Abstract

Highly sensitive labeled detection of Echinococcus granulosus using colloidal quantum dots (QDs) based on a porous silicon Bragg mirror sensor are demonstrated. Rabbit anti-p38 labeled CdSe/ZnS QDs was infiltrated in porous silicon pores immobilized Egp38 antigen. QD-antibodies are specifically bound to antigens linked covalently to the pore walls of PSi after the immune reaction. By the design of the transfer matrix method and the preparation of the electrochemical etching method, the fluorescence peak wavelength of the quantum dots is located in the forbidden band of the Bragg mirror. The fluorescence of QDs are enhanced by PSi Bragg mirror. Egp38 antigen detection limit of 300fg/mL is achievable. Our results exhibit that the biosensor combining PSi Bragg mirror and QDs can potentially be applied to the clinical detection of hydatid disease.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Protease detection using a porous silicon based Bloch surface wave optical biosensor

Hong Qiao, Bin Guan, J. Justin Gooding, and Peter J Reece
Opt. Express 18(14) 15174-15182 (2010)

Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture

Shih-Hung Sun, Mon-Juan Lee, Yun-Han Lee, Wei Lee, Xiaolong Song, and Chao-Yuan Chen
Biomed. Opt. Express 6(1) 245-256 (2015)

Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection

Sabrina Jahns, Marion Bräu, Björn-Ole Meyer, Torben Karrock, Sören B. Gutekunst, Lars Blohm, Christine Selhuber-Unkel, Raymund Buhmann, Yousef Nazirizadeh, and Martina Gerken
Biomed. Opt. Express 6(10) 3724-3736 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Jiang, “Today’s regional distribution of echinococcosis in China,” Chin. Med. J. (Engl.) 115(8), 1244–1247 (2002).
    [PubMed]
  2. A. M. C. Restrepo, “The landscape epidemiology of echinococcoses,” J. Infect. Dis. Pov. 5(1), 1–13 (2016).
  3. P. Li, Z. Jia, and G. Lü, “Hydatid detection using the near-infrared transmission angular spectra of porous silicon microcavity biosensors,” Sci. Rep. 7, 44798–44815 (2017).
    [Crossref] [PubMed]
  4. N. Massadivanir, ““Optical detection of E. coli bacteria by mesoporous silicon biosensors,” J. Vis. Exp. 50805(81), 1–8 (2013).
  5. H. Ouyang, L. A. Delouise, B. L. Miller, and P. M. Fauchet, “Label-free quantitative detection of protein using macroporous silicon photonic bandgap biosensors,” Anal. Chem. 79(4), 1502–1506 (2007).
    [Crossref] [PubMed]
  6. F. A. Harraz, “Porous silicon chemical sensors and biosensors: A review,” J. Sens. Actuators B Chem. 202(10), 897–912 (2014).
    [Crossref]
  7. I. A. Levitsky, “Porous Silicon Structures as Optical Gas Sensors,” Sensors (Basel) 15(8), 19968–19991 (2015).
    [Crossref] [PubMed]
  8. G. A. Rodriguez, J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, “Porous silicon Bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules,” Nanoscale Res. Lett. 9(1), 383 (2014).
    [Crossref] [PubMed]
  9. G. Gaur, D. S. Koktysh, and S. M. Weiss, “Immobilization of Quantum Dots in Nanostructured Porous Silicon Films: Characterizations and Signal Amplification for Dual-Mode Optical Biosensing,” J. Adv. Funct. Mater. 23(29), 3604–3614 (2013).
    [Crossref]
  10. B. Cho, B. Y. Lee, H. C. Kim, H. G. Woo, and H. Sohn, “Fabrication of human IgG sensors based on porous silicon interferometer containing Bragg structures,” J. Nanosci. Nanotechnol. 12(5), 4159–4162 (2012).
    [Crossref] [PubMed]
  11. H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44(1), 89–94 (2013).
    [Crossref] [PubMed]
  12. P. Li, Z. Jia, X. Lü, Y. Liu, X. Ning, J. Mo, and J. Wang, “Spectrometer-free biological detection method using porous silicon microcavity devices,” Opt. Express 23(19), 24626–24633 (2015).
    [Crossref] [PubMed]
  13. A. M. Rossi, L. Wang, V. Reipa, and T. E. Murphy, “Porous silicon biosensor for detection of viruses,” Biosens. Bioelectron. 23(5), 741–745 (2007).
    [Crossref] [PubMed]
  14. F. S. H. Krismastuti, S. Pace, and N. H. Voelcker, “Porous Silicon Resonant Microcavity Biosensor for Matrix Metalloproteinase Detection,” J. Adv. Funct. Mater. 24(23), 3639–3650 (2014).
    [Crossref]
  15. R. P. Haugland, “Handbook of Fluorescent Probes and Research Products,” Minerva Farm. 5(1), 202 (2002).
  16. E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya, F. Marchal, and B. Dubertret, “Synthesis and Characterization of Near-Infrared Cu−In−Se/ZnS Core/Shell Quantum Dots for In vivo Imaging,” J. Chem. Mater. 22(22), 6117–6124 (2010).
    [Crossref]
  17. S. J. Lord, H. L. Lee, and W. E. Moerner, “Single-molecule spectroscopy and imaging of biomolecules in living cells,” Anal. Chem. 82(6), 2192–2203 (2010).
    [Crossref] [PubMed]
  18. A. G. Midgett, H. W. Hillhouse, B. K. Hughes, A. J. Nozik, and M. C. Beard, “Flowing versus Static Conditions for Measuring Multiple Exciton Generation in PbSe Quantum Dots,” J. Phys. Chem. C 114(41), 17486–17500 (2010).
    [Crossref]
  19. M. Mazloum-Ardakani, R. Aghaei, and M. M. Heidari, “Quantum-dot biosensor for hybridization and detection of R3500Q mutation of apolipoprotein B-100 gene,” Biosens. Bioelectron. 72, 362–369 (2015).
    [Crossref] [PubMed]
  20. N. H. Nguyen, T. Giang Duong, V. N. Hoang, N. T. Pham, T. C. Dao, and T. N. Pham, “Synthesis and application of quantum dots-based biosensor,” J. Adv. Nat. Sci: Nanosci. Nanotechnol. 6(1), 015015 (2015).
  21. X. Tan, S. Liu, Y. Shen, Y. He, and J. Yang, “Quantum dots (QDs) based fluorescence probe for the sensitive determination of kaempferol,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 133(4), 66–72 (2014).
    [Crossref] [PubMed]
  22. C. H. Vannoy, J. Xu, and R. M. Leblanc, “Bioimaging and Self-Assembly of Lysozyme Fibrils Utilizing CdSe/ZnS Quantum Dots,” J. Phys. Chem. C 114(2), 766–773 (2010).
    [Crossref]
  23. A. R. Maity and N. R. Jana, “Chitosan−Cholesterol-Based Cellular Delivery of Anionic Nanoparticles,” J. Phys. Chem. C 115(1), 137–144 (2011).
    [Crossref]
  24. Y. Su, M. Hu, C. Fan, Y. He, Q. Li, W. Li, L. H. Wang, P. Shen, and Q. Huang, “The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties,” Biomaterials 31(18), 4829–4834 (2010).
    [Crossref] [PubMed]
  25. Y. Li, Y. Zhou, H. Y. Wang, S. Perrett, Y. Zhao, Z. Tang, and G. Nie, “Chirality of glutathione surface coating affects the cytotoxicity of quantum dots,” Angew. Chem. Int. Ed. Engl. 50(26), 5860–5864 (2011).
    [Crossref] [PubMed]
  26. D. F. Dorfner, T. Hurlimann, G. Abstreiter, and J. J. Finley, “Optical characterization of silicon on insulator photonic crystal nanocavities infiltrated with colloidal PbS quantum dots,” J. Appl. Phys. Lett. 91(23), 233111 (2007).
    [Crossref]
  27. F. Yang and B. T. Cunningham, “Enhanced quantum dot optical down-conversion using asymmetric 2D photonic crystals,” Opt. Express 19(5), 3908–3918 (2011).
    [Crossref] [PubMed]
  28. C. Liu, Z. Jia, X. Lv, C. Lv, and F. Shi, “Enhancement of QDs’ fluorescence based on porous silicon Bragg mirror,” J. Phys. B 457, 263–268 (2015).
    [Crossref]
  29. G. Gaur, “Integrating Colloidal Quantum Dots with Porous Silicon for High Sensitivity Biosensing,” J. Proc. MRS. 1301(15), 463 (2011).
  30. S. M. Weiss, “Porous silicon biosensors using quantum dot signal amplifiers,” Proc. SPIE. 8594(3), 859408 (2013).
  31. G. L. Johnson and R. Lapadat, “Mitogen-Activated Protein Kinase Pathways Mediated by ERK, JNK, and p38 Protein Kinases,” Science 298(5600), 1911–1912 (2002).
    [Crossref] [PubMed]
  32. E. A. Padlan, “X-ray crystallography of antibodies,” Adv. Protein Chem. 49(1), 57–133 (1996).
    [Crossref] [PubMed]

2017 (1)

P. Li, Z. Jia, and G. Lü, “Hydatid detection using the near-infrared transmission angular spectra of porous silicon microcavity biosensors,” Sci. Rep. 7, 44798–44815 (2017).
[Crossref] [PubMed]

2016 (1)

A. M. C. Restrepo, “The landscape epidemiology of echinococcoses,” J. Infect. Dis. Pov. 5(1), 1–13 (2016).

2015 (5)

I. A. Levitsky, “Porous Silicon Structures as Optical Gas Sensors,” Sensors (Basel) 15(8), 19968–19991 (2015).
[Crossref] [PubMed]

P. Li, Z. Jia, X. Lü, Y. Liu, X. Ning, J. Mo, and J. Wang, “Spectrometer-free biological detection method using porous silicon microcavity devices,” Opt. Express 23(19), 24626–24633 (2015).
[Crossref] [PubMed]

M. Mazloum-Ardakani, R. Aghaei, and M. M. Heidari, “Quantum-dot biosensor for hybridization and detection of R3500Q mutation of apolipoprotein B-100 gene,” Biosens. Bioelectron. 72, 362–369 (2015).
[Crossref] [PubMed]

N. H. Nguyen, T. Giang Duong, V. N. Hoang, N. T. Pham, T. C. Dao, and T. N. Pham, “Synthesis and application of quantum dots-based biosensor,” J. Adv. Nat. Sci: Nanosci. Nanotechnol. 6(1), 015015 (2015).

C. Liu, Z. Jia, X. Lv, C. Lv, and F. Shi, “Enhancement of QDs’ fluorescence based on porous silicon Bragg mirror,” J. Phys. B 457, 263–268 (2015).
[Crossref]

2014 (4)

X. Tan, S. Liu, Y. Shen, Y. He, and J. Yang, “Quantum dots (QDs) based fluorescence probe for the sensitive determination of kaempferol,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 133(4), 66–72 (2014).
[Crossref] [PubMed]

F. A. Harraz, “Porous silicon chemical sensors and biosensors: A review,” J. Sens. Actuators B Chem. 202(10), 897–912 (2014).
[Crossref]

F. S. H. Krismastuti, S. Pace, and N. H. Voelcker, “Porous Silicon Resonant Microcavity Biosensor for Matrix Metalloproteinase Detection,” J. Adv. Funct. Mater. 24(23), 3639–3650 (2014).
[Crossref]

G. A. Rodriguez, J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, “Porous silicon Bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules,” Nanoscale Res. Lett. 9(1), 383 (2014).
[Crossref] [PubMed]

2013 (4)

G. Gaur, D. S. Koktysh, and S. M. Weiss, “Immobilization of Quantum Dots in Nanostructured Porous Silicon Films: Characterizations and Signal Amplification for Dual-Mode Optical Biosensing,” J. Adv. Funct. Mater. 23(29), 3604–3614 (2013).
[Crossref]

N. Massadivanir, ““Optical detection of E. coli bacteria by mesoporous silicon biosensors,” J. Vis. Exp. 50805(81), 1–8 (2013).

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44(1), 89–94 (2013).
[Crossref] [PubMed]

S. M. Weiss, “Porous silicon biosensors using quantum dot signal amplifiers,” Proc. SPIE. 8594(3), 859408 (2013).

2012 (1)

B. Cho, B. Y. Lee, H. C. Kim, H. G. Woo, and H. Sohn, “Fabrication of human IgG sensors based on porous silicon interferometer containing Bragg structures,” J. Nanosci. Nanotechnol. 12(5), 4159–4162 (2012).
[Crossref] [PubMed]

2011 (4)

G. Gaur, “Integrating Colloidal Quantum Dots with Porous Silicon for High Sensitivity Biosensing,” J. Proc. MRS. 1301(15), 463 (2011).

F. Yang and B. T. Cunningham, “Enhanced quantum dot optical down-conversion using asymmetric 2D photonic crystals,” Opt. Express 19(5), 3908–3918 (2011).
[Crossref] [PubMed]

A. R. Maity and N. R. Jana, “Chitosan−Cholesterol-Based Cellular Delivery of Anionic Nanoparticles,” J. Phys. Chem. C 115(1), 137–144 (2011).
[Crossref]

Y. Li, Y. Zhou, H. Y. Wang, S. Perrett, Y. Zhao, Z. Tang, and G. Nie, “Chirality of glutathione surface coating affects the cytotoxicity of quantum dots,” Angew. Chem. Int. Ed. Engl. 50(26), 5860–5864 (2011).
[Crossref] [PubMed]

2010 (5)

Y. Su, M. Hu, C. Fan, Y. He, Q. Li, W. Li, L. H. Wang, P. Shen, and Q. Huang, “The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties,” Biomaterials 31(18), 4829–4834 (2010).
[Crossref] [PubMed]

C. H. Vannoy, J. Xu, and R. M. Leblanc, “Bioimaging and Self-Assembly of Lysozyme Fibrils Utilizing CdSe/ZnS Quantum Dots,” J. Phys. Chem. C 114(2), 766–773 (2010).
[Crossref]

E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya, F. Marchal, and B. Dubertret, “Synthesis and Characterization of Near-Infrared Cu−In−Se/ZnS Core/Shell Quantum Dots for In vivo Imaging,” J. Chem. Mater. 22(22), 6117–6124 (2010).
[Crossref]

S. J. Lord, H. L. Lee, and W. E. Moerner, “Single-molecule spectroscopy and imaging of biomolecules in living cells,” Anal. Chem. 82(6), 2192–2203 (2010).
[Crossref] [PubMed]

A. G. Midgett, H. W. Hillhouse, B. K. Hughes, A. J. Nozik, and M. C. Beard, “Flowing versus Static Conditions for Measuring Multiple Exciton Generation in PbSe Quantum Dots,” J. Phys. Chem. C 114(41), 17486–17500 (2010).
[Crossref]

2007 (3)

A. M. Rossi, L. Wang, V. Reipa, and T. E. Murphy, “Porous silicon biosensor for detection of viruses,” Biosens. Bioelectron. 23(5), 741–745 (2007).
[Crossref] [PubMed]

H. Ouyang, L. A. Delouise, B. L. Miller, and P. M. Fauchet, “Label-free quantitative detection of protein using macroporous silicon photonic bandgap biosensors,” Anal. Chem. 79(4), 1502–1506 (2007).
[Crossref] [PubMed]

D. F. Dorfner, T. Hurlimann, G. Abstreiter, and J. J. Finley, “Optical characterization of silicon on insulator photonic crystal nanocavities infiltrated with colloidal PbS quantum dots,” J. Appl. Phys. Lett. 91(23), 233111 (2007).
[Crossref]

2002 (3)

G. L. Johnson and R. Lapadat, “Mitogen-Activated Protein Kinase Pathways Mediated by ERK, JNK, and p38 Protein Kinases,” Science 298(5600), 1911–1912 (2002).
[Crossref] [PubMed]

C. Jiang, “Today’s regional distribution of echinococcosis in China,” Chin. Med. J. (Engl.) 115(8), 1244–1247 (2002).
[PubMed]

R. P. Haugland, “Handbook of Fluorescent Probes and Research Products,” Minerva Farm. 5(1), 202 (2002).

1996 (1)

E. A. Padlan, “X-ray crystallography of antibodies,” Adv. Protein Chem. 49(1), 57–133 (1996).
[Crossref] [PubMed]

Abstreiter, G.

D. F. Dorfner, T. Hurlimann, G. Abstreiter, and J. J. Finley, “Optical characterization of silicon on insulator photonic crystal nanocavities infiltrated with colloidal PbS quantum dots,” J. Appl. Phys. Lett. 91(23), 233111 (2007).
[Crossref]

Aghaei, R.

M. Mazloum-Ardakani, R. Aghaei, and M. M. Heidari, “Quantum-dot biosensor for hybridization and detection of R3500Q mutation of apolipoprotein B-100 gene,” Biosens. Bioelectron. 72, 362–369 (2015).
[Crossref] [PubMed]

Beard, M. C.

A. G. Midgett, H. W. Hillhouse, B. K. Hughes, A. J. Nozik, and M. C. Beard, “Flowing versus Static Conditions for Measuring Multiple Exciton Generation in PbSe Quantum Dots,” J. Phys. Chem. C 114(41), 17486–17500 (2010).
[Crossref]

Bezdetnaya, L.

E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya, F. Marchal, and B. Dubertret, “Synthesis and Characterization of Near-Infrared Cu−In−Se/ZnS Core/Shell Quantum Dots for In vivo Imaging,” J. Chem. Mater. 22(22), 6117–6124 (2010).
[Crossref]

Bouet, C.

E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya, F. Marchal, and B. Dubertret, “Synthesis and Characterization of Near-Infrared Cu−In−Se/ZnS Core/Shell Quantum Dots for In vivo Imaging,” J. Chem. Mater. 22(22), 6117–6124 (2010).
[Crossref]

Cassette, E.

E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya, F. Marchal, and B. Dubertret, “Synthesis and Characterization of Near-Infrared Cu−In−Se/ZnS Core/Shell Quantum Dots for In vivo Imaging,” J. Chem. Mater. 22(22), 6117–6124 (2010).
[Crossref]

Chen, L.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44(1), 89–94 (2013).
[Crossref] [PubMed]

Cho, B.

B. Cho, B. Y. Lee, H. C. Kim, H. G. Woo, and H. Sohn, “Fabrication of human IgG sensors based on porous silicon interferometer containing Bragg structures,” J. Nanosci. Nanotechnol. 12(5), 4159–4162 (2012).
[Crossref] [PubMed]

Cunningham, B. T.

Dao, T. C.

N. H. Nguyen, T. Giang Duong, V. N. Hoang, N. T. Pham, T. C. Dao, and T. N. Pham, “Synthesis and application of quantum dots-based biosensor,” J. Adv. Nat. Sci: Nanosci. Nanotechnol. 6(1), 015015 (2015).

Delouise, L. A.

H. Ouyang, L. A. Delouise, B. L. Miller, and P. M. Fauchet, “Label-free quantitative detection of protein using macroporous silicon photonic bandgap biosensors,” Anal. Chem. 79(4), 1502–1506 (2007).
[Crossref] [PubMed]

Dorfner, D. F.

D. F. Dorfner, T. Hurlimann, G. Abstreiter, and J. J. Finley, “Optical characterization of silicon on insulator photonic crystal nanocavities infiltrated with colloidal PbS quantum dots,” J. Appl. Phys. Lett. 91(23), 233111 (2007).
[Crossref]

Dubertret, B.

E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya, F. Marchal, and B. Dubertret, “Synthesis and Characterization of Near-Infrared Cu−In−Se/ZnS Core/Shell Quantum Dots for In vivo Imaging,” J. Chem. Mater. 22(22), 6117–6124 (2010).
[Crossref]

Fan, C.

Y. Su, M. Hu, C. Fan, Y. He, Q. Li, W. Li, L. H. Wang, P. Shen, and Q. Huang, “The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties,” Biomaterials 31(18), 4829–4834 (2010).
[Crossref] [PubMed]

Fauchet, P. M.

H. Ouyang, L. A. Delouise, B. L. Miller, and P. M. Fauchet, “Label-free quantitative detection of protein using macroporous silicon photonic bandgap biosensors,” Anal. Chem. 79(4), 1502–1506 (2007).
[Crossref] [PubMed]

Finley, J. J.

D. F. Dorfner, T. Hurlimann, G. Abstreiter, and J. J. Finley, “Optical characterization of silicon on insulator photonic crystal nanocavities infiltrated with colloidal PbS quantum dots,” J. Appl. Phys. Lett. 91(23), 233111 (2007).
[Crossref]

Gaur, G.

G. Gaur, D. S. Koktysh, and S. M. Weiss, “Immobilization of Quantum Dots in Nanostructured Porous Silicon Films: Characterizations and Signal Amplification for Dual-Mode Optical Biosensing,” J. Adv. Funct. Mater. 23(29), 3604–3614 (2013).
[Crossref]

G. Gaur, “Integrating Colloidal Quantum Dots with Porous Silicon for High Sensitivity Biosensing,” J. Proc. MRS. 1301(15), 463 (2011).

Giang Duong, T.

N. H. Nguyen, T. Giang Duong, V. N. Hoang, N. T. Pham, T. C. Dao, and T. N. Pham, “Synthesis and application of quantum dots-based biosensor,” J. Adv. Nat. Sci: Nanosci. Nanotechnol. 6(1), 015015 (2015).

Harraz, F. A.

F. A. Harraz, “Porous silicon chemical sensors and biosensors: A review,” J. Sens. Actuators B Chem. 202(10), 897–912 (2014).
[Crossref]

Haugland, R. P.

R. P. Haugland, “Handbook of Fluorescent Probes and Research Products,” Minerva Farm. 5(1), 202 (2002).

He, Y.

X. Tan, S. Liu, Y. Shen, Y. He, and J. Yang, “Quantum dots (QDs) based fluorescence probe for the sensitive determination of kaempferol,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 133(4), 66–72 (2014).
[Crossref] [PubMed]

Y. Su, M. Hu, C. Fan, Y. He, Q. Li, W. Li, L. H. Wang, P. Shen, and Q. Huang, “The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties,” Biomaterials 31(18), 4829–4834 (2010).
[Crossref] [PubMed]

Heidari, M. M.

M. Mazloum-Ardakani, R. Aghaei, and M. M. Heidari, “Quantum-dot biosensor for hybridization and detection of R3500Q mutation of apolipoprotein B-100 gene,” Biosens. Bioelectron. 72, 362–369 (2015).
[Crossref] [PubMed]

Helle, M.

E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya, F. Marchal, and B. Dubertret, “Synthesis and Characterization of Near-Infrared Cu−In−Se/ZnS Core/Shell Quantum Dots for In vivo Imaging,” J. Chem. Mater. 22(22), 6117–6124 (2010).
[Crossref]

Hillhouse, H. W.

A. G. Midgett, H. W. Hillhouse, B. K. Hughes, A. J. Nozik, and M. C. Beard, “Flowing versus Static Conditions for Measuring Multiple Exciton Generation in PbSe Quantum Dots,” J. Phys. Chem. C 114(41), 17486–17500 (2010).
[Crossref]

Hoang, V. N.

N. H. Nguyen, T. Giang Duong, V. N. Hoang, N. T. Pham, T. C. Dao, and T. N. Pham, “Synthesis and application of quantum dots-based biosensor,” J. Adv. Nat. Sci: Nanosci. Nanotechnol. 6(1), 015015 (2015).

Hu, M.

Y. Su, M. Hu, C. Fan, Y. He, Q. Li, W. Li, L. H. Wang, P. Shen, and Q. Huang, “The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties,” Biomaterials 31(18), 4829–4834 (2010).
[Crossref] [PubMed]

Huang, Q.

Y. Su, M. Hu, C. Fan, Y. He, Q. Li, W. Li, L. H. Wang, P. Shen, and Q. Huang, “The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties,” Biomaterials 31(18), 4829–4834 (2010).
[Crossref] [PubMed]

Hughes, B. K.

A. G. Midgett, H. W. Hillhouse, B. K. Hughes, A. J. Nozik, and M. C. Beard, “Flowing versus Static Conditions for Measuring Multiple Exciton Generation in PbSe Quantum Dots,” J. Phys. Chem. C 114(41), 17486–17500 (2010).
[Crossref]

Hurlimann, T.

D. F. Dorfner, T. Hurlimann, G. Abstreiter, and J. J. Finley, “Optical characterization of silicon on insulator photonic crystal nanocavities infiltrated with colloidal PbS quantum dots,” J. Appl. Phys. Lett. 91(23), 233111 (2007).
[Crossref]

Jana, N. R.

A. R. Maity and N. R. Jana, “Chitosan−Cholesterol-Based Cellular Delivery of Anionic Nanoparticles,” J. Phys. Chem. C 115(1), 137–144 (2011).
[Crossref]

Jia, Z.

P. Li, Z. Jia, and G. Lü, “Hydatid detection using the near-infrared transmission angular spectra of porous silicon microcavity biosensors,” Sci. Rep. 7, 44798–44815 (2017).
[Crossref] [PubMed]

C. Liu, Z. Jia, X. Lv, C. Lv, and F. Shi, “Enhancement of QDs’ fluorescence based on porous silicon Bragg mirror,” J. Phys. B 457, 263–268 (2015).
[Crossref]

P. Li, Z. Jia, X. Lü, Y. Liu, X. Ning, J. Mo, and J. Wang, “Spectrometer-free biological detection method using porous silicon microcavity devices,” Opt. Express 23(19), 24626–24633 (2015).
[Crossref] [PubMed]

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44(1), 89–94 (2013).
[Crossref] [PubMed]

Jiang, C.

C. Jiang, “Today’s regional distribution of echinococcosis in China,” Chin. Med. J. (Engl.) 115(8), 1244–1247 (2002).
[PubMed]

Johnson, G. L.

G. L. Johnson and R. Lapadat, “Mitogen-Activated Protein Kinase Pathways Mediated by ERK, JNK, and p38 Protein Kinases,” Science 298(5600), 1911–1912 (2002).
[Crossref] [PubMed]

Kim, H. C.

B. Cho, B. Y. Lee, H. C. Kim, H. G. Woo, and H. Sohn, “Fabrication of human IgG sensors based on porous silicon interferometer containing Bragg structures,” J. Nanosci. Nanotechnol. 12(5), 4159–4162 (2012).
[Crossref] [PubMed]

Koktysh, D. S.

G. Gaur, D. S. Koktysh, and S. M. Weiss, “Immobilization of Quantum Dots in Nanostructured Porous Silicon Films: Characterizations and Signal Amplification for Dual-Mode Optical Biosensing,” J. Adv. Funct. Mater. 23(29), 3604–3614 (2013).
[Crossref]

Krismastuti, F. S. H.

F. S. H. Krismastuti, S. Pace, and N. H. Voelcker, “Porous Silicon Resonant Microcavity Biosensor for Matrix Metalloproteinase Detection,” J. Adv. Funct. Mater. 24(23), 3639–3650 (2014).
[Crossref]

Lapadat, R.

G. L. Johnson and R. Lapadat, “Mitogen-Activated Protein Kinase Pathways Mediated by ERK, JNK, and p38 Protein Kinases,” Science 298(5600), 1911–1912 (2002).
[Crossref] [PubMed]

Leblanc, R. M.

C. H. Vannoy, J. Xu, and R. M. Leblanc, “Bioimaging and Self-Assembly of Lysozyme Fibrils Utilizing CdSe/ZnS Quantum Dots,” J. Phys. Chem. C 114(2), 766–773 (2010).
[Crossref]

Lee, B. Y.

B. Cho, B. Y. Lee, H. C. Kim, H. G. Woo, and H. Sohn, “Fabrication of human IgG sensors based on porous silicon interferometer containing Bragg structures,” J. Nanosci. Nanotechnol. 12(5), 4159–4162 (2012).
[Crossref] [PubMed]

Lee, H. L.

S. J. Lord, H. L. Lee, and W. E. Moerner, “Single-molecule spectroscopy and imaging of biomolecules in living cells,” Anal. Chem. 82(6), 2192–2203 (2010).
[Crossref] [PubMed]

Levitsky, I. A.

I. A. Levitsky, “Porous Silicon Structures as Optical Gas Sensors,” Sensors (Basel) 15(8), 19968–19991 (2015).
[Crossref] [PubMed]

Li, P.

P. Li, Z. Jia, and G. Lü, “Hydatid detection using the near-infrared transmission angular spectra of porous silicon microcavity biosensors,” Sci. Rep. 7, 44798–44815 (2017).
[Crossref] [PubMed]

P. Li, Z. Jia, X. Lü, Y. Liu, X. Ning, J. Mo, and J. Wang, “Spectrometer-free biological detection method using porous silicon microcavity devices,” Opt. Express 23(19), 24626–24633 (2015).
[Crossref] [PubMed]

Li, Q.

Y. Su, M. Hu, C. Fan, Y. He, Q. Li, W. Li, L. H. Wang, P. Shen, and Q. Huang, “The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties,” Biomaterials 31(18), 4829–4834 (2010).
[Crossref] [PubMed]

Li, W.

Y. Su, M. Hu, C. Fan, Y. He, Q. Li, W. Li, L. H. Wang, P. Shen, and Q. Huang, “The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties,” Biomaterials 31(18), 4829–4834 (2010).
[Crossref] [PubMed]

Li, Y.

Y. Li, Y. Zhou, H. Y. Wang, S. Perrett, Y. Zhao, Z. Tang, and G. Nie, “Chirality of glutathione surface coating affects the cytotoxicity of quantum dots,” Angew. Chem. Int. Ed. Engl. 50(26), 5860–5864 (2011).
[Crossref] [PubMed]

Liu, C.

C. Liu, Z. Jia, X. Lv, C. Lv, and F. Shi, “Enhancement of QDs’ fluorescence based on porous silicon Bragg mirror,” J. Phys. B 457, 263–268 (2015).
[Crossref]

Liu, R.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44(1), 89–94 (2013).
[Crossref] [PubMed]

Liu, S.

X. Tan, S. Liu, Y. Shen, Y. He, and J. Yang, “Quantum dots (QDs) based fluorescence probe for the sensitive determination of kaempferol,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 133(4), 66–72 (2014).
[Crossref] [PubMed]

Liu, Y.

Lonai, J. D.

G. A. Rodriguez, J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, “Porous silicon Bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules,” Nanoscale Res. Lett. 9(1), 383 (2014).
[Crossref] [PubMed]

Lord, S. J.

S. J. Lord, H. L. Lee, and W. E. Moerner, “Single-molecule spectroscopy and imaging of biomolecules in living cells,” Anal. Chem. 82(6), 2192–2203 (2010).
[Crossref] [PubMed]

Lü, G.

P. Li, Z. Jia, and G. Lü, “Hydatid detection using the near-infrared transmission angular spectra of porous silicon microcavity biosensors,” Sci. Rep. 7, 44798–44815 (2017).
[Crossref] [PubMed]

Lü, X.

Lv, C.

C. Liu, Z. Jia, X. Lv, C. Lv, and F. Shi, “Enhancement of QDs’ fluorescence based on porous silicon Bragg mirror,” J. Phys. B 457, 263–268 (2015).
[Crossref]

Lv, X.

C. Liu, Z. Jia, X. Lv, C. Lv, and F. Shi, “Enhancement of QDs’ fluorescence based on porous silicon Bragg mirror,” J. Phys. B 457, 263–268 (2015).
[Crossref]

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44(1), 89–94 (2013).
[Crossref] [PubMed]

Ma, J.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44(1), 89–94 (2013).
[Crossref] [PubMed]

Maity, A. R.

A. R. Maity and N. R. Jana, “Chitosan−Cholesterol-Based Cellular Delivery of Anionic Nanoparticles,” J. Phys. Chem. C 115(1), 137–144 (2011).
[Crossref]

Marchal, F.

E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya, F. Marchal, and B. Dubertret, “Synthesis and Characterization of Near-Infrared Cu−In−Se/ZnS Core/Shell Quantum Dots for In vivo Imaging,” J. Chem. Mater. 22(22), 6117–6124 (2010).
[Crossref]

Massadivanir, N.

N. Massadivanir, ““Optical detection of E. coli bacteria by mesoporous silicon biosensors,” J. Vis. Exp. 50805(81), 1–8 (2013).

Mazloum-Ardakani, M.

M. Mazloum-Ardakani, R. Aghaei, and M. M. Heidari, “Quantum-dot biosensor for hybridization and detection of R3500Q mutation of apolipoprotein B-100 gene,” Biosens. Bioelectron. 72, 362–369 (2015).
[Crossref] [PubMed]

Mernaugh, R. L.

G. A. Rodriguez, J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, “Porous silicon Bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules,” Nanoscale Res. Lett. 9(1), 383 (2014).
[Crossref] [PubMed]

Midgett, A. G.

A. G. Midgett, H. W. Hillhouse, B. K. Hughes, A. J. Nozik, and M. C. Beard, “Flowing versus Static Conditions for Measuring Multiple Exciton Generation in PbSe Quantum Dots,” J. Phys. Chem. C 114(41), 17486–17500 (2010).
[Crossref]

Miller, B. L.

H. Ouyang, L. A. Delouise, B. L. Miller, and P. M. Fauchet, “Label-free quantitative detection of protein using macroporous silicon photonic bandgap biosensors,” Anal. Chem. 79(4), 1502–1506 (2007).
[Crossref] [PubMed]

Mo, J.

Moerner, W. E.

S. J. Lord, H. L. Lee, and W. E. Moerner, “Single-molecule spectroscopy and imaging of biomolecules in living cells,” Anal. Chem. 82(6), 2192–2203 (2010).
[Crossref] [PubMed]

Murphy, T. E.

A. M. Rossi, L. Wang, V. Reipa, and T. E. Murphy, “Porous silicon biosensor for detection of viruses,” Biosens. Bioelectron. 23(5), 741–745 (2007).
[Crossref] [PubMed]

Nguyen, N. H.

N. H. Nguyen, T. Giang Duong, V. N. Hoang, N. T. Pham, T. C. Dao, and T. N. Pham, “Synthesis and application of quantum dots-based biosensor,” J. Adv. Nat. Sci: Nanosci. Nanotechnol. 6(1), 015015 (2015).

Nie, G.

Y. Li, Y. Zhou, H. Y. Wang, S. Perrett, Y. Zhao, Z. Tang, and G. Nie, “Chirality of glutathione surface coating affects the cytotoxicity of quantum dots,” Angew. Chem. Int. Ed. Engl. 50(26), 5860–5864 (2011).
[Crossref] [PubMed]

Ning, X.

Nozik, A. J.

A. G. Midgett, H. W. Hillhouse, B. K. Hughes, A. J. Nozik, and M. C. Beard, “Flowing versus Static Conditions for Measuring Multiple Exciton Generation in PbSe Quantum Dots,” J. Phys. Chem. C 114(41), 17486–17500 (2010).
[Crossref]

Ouyang, H.

H. Ouyang, L. A. Delouise, B. L. Miller, and P. M. Fauchet, “Label-free quantitative detection of protein using macroporous silicon photonic bandgap biosensors,” Anal. Chem. 79(4), 1502–1506 (2007).
[Crossref] [PubMed]

Pace, S.

F. S. H. Krismastuti, S. Pace, and N. H. Voelcker, “Porous Silicon Resonant Microcavity Biosensor for Matrix Metalloproteinase Detection,” J. Adv. Funct. Mater. 24(23), 3639–3650 (2014).
[Crossref]

Padlan, E. A.

E. A. Padlan, “X-ray crystallography of antibodies,” Adv. Protein Chem. 49(1), 57–133 (1996).
[Crossref] [PubMed]

Perrett, S.

Y. Li, Y. Zhou, H. Y. Wang, S. Perrett, Y. Zhao, Z. Tang, and G. Nie, “Chirality of glutathione surface coating affects the cytotoxicity of quantum dots,” Angew. Chem. Int. Ed. Engl. 50(26), 5860–5864 (2011).
[Crossref] [PubMed]

Pham, N. T.

N. H. Nguyen, T. Giang Duong, V. N. Hoang, N. T. Pham, T. C. Dao, and T. N. Pham, “Synthesis and application of quantum dots-based biosensor,” J. Adv. Nat. Sci: Nanosci. Nanotechnol. 6(1), 015015 (2015).

Pham, T. N.

N. H. Nguyen, T. Giang Duong, V. N. Hoang, N. T. Pham, T. C. Dao, and T. N. Pham, “Synthesis and application of quantum dots-based biosensor,” J. Adv. Nat. Sci: Nanosci. Nanotechnol. 6(1), 015015 (2015).

Pons, T.

E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya, F. Marchal, and B. Dubertret, “Synthesis and Characterization of Near-Infrared Cu−In−Se/ZnS Core/Shell Quantum Dots for In vivo Imaging,” J. Chem. Mater. 22(22), 6117–6124 (2010).
[Crossref]

Reipa, V.

A. M. Rossi, L. Wang, V. Reipa, and T. E. Murphy, “Porous silicon biosensor for detection of viruses,” Biosens. Bioelectron. 23(5), 741–745 (2007).
[Crossref] [PubMed]

Restrepo, A. M. C.

A. M. C. Restrepo, “The landscape epidemiology of echinococcoses,” J. Infect. Dis. Pov. 5(1), 1–13 (2016).

Rodriguez, G. A.

G. A. Rodriguez, J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, “Porous silicon Bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules,” Nanoscale Res. Lett. 9(1), 383 (2014).
[Crossref] [PubMed]

Rossi, A. M.

A. M. Rossi, L. Wang, V. Reipa, and T. E. Murphy, “Porous silicon biosensor for detection of viruses,” Biosens. Bioelectron. 23(5), 741–745 (2007).
[Crossref] [PubMed]

Shen, P.

Y. Su, M. Hu, C. Fan, Y. He, Q. Li, W. Li, L. H. Wang, P. Shen, and Q. Huang, “The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties,” Biomaterials 31(18), 4829–4834 (2010).
[Crossref] [PubMed]

Shen, Y.

X. Tan, S. Liu, Y. Shen, Y. He, and J. Yang, “Quantum dots (QDs) based fluorescence probe for the sensitive determination of kaempferol,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 133(4), 66–72 (2014).
[Crossref] [PubMed]

Shi, F.

C. Liu, Z. Jia, X. Lv, C. Lv, and F. Shi, “Enhancement of QDs’ fluorescence based on porous silicon Bragg mirror,” J. Phys. B 457, 263–268 (2015).
[Crossref]

Sohn, H.

B. Cho, B. Y. Lee, H. C. Kim, H. G. Woo, and H. Sohn, “Fabrication of human IgG sensors based on porous silicon interferometer containing Bragg structures,” J. Nanosci. Nanotechnol. 12(5), 4159–4162 (2012).
[Crossref] [PubMed]

Su, Y.

Y. Su, M. Hu, C. Fan, Y. He, Q. Li, W. Li, L. H. Wang, P. Shen, and Q. Huang, “The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties,” Biomaterials 31(18), 4829–4834 (2010).
[Crossref] [PubMed]

Tan, X.

X. Tan, S. Liu, Y. Shen, Y. He, and J. Yang, “Quantum dots (QDs) based fluorescence probe for the sensitive determination of kaempferol,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 133(4), 66–72 (2014).
[Crossref] [PubMed]

Tang, Z.

Y. Li, Y. Zhou, H. Y. Wang, S. Perrett, Y. Zhao, Z. Tang, and G. Nie, “Chirality of glutathione surface coating affects the cytotoxicity of quantum dots,” Angew. Chem. Int. Ed. Engl. 50(26), 5860–5864 (2011).
[Crossref] [PubMed]

Vannoy, C. H.

C. H. Vannoy, J. Xu, and R. M. Leblanc, “Bioimaging and Self-Assembly of Lysozyme Fibrils Utilizing CdSe/ZnS Quantum Dots,” J. Phys. Chem. C 114(2), 766–773 (2010).
[Crossref]

Voelcker, N. H.

F. S. H. Krismastuti, S. Pace, and N. H. Voelcker, “Porous Silicon Resonant Microcavity Biosensor for Matrix Metalloproteinase Detection,” J. Adv. Funct. Mater. 24(23), 3639–3650 (2014).
[Crossref]

Wang, H. Y.

Y. Li, Y. Zhou, H. Y. Wang, S. Perrett, Y. Zhao, Z. Tang, and G. Nie, “Chirality of glutathione surface coating affects the cytotoxicity of quantum dots,” Angew. Chem. Int. Ed. Engl. 50(26), 5860–5864 (2011).
[Crossref] [PubMed]

Wang, J.

Wang, L.

A. M. Rossi, L. Wang, V. Reipa, and T. E. Murphy, “Porous silicon biosensor for detection of viruses,” Biosens. Bioelectron. 23(5), 741–745 (2007).
[Crossref] [PubMed]

Wang, L. H.

Y. Su, M. Hu, C. Fan, Y. He, Q. Li, W. Li, L. H. Wang, P. Shen, and Q. Huang, “The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties,” Biomaterials 31(18), 4829–4834 (2010).
[Crossref] [PubMed]

Weiss, S. M.

G. A. Rodriguez, J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, “Porous silicon Bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules,” Nanoscale Res. Lett. 9(1), 383 (2014).
[Crossref] [PubMed]

S. M. Weiss, “Porous silicon biosensors using quantum dot signal amplifiers,” Proc. SPIE. 8594(3), 859408 (2013).

G. Gaur, D. S. Koktysh, and S. M. Weiss, “Immobilization of Quantum Dots in Nanostructured Porous Silicon Films: Characterizations and Signal Amplification for Dual-Mode Optical Biosensing,” J. Adv. Funct. Mater. 23(29), 3604–3614 (2013).
[Crossref]

Woo, H. G.

B. Cho, B. Y. Lee, H. C. Kim, H. G. Woo, and H. Sohn, “Fabrication of human IgG sensors based on porous silicon interferometer containing Bragg structures,” J. Nanosci. Nanotechnol. 12(5), 4159–4162 (2012).
[Crossref] [PubMed]

Xu, J.

C. H. Vannoy, J. Xu, and R. M. Leblanc, “Bioimaging and Self-Assembly of Lysozyme Fibrils Utilizing CdSe/ZnS Quantum Dots,” J. Phys. Chem. C 114(2), 766–773 (2010).
[Crossref]

Yang, F.

Yang, J.

X. Tan, S. Liu, Y. Shen, Y. He, and J. Yang, “Quantum dots (QDs) based fluorescence probe for the sensitive determination of kaempferol,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 133(4), 66–72 (2014).
[Crossref] [PubMed]

Zhang, H.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44(1), 89–94 (2013).
[Crossref] [PubMed]

Zhao, Y.

Y. Li, Y. Zhou, H. Y. Wang, S. Perrett, Y. Zhao, Z. Tang, and G. Nie, “Chirality of glutathione surface coating affects the cytotoxicity of quantum dots,” Angew. Chem. Int. Ed. Engl. 50(26), 5860–5864 (2011).
[Crossref] [PubMed]

Zhou, J.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44(1), 89–94 (2013).
[Crossref] [PubMed]

Zhou, Y.

Y. Li, Y. Zhou, H. Y. Wang, S. Perrett, Y. Zhao, Z. Tang, and G. Nie, “Chirality of glutathione surface coating affects the cytotoxicity of quantum dots,” Angew. Chem. Int. Ed. Engl. 50(26), 5860–5864 (2011).
[Crossref] [PubMed]

Adv. Protein Chem. (1)

E. A. Padlan, “X-ray crystallography of antibodies,” Adv. Protein Chem. 49(1), 57–133 (1996).
[Crossref] [PubMed]

Anal. Chem. (2)

H. Ouyang, L. A. Delouise, B. L. Miller, and P. M. Fauchet, “Label-free quantitative detection of protein using macroporous silicon photonic bandgap biosensors,” Anal. Chem. 79(4), 1502–1506 (2007).
[Crossref] [PubMed]

S. J. Lord, H. L. Lee, and W. E. Moerner, “Single-molecule spectroscopy and imaging of biomolecules in living cells,” Anal. Chem. 82(6), 2192–2203 (2010).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

Y. Li, Y. Zhou, H. Y. Wang, S. Perrett, Y. Zhao, Z. Tang, and G. Nie, “Chirality of glutathione surface coating affects the cytotoxicity of quantum dots,” Angew. Chem. Int. Ed. Engl. 50(26), 5860–5864 (2011).
[Crossref] [PubMed]

Biomaterials (1)

Y. Su, M. Hu, C. Fan, Y. He, Q. Li, W. Li, L. H. Wang, P. Shen, and Q. Huang, “The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties,” Biomaterials 31(18), 4829–4834 (2010).
[Crossref] [PubMed]

Biosens. Bioelectron. (3)

M. Mazloum-Ardakani, R. Aghaei, and M. M. Heidari, “Quantum-dot biosensor for hybridization and detection of R3500Q mutation of apolipoprotein B-100 gene,” Biosens. Bioelectron. 72, 362–369 (2015).
[Crossref] [PubMed]

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44(1), 89–94 (2013).
[Crossref] [PubMed]

A. M. Rossi, L. Wang, V. Reipa, and T. E. Murphy, “Porous silicon biosensor for detection of viruses,” Biosens. Bioelectron. 23(5), 741–745 (2007).
[Crossref] [PubMed]

Chin. Med. J. (Engl.) (1)

C. Jiang, “Today’s regional distribution of echinococcosis in China,” Chin. Med. J. (Engl.) 115(8), 1244–1247 (2002).
[PubMed]

J. Adv. Funct. Mater. (2)

G. Gaur, D. S. Koktysh, and S. M. Weiss, “Immobilization of Quantum Dots in Nanostructured Porous Silicon Films: Characterizations and Signal Amplification for Dual-Mode Optical Biosensing,” J. Adv. Funct. Mater. 23(29), 3604–3614 (2013).
[Crossref]

F. S. H. Krismastuti, S. Pace, and N. H. Voelcker, “Porous Silicon Resonant Microcavity Biosensor for Matrix Metalloproteinase Detection,” J. Adv. Funct. Mater. 24(23), 3639–3650 (2014).
[Crossref]

J. Adv. Nat. Sci: Nanosci. Nanotechnol. (1)

N. H. Nguyen, T. Giang Duong, V. N. Hoang, N. T. Pham, T. C. Dao, and T. N. Pham, “Synthesis and application of quantum dots-based biosensor,” J. Adv. Nat. Sci: Nanosci. Nanotechnol. 6(1), 015015 (2015).

J. Appl. Phys. Lett. (1)

D. F. Dorfner, T. Hurlimann, G. Abstreiter, and J. J. Finley, “Optical characterization of silicon on insulator photonic crystal nanocavities infiltrated with colloidal PbS quantum dots,” J. Appl. Phys. Lett. 91(23), 233111 (2007).
[Crossref]

J. Chem. Mater. (1)

E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya, F. Marchal, and B. Dubertret, “Synthesis and Characterization of Near-Infrared Cu−In−Se/ZnS Core/Shell Quantum Dots for In vivo Imaging,” J. Chem. Mater. 22(22), 6117–6124 (2010).
[Crossref]

J. Infect. Dis. Pov. (1)

A. M. C. Restrepo, “The landscape epidemiology of echinococcoses,” J. Infect. Dis. Pov. 5(1), 1–13 (2016).

J. Nanosci. Nanotechnol. (1)

B. Cho, B. Y. Lee, H. C. Kim, H. G. Woo, and H. Sohn, “Fabrication of human IgG sensors based on porous silicon interferometer containing Bragg structures,” J. Nanosci. Nanotechnol. 12(5), 4159–4162 (2012).
[Crossref] [PubMed]

J. Phys. B (1)

C. Liu, Z. Jia, X. Lv, C. Lv, and F. Shi, “Enhancement of QDs’ fluorescence based on porous silicon Bragg mirror,” J. Phys. B 457, 263–268 (2015).
[Crossref]

J. Phys. Chem. C (3)

C. H. Vannoy, J. Xu, and R. M. Leblanc, “Bioimaging and Self-Assembly of Lysozyme Fibrils Utilizing CdSe/ZnS Quantum Dots,” J. Phys. Chem. C 114(2), 766–773 (2010).
[Crossref]

A. R. Maity and N. R. Jana, “Chitosan−Cholesterol-Based Cellular Delivery of Anionic Nanoparticles,” J. Phys. Chem. C 115(1), 137–144 (2011).
[Crossref]

A. G. Midgett, H. W. Hillhouse, B. K. Hughes, A. J. Nozik, and M. C. Beard, “Flowing versus Static Conditions for Measuring Multiple Exciton Generation in PbSe Quantum Dots,” J. Phys. Chem. C 114(41), 17486–17500 (2010).
[Crossref]

J. Proc. MRS. (1)

G. Gaur, “Integrating Colloidal Quantum Dots with Porous Silicon for High Sensitivity Biosensing,” J. Proc. MRS. 1301(15), 463 (2011).

J. Sens. Actuators B Chem. (1)

F. A. Harraz, “Porous silicon chemical sensors and biosensors: A review,” J. Sens. Actuators B Chem. 202(10), 897–912 (2014).
[Crossref]

J. Vis. Exp. (1)

N. Massadivanir, ““Optical detection of E. coli bacteria by mesoporous silicon biosensors,” J. Vis. Exp. 50805(81), 1–8 (2013).

Minerva Farm. (1)

R. P. Haugland, “Handbook of Fluorescent Probes and Research Products,” Minerva Farm. 5(1), 202 (2002).

Nanoscale Res. Lett. (1)

G. A. Rodriguez, J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, “Porous silicon Bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules,” Nanoscale Res. Lett. 9(1), 383 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Proc. SPIE. (1)

S. M. Weiss, “Porous silicon biosensors using quantum dot signal amplifiers,” Proc. SPIE. 8594(3), 859408 (2013).

Sci. Rep. (1)

P. Li, Z. Jia, and G. Lü, “Hydatid detection using the near-infrared transmission angular spectra of porous silicon microcavity biosensors,” Sci. Rep. 7, 44798–44815 (2017).
[Crossref] [PubMed]

Science (1)

G. L. Johnson and R. Lapadat, “Mitogen-Activated Protein Kinase Pathways Mediated by ERK, JNK, and p38 Protein Kinases,” Science 298(5600), 1911–1912 (2002).
[Crossref] [PubMed]

Sensors (Basel) (1)

I. A. Levitsky, “Porous Silicon Structures as Optical Gas Sensors,” Sensors (Basel) 15(8), 19968–19991 (2015).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

X. Tan, S. Liu, Y. Shen, Y. He, and J. Yang, “Quantum dots (QDs) based fluorescence probe for the sensitive determination of kaempferol,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 133(4), 66–72 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Egp38 expression as detected by SDS-PAGE. Nine protein samples: 1, before IPTG induction; 2, after IPTG induction; 3, precipitate from ultra-sonication; 4, supernatant after ultrasonication; 5, residual liquid after purification; and protein samples 6–9 (different concentrations of purified Egp38 protein).
Fig. 2
Fig. 2 Scanning electron micrographs showing a cross-sectional view of a multilayer PSi (A), Top view image of the first surface layer (B) and (C) The cross section of pore from multilayer PSi.
Fig. 3
Fig. 3 Scheme of the current density applied in the PSi Bragg mirror etching experiment.
Fig. 4
Fig. 4 The reaction schematic diagram of the modified PSi with Egp38 antigen and QD-rabbit anti-p38.
Fig. 5
Fig. 5 Fluorescence emission spectra of QDs (red) and QD-rabbi anti-p38 (blue); peaks were visible at around 528 and 532 nm, respectively. The reflection spectrum of PSi (black) after functionalization and immobilization of biomolecules.
Fig. 6
Fig. 6 Fluorescence intensity of QD conjugates under different conditions: 1. the multilayer PSi modified with Egp38 + PBS; 2.the multilayer PSi modified with Egp38 + rabbit anti-p38; 3. the multilayer PSi modified with Egp38 + free QDs; 4. the multilayer PSi modified with Egp38 + QD-rabbit anti-p38; 5. the multilayer PSi modified with BSA + QD-rabbit anti-p38.
Fig. 7
Fig. 7 Image of fluorescence signal after binding of QD-rabbit anti-p38 and Egp38-modified PSi at various concentrations.
Fig. 8
Fig. 8 Detection of Egp38 antigen fluorescence.

Tables (1)

Tables Icon

Table 1 Conditions and steps for Egp38 antigen–antibody reaction

Metrics