoshells,” J. Biomed. Opt. 17(12), 128003 (2012).
[Crossref]

Choi, M.

M. Kim, J. An, K. Kim, M. Choi, M. Humar, S. Kwok, T. Dai, and S. Yun, “Optical lens-microneedle array for percutaneous light delivery,” Biomed. Opt. Express 7(10), 4220–4227 (2016).
[Crossref]

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7(12), 987–994 (2013).
[Crossref]

Choi, S.-H.

Y.-H. Rhee, J.-H. Moon, S.-H. Choi, and J.-C. Ahn, “Low-Level Laser Therapy Promoted Aggressive Proliferation and Angiogenesis Through Decreasing of Transforming Growth Factor-β1 and Increasing of Akt/Hypoxia Inducible Factor-1α in Anaplastic Thyroid Cancer,” Photomed. Laser Surg. 34(6), 229–235 (2016).
[Crossref]

Choi, W.

Chung, E.

Chung, H.

H. Chung, T. Dai, S. K. Sharma, Y.-Y. Huang, J. D. Carroll, and M. R. Hamblin, “The nuts and bolts of lowlevel laser (light) therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

Dai, H.

J. T. Robinson, K. Welsher, S. M. Tabakman, S. P. Sherlock, H. Wang, R. Luong, and H. Dai, “High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes,” Nano Res. 3(11), 779–793 (2010).
[Crossref]

Dai, T.

M. Kim, J. An, K. Kim, M. Choi, M. Humar, S. Kwok, T. Dai, and S. Yun, “Optical lens-microneedle array for percutaneous light delivery,” Biomed. Opt. Express 7(10), 4220–4227 (2016).
[Crossref]

H. Chung, T. Dai, S. K. Sharma, Y.-Y. Huang, J. D. Carroll, and M. R. Hamblin, “The nuts and bolts of lowlevel laser (light) therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

Ding, Y.

D. Huo, J. He, H. Li, A. J. Huang, H. Y. Zhao, Y. Ding, Z. Y. Zhou, and Y. Hu, “X-ray CT guided fault-free photothermal ablation of metastatic lymph nodes with ultrafine HER-2 targeting W18O49 nanoparticles,” Biomaterials 35(33), 9155–9166 (2014).
[Crossref]

Drezek, R. A.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref]

El-Sayed, I. H.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239(1), 129–135 (2006).
[Crossref]

El-Sayed, M. A.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239(1), 129–135 (2006).
[Crossref]

Fang, J.

J. Fang and Y.-C. Chen, “Nanomaterials for photohyperthermia: A Review,” Curr. Pharm. Des. 19(37), 6622–6634 (2013).
[Crossref]

Farahi, S.

Feng, B.

C. Guo, H. Yu, B. Feng, W. Gao, M. Yan, Z. Zhang, Y. Li, and S. Liu, “Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064 nm-laser-driven photothermal agent,” Biomaterials 52, 407–416 (2015).
[Crossref]

Fu, D. L.

S. Wang, Q. Zhang, X. F. Luo, J. Li, H. He, F. Yang, D. Yang, C. Jin, X. G. Jiang, S. Shen, and D. L. Fu, “Magnetic graphene-based nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer,” Biomaterials 35(35), 9473–9483 (2014).
[Crossref]

Gao, W.

C. Guo, H. Yu, B. Feng, W. Gao, M. Yan, Z. Zhang, Y. Li, and S. Liu, “Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064 nm-laser-driven photothermal agent,” Biomaterials 52, 407–416 (2015).
[Crossref]

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref]

Guo, C.

C. Guo, H. Yu, B. Feng, W. Gao, M. Yan, Z. Zhang, Y. Li, and S. Liu, “Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064 nm-laser-driven photothermal agent,” Biomaterials 52, 407–416 (2015).
[Crossref]

Hahn, S. K.

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7(12), 987–994 (2013).
[Crossref]

Halas, N. J.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref]

Hamblin, M. R.

H. Chung, T. Dai, S. K. Sharma, Y.-Y. Huang, J. D. Carroll, and M. R. Hamblin, “The nuts and bolts of lowlevel laser (light) therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

Han, S. H.

T. D. Yang, W. Choi, T. H. Yoon, K. J. Lee, J. S. Lee, S. H. Han, M. G. Lee, H. S. Yim, K. M. Choi, M. W. Park, K. Y. Jung, and S. K. Baek, “Real-time phase-contrast imaging of photothermal treatment of head and neck squamous cell carcinoma: an in vitro study of macrophages as a vector for the delivery of gold nanoshells,” J. Biomed. Opt. 17(12), 128003 (2012).
[Crossref]

Hatakeyamaa, Y.

T. Okuno, S. Katoa, Y. Hatakeyamaa, J. Okajimab, S. Maruyamab, M. Sakamotoc, S. Morid, and T. Kodamaa, “Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light,” J. Control. Release 172(3), 879–884 (2013).
[Crossref]

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref]

He, H.

S. Wang, Q. Zhang, X. F. Luo, J. Li, H. He, F. Yang, D. Yang, C. Jin, X. G. Jiang, S. Shen, and D. L. Fu, “Magnetic graphene-based nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer,” Biomaterials 35(35), 9473–9483 (2014).
[Crossref]

He, J.

D. Huo, J. He, H. Li, A. J. Huang, H. Y. Zhao, Y. Ding, Z. Y. Zhou, and Y. Hu, “X-ray CT guided fault-free photothermal ablation of metastatic lymph nodes with ultrafine HER-2 targeting W18O49 nanoparticles,” Biomaterials 35(33), 9155–9166 (2014).
[Crossref]

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref]

Hirschberg, H.

S. K. Baek, A. R. Makkouk, T. Krasieva, C. H. Sun, S. J. Madsen, and H. Hirschberg, “Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells,” J. Neurooncol. 104(2), 439–448 (2011).
[Crossref]

Hood, R. L.

M. A. Kosoglu, R. L. Hood, Y. Chen, Y. Xu, M. N. Rylander, and C. G. Rylander, “Fiber optic microneedles for transdermal light delivery: ex vivo porcine skin penetration experiments,” J. Biomech. Eng. 132(9), 091014 (2010).
[Crossref]

Hu, Y.

D. Huo, J. He, H. Li, A. J. Huang, H. Y. Zhao, Y. Ding, Z. Y. Zhou, and Y. Hu, “X-ray CT guided fault-free photothermal ablation of metastatic lymph nodes with ultrafine HER-2 targeting W18O49 nanoparticles,” Biomaterials 35(33), 9155–9166 (2014).
[Crossref]

Huang, A. J.

D. Huo, J. He, H. Li, A. J. Huang, H. Y. Zhao, Y. Ding, Z. Y. Zhou, and Y. Hu, “X-ray CT guided fault-free photothermal ablation of metastatic lymph nodes with ultrafine HER-2 targeting W18O49 nanoparticles,” Biomaterials 35(33), 9155–9166 (2014).
[Crossref]

Huang, X.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239(1), 129–135 (2006).
[Crossref]

Huang, Y.-Y.

H. Chung, T. Dai, S. K. Sharma, Y.-Y. Huang, J. D. Carroll, and M. R. Hamblin, “The nuts and bolts of lowlevel laser (light) therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

Humar, M.

Huo, D.

D. Huo, J. He, H. Li, A. J. Huang, H. Y. Zhao, Y. Ding, Z. Y. Zhou, and Y. Hu, “X-ray CT guided fault-free photothermal ablation of metastatic lymph nodes with ultrafine HER-2 targeting W18O49 nanoparticles,” Biomaterials 35(33), 9155–9166 (2014).
[Crossref]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

James, W. D.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref]

Jiang, X. G.

S. Wang, Q. Zhang, X. F. Luo, J. Li, H. He, F. Yang, D. Yang, C. Jin, X. G. Jiang, S. Shen, and D. L. Fu, “Magnetic graphene-based nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer,” Biomaterials 35(35), 9473–9483 (2014).
[Crossref]

Jin, C.

S. Wang, Q. Zhang, X. F. Luo, J. Li, H. He, F. Yang, D. Yang, C. Jin, X. G. Jiang, S. Shen, and D. L. Fu, “Magnetic graphene-based nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer,” Biomaterials 35(35), 9473–9483 (2014).
[Crossref]

Joo, J. H.

Jung, K. Y.

T. D. Yang, W. Choi, T. H. Yoon, K. J. Lee, J. S. Lee, J. H. Joo, M. G. Lee, H. S. Yim, K. M. Choi, B. Kim, J. J. Lee, H. Kim, D. Y. Lee, K. Y. Jung, and S. K. Baek, “In vivo photothermal treatment by the peritumoral injection of macrophages loaded with gold nanoshells,” Biomed. Opt. Express 7(1), 185–193 (2016).
[Crossref]

T. D. Yang, W. Choi, T. H. Yoon, K. J. Lee, J. S. Lee, S. H. Han, M. G. Lee, H. S. Yim, K. M. Choi, M. W. Park, K. Y. Jung, and S. K. Baek, “Real-time phase-contrast imaging of photothermal treatment of head and neck squamous cell carcinoma: an in vitro study of macrophages as a vector for the delivery of gold nanoshells,” J. Biomed. Opt. 17(12), 128003 (2012).
[Crossref]

Katoa, S.

T. Okuno, S. Katoa, Y. Hatakeyamaa, J. Okajimab, S. Maruyamab, M. Sakamotoc, S. Morid, and T. Kodamaa, “Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light,” J. Control. Release 172(3), 879–884 (2013).
[Crossref]

Kim, B.

Kim, C.

C. Kim, H. Park, and H. Lee, “Comparison of laser-induced damage with forward-firing and diffusing optical fiber during laser-assisted lipoplasty,” Lasers Surg. Med. 45(7), 437–449 (2013).
[Crossref]

Kim, D.

Kim, H.

Kim, J.

Kim, K.

Kim, M.

Kim, S.

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7(12), 987–994 (2013).
[Crossref]

Kodamaa, T.

T. Okuno, S. Katoa, Y. Hatakeyamaa, J. Okajimab, S. Maruyamab, M. Sakamotoc, S. Morid, and T. Kodamaa, “Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light,” J. Control. Release 172(3), 879–884 (2013).
[Crossref]

Kosoglu, M. A.

M. A. Kosoglu, R. L. Hood, Y. Chen, Y. Xu, M. N. Rylander, and C. G. Rylander, “Fiber optic microneedles for transdermal light delivery: ex vivo porcine skin penetration experiments,” J. Biomech. Eng. 132(9), 091014 (2010).
[Crossref]

Krasieva, T.

S. K. Baek, A. R. Makkouk, T. Krasieva, C. H. Sun, S. J. Madsen, and H. Hirschberg, “Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells,” J. Neurooncol. 104(2), 439–448 (2011).
[Crossref]

Kwok, S.

Lee, D. Y.

Lee, H.

C. Kim, H. Park, and H. Lee, “Comparison of laser-induced damage with forward-firing and diffusing optical fiber during laser-assisted lipoplasty,” Lasers Surg. Med. 45(7), 437–449 (2013).
[Crossref]

Lee, J. J.

Lee, J. S.

T. D. Yang, W. Choi, T. H. Yoon, K. J. Lee, J. S. Lee, J. H. Joo, M. G. Lee, H. S. Yim, K. M. Choi, B. Kim, J. J. Lee, H. Kim, D. Y. Lee, K. Y. Jung, and S. K. Baek, “In vivo photothermal treatment by the peritumoral injection of macrophages loaded with gold nanoshells,” Biomed. Opt. Express 7(1), 185–193 (2016).
[Crossref]

T. D. Yang, W. Choi, T. H. Yoon, K. J. Lee, J. S. Lee, S. H. Han, M. G. Lee, H. S. Yim, K. M. Choi, M. W. Park, K. Y. Jung, and S. K. Baek, “Real-time phase-contrast imaging of photothermal treatment of head and neck squamous cell carcinoma: an in vitro study of macrophages as a vector for the delivery of gold nanoshells,” J. Biomed. Opt. 17(12), 128003 (2012).
[Crossref]

Lee, K. J.

T. D. Yang, W. Choi, T. H. Yoon, K. J. Lee, J. S. Lee, J. H. Joo, M. G. Lee, H. S. Yim, K. M. Choi, B. Kim, J. J. Lee, H. Kim, D. Y. Lee, K. Y. Jung, and S. K. Baek, “In vivo photothermal treatment by the peritumoral injection of macrophages loaded with gold nanoshells,” Biomed. Opt. Express 7(1), 185–193 (2016).
[Crossref]

T. D. Yang, W. Choi, T. H. Yoon, K. J. Lee, J. S. Lee, S. H. Han, M. G. Lee, H. S. Yim, K. M. Choi, M. W. Park, K. Y. Jung, and S. K. Baek, “Real-time phase-contrast imaging of photothermal treatment of head and neck squamous cell carcinoma: an in vitro study of macrophages as a vector for the delivery of gold nanoshells,” J. Biomed. Opt. 17(12), 128003 (2012).
[Crossref]

Lee, M. G.

T. D. Yang, W. Choi, T. H. Yoon, K. J. Lee, J. S. Lee, J. H. Joo, M. G. Lee, H. S. Yim, K. M. Choi, B. Kim, J. J. Lee, H. Kim, D. Y. Lee, K. Y. Jung, and S. K. Baek, “In vivo photothermal treatment by the peritumoral injection of macrophages loaded with gold nanoshells,” Biomed. Opt. Express 7(1), 185–193 (2016).
[Crossref]

T. D. Yang, W. Choi, T. H. Yoon, K. J. Lee, J. S. Lee, S. H. Han, M. G. Lee, H. S. Yim, K. M. Choi, M. W. Park, K. Y. Jung, and S. K. Baek, “Real-time phase-contrast imaging of photothermal treatment of head and neck squamous cell carcinoma: an in vitro study of macrophages as a vector for the delivery of gold nanoshells,” J. Biomed. Opt. 17(12), 128003 (2012).
[Crossref]

Lee, M. H.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref]

Li, H.

D. Huo, J. He, H. Li, A. J. Huang, H. Y. Zhao, Y. Ding, Z. Y. Zhou, and Y. Hu, “X-ray CT guided fault-free photothermal ablation of metastatic lymph nodes with ultrafine HER-2 targeting W18O49 nanoparticles,” Biomaterials 35(33), 9155–9166 (2014).
[Crossref]

Li, J.

S. Wang, Q. Zhang, X. F. Luo, J. Li, H. He, F. Yang, D. Yang, C. Jin, X. G. Jiang, S. Shen, and D. L. Fu, “Magnetic graphene-based nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer,” Biomaterials 35(35), 9473–9483 (2014).
[Crossref]

Li, Y.

C. Guo, H. Yu, B. Feng, W. Gao, M. Yan, Z. Zhang, Y. Li, and S. Liu, “Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064 nm-laser-driven photothermal agent,” Biomaterials 52, 407–416 (2015).
[Crossref]

Liu, S.

C. Guo, H. Yu, B. Feng, W. Gao, M. Yan, Z. Zhang, Y. Li, and S. Liu, “Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064 nm-laser-driven photothermal agent,” Biomaterials 52, 407–416 (2015).
[Crossref]

Loge, J. M.

I. V. W. Small, P. R. Buckley, T. S. Wilson, J. M. Loge, K. D. Maitland, and D. J. Maitland, “Fabrication and characterization of cylindrical light diffusers comprised of shape memory polymer,” J. Biomed. Opt. 13(2), 024018 (2008).
[Crossref]

Luo, X. F.

S. Wang, Q. Zhang, X. F. Luo, J. Li, H. He, F. Yang, D. Yang, C. Jin, X. G. Jiang, S. Shen, and D. L. Fu, “Magnetic graphene-based nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer,” Biomaterials 35(35), 9473–9483 (2014).
[Crossref]

Luong, R.

J. T. Robinson, K. Welsher, S. M. Tabakman, S. P. Sherlock, H. Wang, R. Luong, and H. Dai, “High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes,” Nano Res. 3(11), 779–793 (2010).
[Crossref]

Madsen, S. J.

S. K. Baek, A. R. Makkouk, T. Krasieva, C. H. Sun, S. J. Madsen, and H. Hirschberg, “Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells,” J. Neurooncol. 104(2), 439–448 (2011).
[Crossref]

Maitland, D. J.

I. V. W. Small, P. R. Buckley, T. S. Wilson, J. M. Loge, K. D. Maitland, and D. J. Maitland, “Fabrication and characterization of cylindrical light diffusers comprised of shape memory polymer,” J. Biomed. Opt. 13(2), 024018 (2008).
[Crossref]

Maitland, K. D.

I. V. W. Small, P. R. Buckley, T. S. Wilson, J. M. Loge, K. D. Maitland, and D. J. Maitland, “Fabrication and characterization of cylindrical light diffusers comprised of shape memory polymer,” J. Biomed. Opt. 13(2), 024018 (2008).
[Crossref]

Makkouk, A. R.

S. K. Baek, A. R. Makkouk, T. Krasieva, C. H. Sun, S. J. Madsen, and H. Hirschberg, “Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells,” J. Neurooncol. 104(2), 439–448 (2011).
[Crossref]

Maruyamab, S.

T. Okuno, S. Katoa, Y. Hatakeyamaa, J. Okajimab, S. Maruyamab, M. Sakamotoc, S. Morid, and T. Kodamaa, “Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light,” J. Control. Release 172(3), 879–884 (2013).
[Crossref]

Moon, J.

Moon, J.-H.

Y.-H. Rhee, J.-H. Moon, S.-H. Choi, and J.-C. Ahn, “Low-Level Laser Therapy Promoted Aggressive Proliferation and Angiogenesis Through Decreasing of Transforming Growth Factor-β1 and Increasing of Akt/Hypoxia Inducible Factor-1α in Anaplastic Thyroid Cancer,” Photomed. Laser Surg. 34(6), 229–235 (2016).
[Crossref]

Morid, S.

T. Okuno, S. Katoa, Y. Hatakeyamaa, J. Okajimab, S. Maruyamab, M. Sakamotoc, S. Morid, and T. Kodamaa, “Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light,” J. Control. Release 172(3), 879–884 (2013).
[Crossref]

Moser, C.

Nizamoglu, S.

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7(12), 987–994 (2013).
[Crossref]

Ntziachristos, V.

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref]

Okajimab, J.

T. Okuno, S. Katoa, Y. Hatakeyamaa, J. Okajimab, S. Maruyamab, M. Sakamotoc, S. Morid, and T. Kodamaa, “Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light,” J. Control. Release 172(3), 879–884 (2013).
[Crossref]

Okuno, T.

T. Okuno, S. Katoa, Y. Hatakeyamaa, J. Okajimab, S. Maruyamab, M. Sakamotoc, S. Morid, and T. Kodamaa, “Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light,” J. Control. Release 172(3), 879–884 (2013).
[Crossref]

Papadopoulos, I. N.

Park, H.

C. Kim, H. Park, and H. Lee, “Comparison of laser-induced damage with forward-firing and diffusing optical fiber during laser-assisted lipoplasty,” Lasers Surg. Med. 45(7), 437–449 (2013).
[Crossref]

Park, M. W.

T. D. Yang, W. Choi, T. H. Yoon, K. J. Lee, J. S. Lee, S. H. Han, M. G. Lee, H. S. Yim, K. M. Choi, M. W. Park, K. Y. Jung, and S. K. Baek, “Real-time phase-contrast imaging of photothermal treatment of head and neck squamous cell carcinoma: an in vitro study of macrophages as a vector for the delivery of gold nanoshells,” J. Biomed. Opt. 17(12), 128003 (2012).
[Crossref]

Piestun, R.

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref]

Psaltis, D.

Rhee, Y.-H.

Y.-H. Rhee, J.-H. Moon, S.-H. Choi, and J.-C. Ahn, “Low-Level Laser Therapy Promoted Aggressive Proliferation and Angiogenesis Through Decreasing of Transforming Growth Factor-β1 and Increasing of Akt/Hypoxia Inducible Factor-1α in Anaplastic Thyroid Cancer,” Photomed. Laser Surg. 34(6), 229–235 (2016).
[Crossref]

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref]

Robinson, J. T.

J. T. Robinson, K. Welsher, S. M. Tabakman, S. P. Sherlock, H. Wang, R. Luong, and H. Dai, “High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes,” Nano Res. 3(11), 779–793 (2010).
[Crossref]

Rylander, C. G.

M. A. Kosoglu, R. L. Hood, Y. Chen, Y. Xu, M. N. Rylander, and C. G. Rylander, “Fiber optic microneedles for transdermal light delivery: ex vivo porcine skin penetration experiments,” J. Biomech. Eng. 132(9), 091014 (2010).
[Crossref]

Rylander, M. N.

M. A. Kosoglu, R. L. Hood, Y. Chen, Y. Xu, M. N. Rylander, and C. G. Rylander, “Fiber optic microneedles for transdermal light delivery: ex vivo porcine skin penetration experiments,” J. Biomech. Eng. 132(9), 091014 (2010).
[Crossref]

Sakamotoc, M.

T. Okuno, S. Katoa, Y. Hatakeyamaa, J. Okajimab, S. Maruyamab, M. Sakamotoc, S. Morid, and T. Kodamaa, “Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light,” J. Control. Release 172(3), 879–884 (2013).
[Crossref]

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref]

Sharma, S. K.

H. Chung, T. Dai, S. K. Sharma, Y.-Y. Huang, J. D. Carroll, and M. R. Hamblin, “The nuts and bolts of lowlevel laser (light) therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

Shen, S.

S. Wang, Q. Zhang, X. F. Luo, J. Li, H. He, F. Yang, D. Yang, C. Jin, X. G. Jiang, S. Shen, and D. L. Fu, “Magnetic graphene-based nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer,” Biomaterials 35(35), 9473–9483 (2014).
[Crossref]

Sherlock, S. P.

J. T. Robinson, K. Welsher, S. M. Tabakman, S. P. Sherlock, H. Wang, R. Luong, and H. Dai, “High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes,” Nano Res. 3(11), 779–793 (2010).
[Crossref]

Small, I. V. W.

I. V. W. Small, P. R. Buckley, T. S. Wilson, J. M. Loge, K. D. Maitland, and D. J. Maitland, “Fabrication and characterization of cylindrical light diffusers comprised of shape memory polymer,” J. Biomed. Opt. 13(2), 024018 (2008).
[Crossref]

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref]

Sun, C. H.

S. K. Baek, A. R. Makkouk, T. Krasieva, C. H. Sun, S. J. Madsen, and H. Hirschberg, “Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells,” J. Neurooncol. 104(2), 439–448 (2011).
[Crossref]

Tabakman, S. M.

J. T. Robinson, K. Welsher, S. M. Tabakman, S. P. Sherlock, H. Wang, R. Luong, and H. Dai, “High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes,” Nano Res. 3(11), 779–793 (2010).
[Crossref]

Wang, H.

J. T. Robinson, K. Welsher, S. M. Tabakman, S. P. Sherlock, H. Wang, R. Luong, and H. Dai, “High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes,” Nano Res. 3(11), 779–793 (2010).
[Crossref]

Wang, S.

S. Wang, Q. Zhang, X. F. Luo, J. Li, H. He, F. Yang, D. Yang, C. Jin, X. G. Jiang, S. Shen, and D. L. Fu, “Magnetic graphene-based nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer,” Biomaterials 35(35), 9473–9483 (2014).
[Crossref]

Welsher, K.

J. T. Robinson, K. Welsher, S. M. Tabakman, S. P. Sherlock, H. Wang, R. Luong, and H. Dai, “High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes,” Nano Res. 3(11), 779–793 (2010).
[Crossref]

West, J. L.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref]

Wilson, T. S.

I. V. W. Small, P. R. Buckley, T. S. Wilson, J. M. Loge, K. D. Maitland, and D. J. Maitland, “Fabrication and characterization of cylindrical light diffusers comprised of shape memory polymer,” J. Biomed. Opt. 13(2), 024018 (2008).
[Crossref]

Xu, Y.

M. A. Kosoglu, R. L. Hood, Y. Chen, Y. Xu, M. N. Rylander, and C. G. Rylander, “Fiber optic microneedles for transdermal light delivery: ex vivo porcine skin penetration experiments,” J. Biomech. Eng. 132(9), 091014 (2010).
[Crossref]

Yan, M.

C. Guo, H. Yu, B. Feng, W. Gao, M. Yan, Z. Zhang, Y. Li, and S. Liu, “Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064 nm-laser-driven photothermal agent,” Biomaterials 52, 407–416 (2015).
[Crossref]

Yang, D.

S. Wang, Q. Zhang, X. F. Luo, J. Li, H. He, F. Yang, D. Yang, C. Jin, X. G. Jiang, S. Shen, and D. L. Fu, “Magnetic graphene-based nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer,” Biomaterials 35(35), 9473–9483 (2014).
[Crossref]

Yang, F.

S. Wang, Q. Zhang, X. F. Luo, J. Li, H. He, F. Yang, D. Yang, C. Jin, X. G. Jiang, S. Shen, and D. L. Fu, “Magnetic graphene-based nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer,” Biomaterials 35(35), 9473–9483 (2014).
[Crossref]

Yang, T. D.

Yim, H. S.

T. D. Yang, W. Choi, T. H. Yoon, K. J. Lee, J. S. Lee, J. H. Joo, M. G. Lee, H. S. Yim, K. M. Choi, B. Kim, J. J. Lee, H. Kim, D. Y. Lee, K. Y. Jung, and S. K. Baek, “In vivo photothermal treatment by the peritumoral injection of macrophages loaded with gold nanoshells,” Biomed. Opt. Express 7(1), 185–193 (2016).
[Crossref]

T. D. Yang, W. Choi, T. H. Yoon, K. J. Lee, J. S. Lee, S. H. Han, M. G. Lee, H. S. Yim, K. M. Choi, M. W. Park, K. Y. Jung, and S. K. Baek, “Real-time phase-contrast imaging of photothermal treatment of head and neck squamous cell carcinoma: an in vitro study of macrophages as a vector for the delivery of gold nanoshells,” J. Biomed. Opt. 17(12), 128003 (2012).
[Crossref]

Yoon, T. H.

T. D. Yang, W. Choi, T. H. Yoon, K. J. Lee, J. S. Lee, J. H. Joo, M. G. Lee, H. S. Yim, K. M. Choi, B. Kim, J. J. Lee, H. Kim, D. Y. Lee, K. Y. Jung, and S. K. Baek, “In vivo photothermal treatment by the peritumoral injection of macrophages loaded with gold nanoshells,” Biomed. Opt. Express 7(1), 185–193 (2016).
[Crossref]

T. D. Yang, W. Choi, T. H. Yoon, K. J. Lee, J. S. Lee, S. H. Han, M. G. Lee, H. S. Yim, K. M. Choi, M. W. Park, K. Y. Jung, and S. K. Baek, “Real-time phase-contrast imaging of photothermal treatment of head and neck squamous cell carcinoma: an in vitro study of macrophages as a vector for the delivery of gold nanoshells,” J. Biomed. Opt. 17(12), 128003 (2012).
[Crossref]

Yu, H.

C. Guo, H. Yu, B. Feng, W. Gao, M. Yan, Z. Zhang, Y. Li, and S. Liu, “Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064 nm-laser-driven photothermal agent,” Biomaterials 52, 407–416 (2015).
[Crossref]

Yun, S.

Yun, S. H.

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7(12), 987–994 (2013).
[Crossref]

Zhang, Q.

S. Wang, Q. Zhang, X. F. Luo, J. Li, H. He, F. Yang, D. Yang, C. Jin, X. G. Jiang, S. Shen, and D. L. Fu, “Magnetic graphene-based nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer,” Biomaterials 35(35), 9473–9483 (2014).
[Crossref]

Zhang, Z.

C. Guo, H. Yu, B. Feng, W. Gao, M. Yan, Z. Zhang, Y. Li, and S. Liu, “Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064 nm-laser-driven photothermal agent,” Biomaterials 52, 407–416 (2015).
[Crossref]

Zhao, H. Y.

D. Huo, J. He, H. Li, A. J. Huang, H. Y. Zhao, Y. Ding, Z. Y. Zhou, and Y. Hu, “X-ray CT guided fault-free photothermal ablation of metastatic lymph nodes with ultrafine HER-2 targeting W18O49 nanoparticles,” Biomaterials 35(33), 9155–9166 (2014).
[Crossref]

Zhou, Z. Y.

D. Huo, J. He, H. Li, A. J. Huang, H. Y. Zhao, Y. Ding, Z. Y. Zhou, and Y. Hu, “X-ray CT guided fault-free photothermal ablation of metastatic lymph nodes with ultrafine HER-2 targeting W18O49 nanoparticles,” Biomaterials 35(33), 9155–9166 (2014).
[Crossref]

Ann. Biomed. Eng. (1)

H. Chung, T. Dai, S. K. Sharma, Y.-Y. Huang, J. D. Carroll, and M. R. Hamblin, “The nuts and bolts of lowlevel laser (light) therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

Biomaterials (3)

C. Guo, H. Yu, B. Feng, W. Gao, M. Yan, Z. Zhang, Y. Li, and S. Liu, “Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064 nm-laser-driven photothermal agent,” Biomaterials 52, 407–416 (2015).
[Crossref]

D. Huo, J. He, H. Li, A. J. Huang, H. Y. Zhao, Y. Ding, Z. Y. Zhou, and Y. Hu, “X-ray CT guided fault-free photothermal ablation of metastatic lymph nodes with ultrafine HER-2 targeting W18O49 nanoparticles,” Biomaterials 35(33), 9155–9166 (2014).
[Crossref]

S. Wang, Q. Zhang, X. F. Luo, J. Li, H. He, F. Yang, D. Yang, C. Jin, X. G. Jiang, S. Shen, and D. L. Fu, “Magnetic graphene-based nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer,” Biomaterials 35(35), 9473–9483 (2014).
[Crossref]

Biomed. Opt. Express (3)

Cancer Lett. (1)

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239(1), 129–135 (2006).
[Crossref]

Curr. Pharm. Des. (1)

J. Fang and Y.-C. Chen, “Nanomaterials for photohyperthermia: A Review,” Curr. Pharm. Des. 19(37), 6622–6634 (2013).
[Crossref]

J. Biomech. Eng. (1)

M. A. Kosoglu, R. L. Hood, Y. Chen, Y. Xu, M. N. Rylander, and C. G. Rylander, “Fiber optic microneedles for transdermal light delivery: ex vivo porcine skin penetration experiments,” J. Biomech. Eng. 132(9), 091014 (2010).
[Crossref]

J. Biomed. Opt. (2)

I. V. W. Small, P. R. Buckley, T. S. Wilson, J. M. Loge, K. D. Maitland, and D. J. Maitland, “Fabrication and characterization of cylindrical light diffusers comprised of shape memory polymer,” J. Biomed. Opt. 13(2), 024018 (2008).
[Crossref]

T. D. Yang, W. Choi, T. H. Yoon, K. J. Lee, J. S. Lee, S. H. Han, M. G. Lee, H. S. Yim, K. M. Choi, M. W. Park, K. Y. Jung, and S. K. Baek, “Real-time phase-contrast imaging of photothermal treatment of head and neck squamous cell carcinoma: an in vitro study of macrophages as a vector for the delivery of gold nanoshells,” J. Biomed. Opt. 17(12), 128003 (2012).
[Crossref]

J. Control. Release (1)

T. Okuno, S. Katoa, Y. Hatakeyamaa, J. Okajimab, S. Maruyamab, M. Sakamotoc, S. Morid, and T. Kodamaa, “Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light,” J. Control. Release 172(3), 879–884 (2013).
[Crossref]

J. Neurooncol. (1)

S. K. Baek, A. R. Makkouk, T. Krasieva, C. H. Sun, S. J. Madsen, and H. Hirschberg, “Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells,” J. Neurooncol. 104(2), 439–448 (2011).
[Crossref]

Lasers Surg. Med. (1)

C. Kim, H. Park, and H. Lee, “Comparison of laser-induced damage with forward-firing and diffusing optical fiber during laser-assisted lipoplasty,” Lasers Surg. Med. 45(7), 437–449 (2013).
[Crossref]

Nano Lett. (1)

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref]

Nano Res. (1)

J. T. Robinson, K. Welsher, S. M. Tabakman, S. P. Sherlock, H. Wang, R. Luong, and H. Dai, “High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes,” Nano Res. 3(11), 779–793 (2010).
[Crossref]

Nat. Methods (1)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref]

Nat. Photonics (1)

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7(12), 987–994 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Photomed. Laser Surg. (1)

Y.-H. Rhee, J.-H. Moon, S.-H. Choi, and J.-C. Ahn, “Low-Level Laser Therapy Promoted Aggressive Proliferation and Angiogenesis Through Decreasing of Transforming Growth Factor-β1 and Increasing of Akt/Hypoxia Inducible Factor-1α in Anaplastic Thyroid Cancer,” Photomed. Laser Surg. 34(6), 229–235 (2016).
[Crossref]

Phys. Med. Biol. (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1: AVI (4381 KB)      Demonstration of the real-time monitoring for the activation of the gold-NSs.
» Visualization 2: AVI (15289 KB)      Demonstration of PTT and the real-time monitoring with OFNA.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Photothermal treatment using OFNA. (a) A schematic of the OFNA. The inset shows the fine needle array of the OFNA. Eight needles (1-8) hold multimode optical fibers for laser illumination and the center needle (9) contains a fiber bundle for imaging. By stabbing the target site with the needle array, the light for PTT can be delivered efficiently with no damage to superficial layer. The fiber bundle can be used to image the region adjacent to its distal end, and thus the activation of the gold-NSs injected into a target site can be observed. An image of a USAF target behind an artificial tissue can be taken when the tips of the OFNA needles reached close enough to it. (b) A schematic of in vivo PTT using the OFNA.
Fig. 2
Fig. 2 Enhancement of light energy delivery by the OFNA. Intensity distributions achieved in phantom tissues when the depths of the needles were (a) 0 mm, (b) 5 mm, and (c) 10 mm. (d) The intensity profiles along the depth direction (horizontal lines in (a), (b), and (c)). Red, yellow, and green represent 0 mm, 5 mm, and 10 mm insertion depths, respectively. (e) The intensity profiles along the lateral direction at 10 mm deep (vertical lines in (a), (b), and (c)).
Fig. 3
Fig. 3 Real-time monitoring of activated gold-NSs by the OFNA. (a) A schematic of the test experiment with the simplified OFNA. The image in the right side is a zoomed in view of the region marked with a red dotted circle in (a). The red arrow denotes the NIR laser illumination from the tip of the needle and the white arrow represents light scattered by the activation of the gold-NSs. (b) An image taken in a tissue phantom by the simplified OFNA without gold-NSs injection. (c) The same as in (b), but with gold-NSs. The glittery spots in the upper region are caused by the light generated by the activation of the gold-NSs (Visualization 1). Scale bar, 100 μm.
Fig. 4
Fig. 4 ss-OCT images of damage to mouse skin caused by PTT. (a) An OCT image of the skin of a normal mouse without a tumor. (b) An OCT image of a tumor site before PTT. (c) An image taken just after PTT was performed using the OFNA. The dent on the skin surface indicated by the white arrow was caused by stabbing the needle. (d) Two weeks after PTT. The observable tissue layers had recovered and no dent was found on the skin any longer. (e) Immediately after PTT was performed by direct laser irradiation without the OFNA. The superficial layer had significantly shrunk, as indicated by the yellow arrow, and the subcutaneous region denoted by the red box was swollen from the thermal damage. (f) Two weeks after PTT. Even after recovery, the layered structures were permanently modified. Scale bar, 200 μm.
Fig. 5
Fig. 5 The effect of PTT with and without OFNA. (a) H&E-stained image of normal tissue. (b) H&E-stained image of tissue resected from the tumor site 2 weeks after PTT with the OFNA. All tumor cells were destroyed as a result of PTT and a fibrotic tissue structure can be observed, with no skin damage. (c) Zoomed-in view of the region denoted by the green box in (b). (d) H&E-stained image of the tissue resected from the tumor site 2 weeks after PTT by direct laser irradiation. All tumor cells were destroyed, but damage remained on the skin. (e) Zoomed-in view of the region shown by the green box in (d). Scale bars, 500 μm in (a), (b), and (d), and 50 μm in (c) and (e).
Fig. 6
Fig. 6 Real-time monitoring of PTT via the OFNA. (a) In vivo PTT performed with the OFNA at a tumor site in a mouse. (b) An image taken by the fiber bundle of the OFNA while PTT was performed on a nude mouse without gold-NSs injection. (c) The same as in (b), but with gold-NSs injection at the tumor site. A strong signal caused by the activation of the gold-NSs is evidence for the appropriate progression of PTT. Scale bars, 10 mm and 100 μm for (a) and (b), respectively, Visualization 2.

Metrics