Abstract

The great arteries develop from symmetrical aortic arch arteries which are extensively remodeled. These events are vulnerable to perturbations. Hemodynamic forces have a significant role in this remodeling. In this study, optical coherence tomography (OCT) visualized live avian embryos for staging and measuring pharyngeal arch morphology. Measurements acquired with our orientation-independent, dual-angle Doppler OCT technique revealed that ethanol exposure leads to higher absolute blood flow, shear stress, and retrograde flow. Ethanol-exposed embryos had smaller cardiac neural crest (CNC) derived pharyngeal arch mesenchyme and fewer migrating CNC-derived cells. These differences in forces and CNC cell numbers could explain the abnormal aortic arch remodeling.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
4D shear stress maps of the developing heart using Doppler optical coherence tomography

Lindsy M. Peterson, Michael W. Jenkins, Shi Gu, Lee Barwick, Michiko Watanabe, and Andrew M. Rollins
Biomed. Opt. Express 3(11) 3022-3032 (2012)

In vivo spectral domain optical coherence tomography volumetric imaging and spectral Doppler velocimetry of early stage embryonic chicken heart development

A. M. Davis, F. G. Rothenberg, N. Shepherd, and J. A. Izatt
J. Opt. Soc. Am. A 25(12) 3134-3143 (2008)

Measurement of absolute blood flow velocity in outflow tract of HH18 chicken embryo based on 4D reconstruction using spectral domain optical coherence tomography

Zhenhe Ma, Aiping Liu, Xin Yin, Aaron Troyer, Kent Thornburg, Ruikang K. Wang, and Sandra Rugonyi
Biomed. Opt. Express 1(3) 798-811 (2010)

References

  • View by:
  • |
  • |
  • |

  1. Centers for Disease Control and Prevention (CDC), “Alcohol use and binge drinking among women of childbearing age--United States, 2006-2010,” MMWR Morb. Mortal. Wkly. Rep. 61(28), 534–538 (2012).
    [PubMed]
  2. L. B. Finer and M. R. Zolna, “Declines in Unintended Pregnancy in the United States, 2008-2011,” N. Engl. J. Med. 374(9), 843–852 (2016).
    [Crossref] [PubMed]
  3. D. S. Walker, C. S. Fisher, A. Sherman, B. Wybrecht, and K. Kyndely, “Fetal alcohol spectrum disorders prevention: an exploratory study of women’s use of, attitudes toward, and knowledge about alcohol,” J. Am. Acad. Nurse Pract. 17(5), 187–193 (2005).
    [Crossref] [PubMed]
  4. A. M. Andersen, P. K. Andersen, J. Olsen, M. Grønbæk, and K. Strandberg-Larsen, “Moderate alcohol intake during pregnancy and risk of fetal death,” Int. J. Epidemiol. 41(2), 405–413 (2012).
    [Crossref] [PubMed]
  5. R. Alati, G. Davey Smith, S. J. Lewis, K. Sayal, E. S. Draper, J. Golding, R. Fraser, and R. Gray, “Effect of prenatal alcohol exposure on childhood academic outcomes: contrasting maternal and paternal associations in the ALSPAC study,” PLoS One 8(10), e74844 (2013).
    [Crossref] [PubMed]
  6. B. A. Bailey and R. J. Sokol, “Prenatal alcohol exposure and miscarriage, stillbirth, preterm delivery, and sudden infant death syndrome,” Alcohol Res. Health 34(1), 86–91 (2011).
    [PubMed]
  7. H. S. Feldman, K. L. Jones, S. Lindsay, D. Slymen, H. Klonoff-Cohen, K. Kao, S. Rao, and C. Chambers, “Prenatal alcohol exposure patterns and alcohol-related birth defects and growth deficiencies: a prospective study,” Alcohol. Clin. Exp. Res. 36(4), 670–676 (2012).
    [Crossref] [PubMed]
  8. E. Abel, ed., Fetal Alcohol syndrome (Medical Economics Books, Oradell, NJ, 1990).
  9. J. Grewal, S. L. Carmichael, C. Ma, E. J. Lammer, and G. M. Shaw, “Maternal periconceptional smoking and alcohol consumption and risk for select congenital anomalies,” Birth Defects Res. A Clin. Mol. Teratol. 82(7), 519–526 (2008).
    [Crossref] [PubMed]
  10. N. D. Harwood H, “Economic implications of the fetal alcohol syndrome,” Alcohol Health Res. World 10, 38–43 (1985).
  11. M. L. Kirby and M. R. Hutson, “Factors controlling cardiac neural crest cell migration,” Cell Adhes. Migr. 4(4), 609–621 (2010).
    [Crossref] [PubMed]
  12. T. Hiruma, Y. Nakajima, and H. Nakamura, “Development of pharyngeal arch arteries in early mouse embryo,” J. Anat. 201(1), 15–29 (2002).
    [Crossref] [PubMed]
  13. T. Hiruma and R. Hirakow, “Formation of the pharyngeal arch arteries in the chick embryo. Observations of corrosion casts by scanning electron microscopy,” Anat. Embryol. (Berl.) 191(5), 415–423 (1995).
    [Crossref] [PubMed]
  14. C. S. Le Lièvre and N. M. Le Douarin, “Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos,” J. Embryol. Exp. Morphol. 34(1), 125–154 (1975).
    [PubMed]
  15. A. Keyte and M. R. Hutson, “The Neural Crest in Cardiac Congenital Anomalies,” Differentiation; Research in Biological Diversity 84, 25–40 (2012).
  16. R. E. Poelmann and A. C. Gittenberger-de Groot, “A subpopulation of apoptosis-prone cardiac neural crest cells targets to the venous pole: multiple functions in heart development?” Dev. Biol. 207(2), 271–286 (1999).
    [Crossref] [PubMed]
  17. F. A. High, M. Zhang, A. Proweller, L. Tu, M. S. Parmacek, W. S. Pear, and J. A. Epstein, “An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation,” J. Clin. Invest. 117(2), 353–363 (2007).
    [Crossref] [PubMed]
  18. A. Nomura-Kitabayashi, C. K. Phoon, S. Kishigami, J. Rosenthal, Y. Yamauchi, K. Abe, K. Yamamura, R. Samtani, C. W. Lo, and Y. Mishina, “Outflow tract cushions perform a critical valve-like function in the early embryonic heart requiring BMPRIA-mediated signaling in cardiac neural crest,” Am. J. Physiol. Heart Circ. Physiol. 297(5), H1617–H1628 (2009).
    [Crossref] [PubMed]
  19. M. R. Hutson and M. L. Kirby, “Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations,” Semin. Cell Dev. Biol. 18(1), 101–110 (2007).
    [Crossref] [PubMed]
  20. T. M. Yelbuz, K. L. Waldo, D. H. Kumiski, H. A. Stadt, R. R. Wolfe, L. Leatherbury, and M. L. Kirby, “Shortened outflow tract leads to altered cardiac looping after neural crest ablation,” Circulation 106(4), 504–510 (2002).
    [Crossref] [PubMed]
  21. K. K. Sulik, M. C. Johnston, and M. A. Webb, “Fetal alcohol syndrome: embryogenesis in a mouse model,” Science 214(4523), 936–938 (1981).
    [Crossref] [PubMed]
  22. L. E. Kotch and K. K. Sulik, “Experimental fetal alcohol syndrome: proposed pathogenic basis for a variety of associated facial and brain anomalies,” Am. J. Med. Genet. 44(2), 168–176 (1992).
    [Crossref] [PubMed]
  23. M. M. Cartwright and S. M. Smith, “Increased cell death and reduced neural crest cell numbers in ethanol-exposed embryos: partial basis for the fetal alcohol syndrome phenotype,” Alcohol. Clin. Exp. Res. 19(2), 378–386 (1995).
    [Crossref] [PubMed]
  24. M. M. Cartwright, L. L. Tessmer, and S. M. Smith, “Ethanol-induced neural crest apoptosis is coincident with their endogenous death, but is mechanistically distinct,” Alcohol. Clin. Exp. Res. 22(1), 142–149 (1998).
    [Crossref] [PubMed]
  25. R. A. Rovasio and N. L. Battiato, “Ethanol induces morphological and dynamic changes on in vivo and in vitro neural crest cells,” Alcohol. Clin. Exp. Res. 26(8), 1286–1298 (2002).
    [Crossref] [PubMed]
  26. J. Czarnobaj, K. M. Bagnall, J. S. Bamforth, and N. C. Milos, “The different effects on cranial and trunk neural crest cell behaviour following exposure to a low concentration of alcohol in vitro,” Arch. Oral Biol. 59(5), 500–512 (2014).
    [Crossref] [PubMed]
  27. B. Hogers, M. C. DeRuiter, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal,” Cardiovasc. Res. 41(1), 87–99 (1999).
    [Crossref] [PubMed]
  28. B. Hogers, M. C. DeRuiter, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Unilateral Vitelline Vein Ligation Alters Intracardiac Blood Flow Patterns and Morphogenesis in the Chick Embryo,” Circ. Res. 80(4), 473–481 (1997).
    [Crossref] [PubMed]
  29. N. Hu, D. A. Christensen, A. K. Agrawal, C. Beaumont, E. B. Clark, and J. A. Hawkins, “Dependence of Aortic Arch Morphogenesis on Intracardiac Blood Flow in the Left Atrial Ligated Chick Embryo,” Anat. Rec. (Hoboken) 292(5), 652–660 (2009).
    [Crossref] [PubMed]
  30. S. Gu, M. W. Jenkins, L. M. Peterson, Y.-Q. Doughman, A. M. Rollins, and M. Watanabe, “Optical Coherence Tomography Captures Rapid Hemodynamic Responses to Acute Hypoxia in the Cardiovascular System of Early Embryos,” Dev. Dyn. 241(3), 534–544 (2012).
    [Crossref] [PubMed]
  31. G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” Am. J. Physiol. Heart Circ. Physiol. 306(3), H414–H421 (2014).
    [Crossref] [PubMed]
  32. L. M. Peterson, S. Gu, M. W. Jenkins, and A. M. Rollins, “Orientation-independent rapid pulsatile flow measurement using dual-angle Doppler OCT,” Biomed. Opt. Express 5(2), 499–514 (2014).
    [Crossref] [PubMed]
  33. G. Karunamuni, S. Gu, Y. Q. Doughman, A. I. Noonan, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure,” Dev. Dyn. 244(4), 607–618 (2015).
    [Crossref] [PubMed]
  34. P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
    [Crossref] [PubMed]
  35. Y. Wang, O. Dur, M. J. Patrick, J. P. Tinney, K. Tobita, B. B. Keller, and K. Pekkan, “Aortic arch morphogenesis and flow modeling in the chick embryo,” Ann. Biomed. Eng. 37(6), 1069–1081 (2009).
    [Crossref] [PubMed]
  36. W. J. Kowalski, O. Dur, Y. Wang, M. J. Patrick, J. P. Tinney, B. B. Keller, and K. Pekkan, “Critical transitions in early embryonic aortic arch patterning and hemodynamics,” PLoS One 8(3), e60271 (2013).
    [Crossref] [PubMed]
  37. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  38. S. Marschall, B. Sander, M. Mogensen, T. M. Jørgensen, and P. E. Andersen, “Optical coherence tomography-current technology and applications in clinical and biomedical research,” Anal. Bioanal. Chem. 400(9), 2699–2720 (2011).
    [Crossref] [PubMed]
  39. R. Raghunathan, M. Singh, M. E. Dickinson, and K. V. Larin, “Optical coherence tomography for embryonic imaging: a review,” J. Biomed. Opt. 21(5), 050902 (2016).
    [Crossref] [PubMed]
  40. J. Men, Y. Huang, J. Solanki, X. Zeng, A. Alex, J. Jerwick, Z. Zhang, R. E. Tanzi, A. Li, and C. Zhou, “Optical Coherence Tomography for Brain Imaging and Developmental Biology,” IEEE J. Sel. Top. Quantum Electron. 22(4), 120–132 (2016).
    [Crossref] [PubMed]
  41. S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Investigation of Developing Embryonic Morphology using Optical Coherence Tomography,” Dev. Biol. 177(1), 54–63 (1996).
    [Crossref] [PubMed]
  42. S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 94(9), 4256–4261 (1997).
    [Crossref] [PubMed]
  43. I. V. Larina, E. F. Carbajal, V. V. Tuchin, M. E. Dickinson, and K. V. Larin, “Enhanced OCT imaging of embryonic tissue with optical clearing,” Laser Phys. Lett. 5(6), 476–479 (2008).
    [Crossref]
  44. I. V. Larina, S. Ivers, S. Syed, M. E. Dickinson, and K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34(7), 986–988 (2009).
    [Crossref] [PubMed]
  45. M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, “4D embryonic cardiography using gated optical coherence tomography,” Opt. Express 14(2), 736–748 (2006).
    [Crossref] [PubMed]
  46. W. Luo, D. L. Marks, T. S. Ralston, and S. A. Boppart, “Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system,” J. Biomed. Opt. 11(2), 021014 (2006).
    [Crossref] [PubMed]
  47. M. W. Jenkins, P. Patel, H. Deng, M. M. Montano, M. Watanabe, and A. M. Rollins, “Phenotyping transgenic embryonic murine hearts using optical coherence tomography,” Appl. Opt. 46(10), 1776–1781 (2007).
    [Crossref] [PubMed]
  48. S. Yazdanfar, M. Kulkarni, and J. Izatt, “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography,” Opt. Express 1(13), 424–431 (1997).
    [Crossref] [PubMed]
  49. V. X. D. Yang, M. Gordon, E. Seng-Yue, S. Lo, B. Qi, J. Pekar, A. Mok, B. Wilson, and I. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis,” Opt. Express 11(14), 1650–1658 (2003).
    [Crossref] [PubMed]
  50. A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. D. Yang, “Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system,” Opt. Express 15(4), 1627–1638 (2007).
    [Crossref] [PubMed]
  51. R. Yelin, D. Yelin, W.-Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
    [Crossref] [PubMed]
  52. A. Bradu, L. Ma, J. W. Bloor, and A. Podoleanu, “Dual optical coherence tomography/fluorescence microscopy for monitoring of Drosophila melanogaster larval heart,” J. Biophotonics 2(6-7), 380–388 (2009).
    [Crossref] [PubMed]
  53. M. A. Choma, S. D. Izatt, R. J. Wessells, R. Bodmer, and J. A. Izatt, “Images in cardiovascular medicine: in vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography,” Circulation 114(2), e35–e36 (2006).
    [Crossref] [PubMed]
  54. N. V. Iftimia, D. X. Hammer, R. D. Ferguson, M. Mujat, D. Vu, and A. A. Ferrante, “Dual-beam Fourier domain optical Doppler tomography of zebrafish,” Opt. Express 16(18), 13624–13636 (2008).
    [Crossref] [PubMed]
  55. L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
    [PubMed]
  56. B. Garita, M. W. Jenkins, M. Han, C. Zhou, M. Vanauker, A. M. Rollins, M. Watanabe, J. G. Fujimoto, and K. K. Linask, “Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping,” Am. J. Physiol. Heart Circ. Physiol. 300(3), H879–H891 (2011).
    [Crossref] [PubMed]
  57. S. Gu, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Optical Coherence Tomography Imaging of Early Quail Embryos,” Cold Spring Harbor Protocols 2011, pdb.prot5564 (2011).
  58. M. Gargesha, M. W. Jenkins, D. L. Wilson, and A. M. Rollins, “High temporal resolution OCT using image-based retrospective gating,” Opt. Express 17(13), 10786–10799 (2009).
    [Crossref] [PubMed]
  59. L. M. Peterson, M. W. Jenkins, S. Gu, L. Barwick, M. Watanabe, and A. M. Rollins, “4D shear stress maps of the developing heart using Doppler optical coherence tomography,” Biomed. Opt. Express 3(11), 3022–3032 (2012).
    [Crossref] [PubMed]
  60. T. M. Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby, and J. A. Izatt, “Optical Coherence Tomography A New High-Resolution Imaging Technology to Study Cardiac Development in Chick Embryos,” Circulation 106, 2771–2774 (2002).
  61. B. A. Filas, I. R. Efimov, and L. A. Taber, “Optical coherence tomography as a tool for measuring morphogenetic deformation of the looping heart,” Anat. Rec. (Hoboken) 290(9), 1057–1068 (2007).
    [Crossref] [PubMed]
  62. A. M. Davis, F. G. Rothenberg, N. Shepherd, and J. A. Izatt, “In vivo spectral domain optical coherence tomography volumetric imaging and spectral Doppler velocimetry of early stage embryonic chicken heart development,” J. Opt. Soc. Am. A 25(12), 3134–3143 (2008).
    [Crossref] [PubMed]
  63. L. Thrane, H. E. Larsen, K. Norozi, F. Pedersen, J. B. Thomsen, M. Trojer, and T. M. Yelbuz, “Field programmable gate-array-based real-time optical Doppler tomography system for in vivo imaging of cardiac dynamics in the chick embryo,” Optice 48, 023201 (2009).
  64. A. Ramasubramanian, N. L. Nerurkar, K. H. Achtien, B. A. Filas, D. A. Voronov, and L. A. Taber, “On Modeling Morphogenesis of the Looping Heart Following Mechanical Perturbations,” J. Biomech. Eng. 130(6), 061018 (2008).
    [Crossref] [PubMed]
  65. Z. Ma and X. Tao, “Two wavelength spectral domain optical coherence tomography systems for early stage chicken embryonic heart imaging,” in 2012 IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS) Proceedings, 2012), 13–16.
    [Crossref]
  66. A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling,” PLoS One 7(7), e40869 (2012).
    [Crossref] [PubMed]
  67. W. J. Kowalski, N. C. Teslovich, C.-Y. Chen, B. B. Keller, and K. Pekkan, “Simultaneous real-time quantification of blood flow and vascular growth in the chick embryo using optical coherence tomography,” Proc. SPIE 8953, 895307 (2014).
  68. P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol. 56(22), 7081–7092 (2011).
    [Crossref] [PubMed]
  69. S. Bhat, I. V. Larina, K. V. Larin, M. E. Dickinson, and M. Liebling, “4D reconstruction of the beating embryonic heart from two orthogonal sets of parallel optical coherence tomography slice-sequences,” IEEE Trans. Med. Imaging 32(3), 578–588 (2013).
    [Crossref] [PubMed]
  70. S. Wang, D. S. Lakomy, M. D. Garcia, A. L. Lopez, K. V. Larin, and I. V. Larina, “Four-dimensional live imaging of hemodynamics in mammalian embryonic heart with Doppler optical coherence tomography,” J. Biophotonics 9(8), 837–847 (2016).
    [Crossref] [PubMed]
  71. S. Wang, M. Singh, A. L. Lopez, C. Wu, R. Raghunathan, A. Schill, J. Li, K. V. Larin, and I. V. Larina, “Direct four-dimensional structural and functional imaging of cardiovascular dynamics in mouse embryos with 1.5 MHz optical coherence tomography,” Opt. Lett. 40(20), 4791–4794 (2015).
    [Crossref] [PubMed]
  72. Z. Ma, S. Dou, Y. Zhao, C. Guo, J. Liu, Q. Wang, T. Xu, R. K. Wang, and Y. Wang, “In vivo assessment of wall strain in embryonic chick heart by spectral domain optical coherence tomography,” Appl. Opt. 54(31), 9253–9257 (2015).
    [Crossref] [PubMed]
  73. P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt. 17(9), 096006 (2012).
    [Crossref] [PubMed]
  74. A. Davis, J. Izatt, and F. Rothenberg, “Quantitative Measurement of Blood Flow Dynamics in Embryonic Vasculature Using Spectral Doppler Velocimetry,” Anat. Rec. (Hoboken) 292(3), 311–319 (2009).
    [Crossref] [PubMed]
  75. P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol. 56(22), 7081–7092 (2011).
    [Crossref] [PubMed]
  76. Z. Ma, A. Liu, X. Yin, A. Troyer, K. Thornburg, R. K. Wang, and S. Rugonyi, “Measurement of absolute blood flow velocity in outflow tract of HH18 chicken embryo based on 4D reconstruction using spectral domain optical coherence tomography,” Biomed. Opt. Express 1(3), 798–811 (2010).
    [Crossref] [PubMed]
  77. T. G. van Leeuwen, M. D. Kulkarni, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography,” Opt. Lett. 24(22), 1584–1586 (1999).
    [Crossref] [PubMed]
  78. S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
    [Crossref] [PubMed]
  79. V. K. Chivukula, S. Goenezen, A. Liu, and S. Rugonyi, “Effect of Outflow Tract Banding on Embryonic Cardiac Hemodynamics,” J. Cardiovasc. Dev. Dis. 3(1), 1 (2015).
    [Crossref] [PubMed]
  80. L. M. Peterson, M. McPheeters, L. Barwick, S. Gu, A. M. Rollins, and M. W. Jenkins, “Altering embryonic cardiac dynamics with optical pacing,” in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012), 1382–1385.
    [Crossref]
  81. R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213 (2007).
    [Crossref] [PubMed]
  82. S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett. 33(8), 836–838 (2008).
    [Crossref] [PubMed]
  83. D. P. Davé and T. E. Milner, “Doppler-angle measurement in highly scattering media,” Opt. Lett. 25(20), 1523–1525 (2000).
    [Crossref] [PubMed]
  84. C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett. 32(5), 506–508 (2007).
    [Crossref] [PubMed]
  85. Y.-C. Ahn, W. Jung, and Z. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett. 32(11), 1587–1589 (2007).
    [Crossref] [PubMed]
  86. N. V. Iftimia, D. X. Hammer, R. D. Ferguson, M. Mujat, D. Vu, and A. A. Ferrante, “Dual-beam Fourier domain optical Doppler tomography of zebrafish,” Opt. Express 16(18), 13624–13636 (2008).
    [Crossref] [PubMed]
  87. R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett. 33(24), 2967–2969 (2008).
    [Crossref] [PubMed]
  88. C. Blatter, S. Coquoz, B. Grajciar, A. S. G. Singh, M. Bonesi, R. M. Werkmeister, L. Schmetterer, and R. A. Leitgeb, “Dove prism based rotating dual beam bidirectional Doppler OCT,” Biomed. Opt. Express 4(7), 1188–1203 (2013).
    [Crossref] [PubMed]
  89. M. Serrano, M. Han, P. Brinez, and K. K. Linask, “Fetal alcohol syndrome: cardiac birth defects in mice and prevention with folate,” Am. J. Obstet. Gynecol. 203(1), 75.e7 (2010).
    [Crossref] [PubMed]
  90. M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Longitudinal Imaging of Heart Development With Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1166–1175 (2012).
    [Crossref] [PubMed]
  91. Z. Hu and A. Rollins, “Quasi-telecentric optical design of a microscope-compatible OCT scanner,” Opt. Express 13(17), 6407–6415 (2005).
    [Crossref] [PubMed]
  92. V. Hamburger and H. L. Hamilton, “A series of normal stages in the development of the chick embryo,” J. Morphol. 88(1), 49–92 (1951).
    [Crossref] [PubMed]
  93. S. J. Ainsworth, R. L. Stanley, and D. J. R. Evans, “Developmental stages of the Japanese quail,” J. Anat. 216(1), 3–15 (2010).
    [Crossref] [PubMed]
  94. M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
    [Crossref] [PubMed]
  95. C. A. Taylor, T. J. R. Hughes, and C. K. Zarins, “Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis,” Ann. Biomed. Eng. 26(6), 975–987 (1998).
    [Crossref] [PubMed]
  96. J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act Through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
    [Crossref] [PubMed]
  97. S. M. Ford, M. T. McPheeters, Y. T. Wang, S. Gu, Y. Q. Doughman, J. P. Strainic, C. S. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” accepted.
  98. P. A. Trainor and P. P. Tam, “Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches,” Development 121(8), 2569–2582 (1995).
    [PubMed]
  99. M. Bergwerff, M. E. Verberne, M. C. DeRuiter, R. E. Poelmann, and A. C. Gittenberger-de Groot, “Neural Crest Cell Contribution to the Developing Circulatory System: Implications for Vascular Morphology?” Circ. Res. 82(2), 221–231 (1998).
    [Crossref] [PubMed]
  100. S. Miyagawa-Tomita, K. Waldo, H. Tomita, and M. L. Kirby, “Temporospatial study of the migration and distribution of cardiac neural crest in quail-chick chimeras,” Am. J. Anat. 192(1), 79–88 (1991).
    [Crossref] [PubMed]
  101. K. L. Waldo and M. L. Kirby, “Cardiac neural crest contribution to the pulmonary artery and sixth aortic arch artery complex in chick embryos aged 6 to 18 days,” Anat. Rec. 237(3), 385–399 (1993).
    [Crossref] [PubMed]
  102. E. Goldmuntz, D. A. Driscoll, B. S. Emanuel, D. McDonald-McGinn, M. Mei, E. Zackai, and L. E. Mitchell, “Evaluation of potential modifiers of the cardiac phenotype in the 22q11.2 deletion syndrome,” Birth Defects Res. A Clin. Mol. Teratol. 85(2), 125–129 (2009).
    [Crossref] [PubMed]
  103. G. H. Karunamuni, P. Ma, S. Gu, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function,” Birth Defects Res. C Embryo Today 102(3), 227–250 (2014).
    [Crossref] [PubMed]
  104. K. Boric, P. Orio, T. Viéville, and K. Whitlock, “Quantitative Analysis of Cell Migration Using Optical Flow,” PLoS One 8(7), e69574 (2013).
    [Crossref] [PubMed]
  105. C. P. Klingenberg, L. Wetherill, J. Rogers, E. Moore, R. Ward, I. Autti-Rämö, A. Fagerlund, S. W. Jacobson, L. K. Robinson, H. E. Hoyme, S. N. Mattson, T. K. Li, E. P. Riley, T. Foroud, and CIFASD Consortium, “Prenatal alcohol exposure alters the patterns of facial asymmetry,” Alcohol 44(7-8), 649–657 (2010).
    [Crossref] [PubMed]
  106. D. E. Stewart, M. L. Kirby, and K. K. Sulik, “Hemodynamic changes in chick embryos precede heart defects after cardiac neural crest ablation,” Circ. Res. 59(5), 545–550 (1986).
    [Crossref] [PubMed]
  107. L. Leatherbury, D. S. Braden, H. Tomita, H. E. Gauldin, and W. F. Jackson, “Hemodynamic changes. Wall stresses and pressure gradients in neural crest-ablated chick embryos,” Ann. N. Y. Acad. Sci. 588(1 Embryonic Ori), 305–313 (1990).
    [Crossref] [PubMed]
  108. L. Leatherbury, D. M. Connuck, H. E. Gauldin, and M. L. Kirby, “Hemodynamic changes and compensatory mechanisms during early cardiogenesis after neural crest ablation in chick embryos,” Pediatr. Res. 30(6), 509–512 (1991).
    [Crossref] [PubMed]
  109. H. Tomita, D. M. Connuck, L. Leatherbury, and M. L. Kirby, “Relation of early hemodynamic changes to final cardiac phenotype and survival after neural crest ablation in chick embryos,” Circulation 84(3), 1289–1295 (1991).
    [Crossref] [PubMed]
  110. M. J. Farrell, J. L. Burch, K. Wallis, L. Rowley, D. Kumiski, H. Stadt, R. E. Godt, T. L. Creazzo, and M. L. Kirby, “FGF-8 in the ventral pharynx alters development of myocardial calcium transients after neural crest ablation,” J. Clin. Invest. 107(12), 1509–1517 (2001).
    [Crossref] [PubMed]
  111. K. Waldo, M. Zdanowicz, J. Burch, D. H. Kumiski, H. A. Stadt, R. E. Godt, T. L. Creazzo, and M. L. Kirby, “A novel role for cardiac neural crest in heart development,” J. Clin. Invest. 103(11), 1499–1507 (1999).
    [Crossref] [PubMed]
  112. P. Ma, S. Gu, G. H. Karunamuni, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Cardiac neural crest ablation results in early endocardial cushion and hemodynamic flow abnormalities,” Am. J. Physiol. Heart Circ. Physiol. 311(5), H1150–H1159 (2016).
    [Crossref] [PubMed]

2016 (5)

L. B. Finer and M. R. Zolna, “Declines in Unintended Pregnancy in the United States, 2008-2011,” N. Engl. J. Med. 374(9), 843–852 (2016).
[Crossref] [PubMed]

R. Raghunathan, M. Singh, M. E. Dickinson, and K. V. Larin, “Optical coherence tomography for embryonic imaging: a review,” J. Biomed. Opt. 21(5), 050902 (2016).
[Crossref] [PubMed]

J. Men, Y. Huang, J. Solanki, X. Zeng, A. Alex, J. Jerwick, Z. Zhang, R. E. Tanzi, A. Li, and C. Zhou, “Optical Coherence Tomography for Brain Imaging and Developmental Biology,” IEEE J. Sel. Top. Quantum Electron. 22(4), 120–132 (2016).
[Crossref] [PubMed]

S. Wang, D. S. Lakomy, M. D. Garcia, A. L. Lopez, K. V. Larin, and I. V. Larina, “Four-dimensional live imaging of hemodynamics in mammalian embryonic heart with Doppler optical coherence tomography,” J. Biophotonics 9(8), 837–847 (2016).
[Crossref] [PubMed]

P. Ma, S. Gu, G. H. Karunamuni, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Cardiac neural crest ablation results in early endocardial cushion and hemodynamic flow abnormalities,” Am. J. Physiol. Heart Circ. Physiol. 311(5), H1150–H1159 (2016).
[Crossref] [PubMed]

2015 (4)

V. K. Chivukula, S. Goenezen, A. Liu, and S. Rugonyi, “Effect of Outflow Tract Banding on Embryonic Cardiac Hemodynamics,” J. Cardiovasc. Dev. Dis. 3(1), 1 (2015).
[Crossref] [PubMed]

S. Wang, M. Singh, A. L. Lopez, C. Wu, R. Raghunathan, A. Schill, J. Li, K. V. Larin, and I. V. Larina, “Direct four-dimensional structural and functional imaging of cardiovascular dynamics in mouse embryos with 1.5 MHz optical coherence tomography,” Opt. Lett. 40(20), 4791–4794 (2015).
[Crossref] [PubMed]

Z. Ma, S. Dou, Y. Zhao, C. Guo, J. Liu, Q. Wang, T. Xu, R. K. Wang, and Y. Wang, “In vivo assessment of wall strain in embryonic chick heart by spectral domain optical coherence tomography,” Appl. Opt. 54(31), 9253–9257 (2015).
[Crossref] [PubMed]

G. Karunamuni, S. Gu, Y. Q. Doughman, A. I. Noonan, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure,” Dev. Dyn. 244(4), 607–618 (2015).
[Crossref] [PubMed]

2014 (5)

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” Am. J. Physiol. Heart Circ. Physiol. 306(3), H414–H421 (2014).
[Crossref] [PubMed]

J. Czarnobaj, K. M. Bagnall, J. S. Bamforth, and N. C. Milos, “The different effects on cranial and trunk neural crest cell behaviour following exposure to a low concentration of alcohol in vitro,” Arch. Oral Biol. 59(5), 500–512 (2014).
[Crossref] [PubMed]

G. H. Karunamuni, P. Ma, S. Gu, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function,” Birth Defects Res. C Embryo Today 102(3), 227–250 (2014).
[Crossref] [PubMed]

W. J. Kowalski, N. C. Teslovich, C.-Y. Chen, B. B. Keller, and K. Pekkan, “Simultaneous real-time quantification of blood flow and vascular growth in the chick embryo using optical coherence tomography,” Proc. SPIE 8953, 895307 (2014).

L. M. Peterson, S. Gu, M. W. Jenkins, and A. M. Rollins, “Orientation-independent rapid pulsatile flow measurement using dual-angle Doppler OCT,” Biomed. Opt. Express 5(2), 499–514 (2014).
[Crossref] [PubMed]

2013 (5)

C. Blatter, S. Coquoz, B. Grajciar, A. S. G. Singh, M. Bonesi, R. M. Werkmeister, L. Schmetterer, and R. A. Leitgeb, “Dove prism based rotating dual beam bidirectional Doppler OCT,” Biomed. Opt. Express 4(7), 1188–1203 (2013).
[Crossref] [PubMed]

S. Bhat, I. V. Larina, K. V. Larin, M. E. Dickinson, and M. Liebling, “4D reconstruction of the beating embryonic heart from two orthogonal sets of parallel optical coherence tomography slice-sequences,” IEEE Trans. Med. Imaging 32(3), 578–588 (2013).
[Crossref] [PubMed]

K. Boric, P. Orio, T. Viéville, and K. Whitlock, “Quantitative Analysis of Cell Migration Using Optical Flow,” PLoS One 8(7), e69574 (2013).
[Crossref] [PubMed]

W. J. Kowalski, O. Dur, Y. Wang, M. J. Patrick, J. P. Tinney, B. B. Keller, and K. Pekkan, “Critical transitions in early embryonic aortic arch patterning and hemodynamics,” PLoS One 8(3), e60271 (2013).
[Crossref] [PubMed]

R. Alati, G. Davey Smith, S. J. Lewis, K. Sayal, E. S. Draper, J. Golding, R. Fraser, and R. Gray, “Effect of prenatal alcohol exposure on childhood academic outcomes: contrasting maternal and paternal associations in the ALSPAC study,” PLoS One 8(10), e74844 (2013).
[Crossref] [PubMed]

2012 (9)

H. S. Feldman, K. L. Jones, S. Lindsay, D. Slymen, H. Klonoff-Cohen, K. Kao, S. Rao, and C. Chambers, “Prenatal alcohol exposure patterns and alcohol-related birth defects and growth deficiencies: a prospective study,” Alcohol. Clin. Exp. Res. 36(4), 670–676 (2012).
[Crossref] [PubMed]

Centers for Disease Control and Prevention (CDC), “Alcohol use and binge drinking among women of childbearing age--United States, 2006-2010,” MMWR Morb. Mortal. Wkly. Rep. 61(28), 534–538 (2012).
[PubMed]

A. M. Andersen, P. K. Andersen, J. Olsen, M. Grønbæk, and K. Strandberg-Larsen, “Moderate alcohol intake during pregnancy and risk of fetal death,” Int. J. Epidemiol. 41(2), 405–413 (2012).
[Crossref] [PubMed]

S. Gu, M. W. Jenkins, L. M. Peterson, Y.-Q. Doughman, A. M. Rollins, and M. Watanabe, “Optical Coherence Tomography Captures Rapid Hemodynamic Responses to Acute Hypoxia in the Cardiovascular System of Early Embryos,” Dev. Dyn. 241(3), 534–544 (2012).
[Crossref] [PubMed]

A. Keyte and M. R. Hutson, “The Neural Crest in Cardiac Congenital Anomalies,” Differentiation; Research in Biological Diversity 84, 25–40 (2012).

P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt. 17(9), 096006 (2012).
[Crossref] [PubMed]

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling,” PLoS One 7(7), e40869 (2012).
[Crossref] [PubMed]

L. M. Peterson, M. W. Jenkins, S. Gu, L. Barwick, M. Watanabe, and A. M. Rollins, “4D shear stress maps of the developing heart using Doppler optical coherence tomography,” Biomed. Opt. Express 3(11), 3022–3032 (2012).
[Crossref] [PubMed]

M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Longitudinal Imaging of Heart Development With Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1166–1175 (2012).
[Crossref] [PubMed]

2011 (5)

B. Garita, M. W. Jenkins, M. Han, C. Zhou, M. Vanauker, A. M. Rollins, M. Watanabe, J. G. Fujimoto, and K. K. Linask, “Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping,” Am. J. Physiol. Heart Circ. Physiol. 300(3), H879–H891 (2011).
[Crossref] [PubMed]

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol. 56(22), 7081–7092 (2011).
[Crossref] [PubMed]

S. Marschall, B. Sander, M. Mogensen, T. M. Jørgensen, and P. E. Andersen, “Optical coherence tomography-current technology and applications in clinical and biomedical research,” Anal. Bioanal. Chem. 400(9), 2699–2720 (2011).
[Crossref] [PubMed]

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol. 56(22), 7081–7092 (2011).
[Crossref] [PubMed]

B. A. Bailey and R. J. Sokol, “Prenatal alcohol exposure and miscarriage, stillbirth, preterm delivery, and sudden infant death syndrome,” Alcohol Res. Health 34(1), 86–91 (2011).
[PubMed]

2010 (6)

M. L. Kirby and M. R. Hutson, “Factors controlling cardiac neural crest cell migration,” Cell Adhes. Migr. 4(4), 609–621 (2010).
[Crossref] [PubMed]

S. J. Ainsworth, R. L. Stanley, and D. J. R. Evans, “Developmental stages of the Japanese quail,” J. Anat. 216(1), 3–15 (2010).
[Crossref] [PubMed]

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref] [PubMed]

C. P. Klingenberg, L. Wetherill, J. Rogers, E. Moore, R. Ward, I. Autti-Rämö, A. Fagerlund, S. W. Jacobson, L. K. Robinson, H. E. Hoyme, S. N. Mattson, T. K. Li, E. P. Riley, T. Foroud, and CIFASD Consortium, “Prenatal alcohol exposure alters the patterns of facial asymmetry,” Alcohol 44(7-8), 649–657 (2010).
[Crossref] [PubMed]

M. Serrano, M. Han, P. Brinez, and K. K. Linask, “Fetal alcohol syndrome: cardiac birth defects in mice and prevention with folate,” Am. J. Obstet. Gynecol. 203(1), 75.e7 (2010).
[Crossref] [PubMed]

Z. Ma, A. Liu, X. Yin, A. Troyer, K. Thornburg, R. K. Wang, and S. Rugonyi, “Measurement of absolute blood flow velocity in outflow tract of HH18 chicken embryo based on 4D reconstruction using spectral domain optical coherence tomography,” Biomed. Opt. Express 1(3), 798–811 (2010).
[Crossref] [PubMed]

2009 (10)

I. V. Larina, S. Ivers, S. Syed, M. E. Dickinson, and K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34(7), 986–988 (2009).
[Crossref] [PubMed]

M. Gargesha, M. W. Jenkins, D. L. Wilson, and A. M. Rollins, “High temporal resolution OCT using image-based retrospective gating,” Opt. Express 17(13), 10786–10799 (2009).
[Crossref] [PubMed]

E. Goldmuntz, D. A. Driscoll, B. S. Emanuel, D. McDonald-McGinn, M. Mei, E. Zackai, and L. E. Mitchell, “Evaluation of potential modifiers of the cardiac phenotype in the 22q11.2 deletion syndrome,” Birth Defects Res. A Clin. Mol. Teratol. 85(2), 125–129 (2009).
[Crossref] [PubMed]

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act Through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref] [PubMed]

A. Davis, J. Izatt, and F. Rothenberg, “Quantitative Measurement of Blood Flow Dynamics in Embryonic Vasculature Using Spectral Doppler Velocimetry,” Anat. Rec. (Hoboken) 292(3), 311–319 (2009).
[Crossref] [PubMed]

Y. Wang, O. Dur, M. J. Patrick, J. P. Tinney, K. Tobita, B. B. Keller, and K. Pekkan, “Aortic arch morphogenesis and flow modeling in the chick embryo,” Ann. Biomed. Eng. 37(6), 1069–1081 (2009).
[Crossref] [PubMed]

A. Bradu, L. Ma, J. W. Bloor, and A. Podoleanu, “Dual optical coherence tomography/fluorescence microscopy for monitoring of Drosophila melanogaster larval heart,” J. Biophotonics 2(6-7), 380–388 (2009).
[Crossref] [PubMed]

L. Thrane, H. E. Larsen, K. Norozi, F. Pedersen, J. B. Thomsen, M. Trojer, and T. M. Yelbuz, “Field programmable gate-array-based real-time optical Doppler tomography system for in vivo imaging of cardiac dynamics in the chick embryo,” Optice 48, 023201 (2009).

A. Nomura-Kitabayashi, C. K. Phoon, S. Kishigami, J. Rosenthal, Y. Yamauchi, K. Abe, K. Yamamura, R. Samtani, C. W. Lo, and Y. Mishina, “Outflow tract cushions perform a critical valve-like function in the early embryonic heart requiring BMPRIA-mediated signaling in cardiac neural crest,” Am. J. Physiol. Heart Circ. Physiol. 297(5), H1617–H1628 (2009).
[Crossref] [PubMed]

N. Hu, D. A. Christensen, A. K. Agrawal, C. Beaumont, E. B. Clark, and J. A. Hawkins, “Dependence of Aortic Arch Morphogenesis on Intracardiac Blood Flow in the Left Atrial Ligated Chick Embryo,” Anat. Rec. (Hoboken) 292(5), 652–660 (2009).
[Crossref] [PubMed]

2008 (10)

J. Grewal, S. L. Carmichael, C. Ma, E. J. Lammer, and G. M. Shaw, “Maternal periconceptional smoking and alcohol consumption and risk for select congenital anomalies,” Birth Defects Res. A Clin. Mol. Teratol. 82(7), 519–526 (2008).
[Crossref] [PubMed]

A. Ramasubramanian, N. L. Nerurkar, K. H. Achtien, B. A. Filas, D. A. Voronov, and L. A. Taber, “On Modeling Morphogenesis of the Looping Heart Following Mechanical Perturbations,” J. Biomech. Eng. 130(6), 061018 (2008).
[Crossref] [PubMed]

I. V. Larina, E. F. Carbajal, V. V. Tuchin, M. E. Dickinson, and K. V. Larin, “Enhanced OCT imaging of embryonic tissue with optical clearing,” Laser Phys. Lett. 5(6), 476–479 (2008).
[Crossref]

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett. 33(8), 836–838 (2008).
[Crossref] [PubMed]

N. V. Iftimia, D. X. Hammer, R. D. Ferguson, M. Mujat, D. Vu, and A. A. Ferrante, “Dual-beam Fourier domain optical Doppler tomography of zebrafish,” Opt. Express 16(18), 13624–13636 (2008).
[Crossref] [PubMed]

N. V. Iftimia, D. X. Hammer, R. D. Ferguson, M. Mujat, D. Vu, and A. A. Ferrante, “Dual-beam Fourier domain optical Doppler tomography of zebrafish,” Opt. Express 16(18), 13624–13636 (2008).
[Crossref] [PubMed]

A. M. Davis, F. G. Rothenberg, N. Shepherd, and J. A. Izatt, “In vivo spectral domain optical coherence tomography volumetric imaging and spectral Doppler velocimetry of early stage embryonic chicken heart development,” J. Opt. Soc. Am. A 25(12), 3134–3143 (2008).
[Crossref] [PubMed]

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett. 33(24), 2967–2969 (2008).
[Crossref] [PubMed]

2007 (9)

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett. 32(5), 506–508 (2007).
[Crossref] [PubMed]

A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. D. Yang, “Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system,” Opt. Express 15(4), 1627–1638 (2007).
[Crossref] [PubMed]

M. W. Jenkins, P. Patel, H. Deng, M. M. Montano, M. Watanabe, and A. M. Rollins, “Phenotyping transgenic embryonic murine hearts using optical coherence tomography,” Appl. Opt. 46(10), 1776–1781 (2007).
[Crossref] [PubMed]

Y.-C. Ahn, W. Jung, and Z. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett. 32(11), 1587–1589 (2007).
[Crossref] [PubMed]

B. A. Filas, I. R. Efimov, and L. A. Taber, “Optical coherence tomography as a tool for measuring morphogenetic deformation of the looping heart,” Anat. Rec. (Hoboken) 290(9), 1057–1068 (2007).
[Crossref] [PubMed]

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213 (2007).
[Crossref] [PubMed]

R. Yelin, D. Yelin, W.-Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref] [PubMed]

M. R. Hutson and M. L. Kirby, “Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations,” Semin. Cell Dev. Biol. 18(1), 101–110 (2007).
[Crossref] [PubMed]

F. A. High, M. Zhang, A. Proweller, L. Tu, M. S. Parmacek, W. S. Pear, and J. A. Epstein, “An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation,” J. Clin. Invest. 117(2), 353–363 (2007).
[Crossref] [PubMed]

2006 (4)

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[Crossref] [PubMed]

W. Luo, D. L. Marks, T. S. Ralston, and S. A. Boppart, “Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system,” J. Biomed. Opt. 11(2), 021014 (2006).
[Crossref] [PubMed]

M. A. Choma, S. D. Izatt, R. J. Wessells, R. Bodmer, and J. A. Izatt, “Images in cardiovascular medicine: in vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography,” Circulation 114(2), e35–e36 (2006).
[Crossref] [PubMed]

M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, “4D embryonic cardiography using gated optical coherence tomography,” Opt. Express 14(2), 736–748 (2006).
[Crossref] [PubMed]

2005 (2)

Z. Hu and A. Rollins, “Quasi-telecentric optical design of a microscope-compatible OCT scanner,” Opt. Express 13(17), 6407–6415 (2005).
[Crossref] [PubMed]

D. S. Walker, C. S. Fisher, A. Sherman, B. Wybrecht, and K. Kyndely, “Fetal alcohol spectrum disorders prevention: an exploratory study of women’s use of, attitudes toward, and knowledge about alcohol,” J. Am. Acad. Nurse Pract. 17(5), 187–193 (2005).
[Crossref] [PubMed]

2003 (1)

2002 (4)

T. M. Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby, and J. A. Izatt, “Optical Coherence Tomography A New High-Resolution Imaging Technology to Study Cardiac Development in Chick Embryos,” Circulation 106, 2771–2774 (2002).

T. M. Yelbuz, K. L. Waldo, D. H. Kumiski, H. A. Stadt, R. R. Wolfe, L. Leatherbury, and M. L. Kirby, “Shortened outflow tract leads to altered cardiac looping after neural crest ablation,” Circulation 106(4), 504–510 (2002).
[Crossref] [PubMed]

T. Hiruma, Y. Nakajima, and H. Nakamura, “Development of pharyngeal arch arteries in early mouse embryo,” J. Anat. 201(1), 15–29 (2002).
[Crossref] [PubMed]

R. A. Rovasio and N. L. Battiato, “Ethanol induces morphological and dynamic changes on in vivo and in vitro neural crest cells,” Alcohol. Clin. Exp. Res. 26(8), 1286–1298 (2002).
[Crossref] [PubMed]

2001 (1)

M. J. Farrell, J. L. Burch, K. Wallis, L. Rowley, D. Kumiski, H. Stadt, R. E. Godt, T. L. Creazzo, and M. L. Kirby, “FGF-8 in the ventral pharynx alters development of myocardial calcium transients after neural crest ablation,” J. Clin. Invest. 107(12), 1509–1517 (2001).
[Crossref] [PubMed]

2000 (1)

1999 (4)

K. Waldo, M. Zdanowicz, J. Burch, D. H. Kumiski, H. A. Stadt, R. E. Godt, T. L. Creazzo, and M. L. Kirby, “A novel role for cardiac neural crest in heart development,” J. Clin. Invest. 103(11), 1499–1507 (1999).
[Crossref] [PubMed]

T. G. van Leeuwen, M. D. Kulkarni, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography,” Opt. Lett. 24(22), 1584–1586 (1999).
[Crossref] [PubMed]

R. E. Poelmann and A. C. Gittenberger-de Groot, “A subpopulation of apoptosis-prone cardiac neural crest cells targets to the venous pole: multiple functions in heart development?” Dev. Biol. 207(2), 271–286 (1999).
[Crossref] [PubMed]

B. Hogers, M. C. DeRuiter, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal,” Cardiovasc. Res. 41(1), 87–99 (1999).
[Crossref] [PubMed]

1998 (3)

M. M. Cartwright, L. L. Tessmer, and S. M. Smith, “Ethanol-induced neural crest apoptosis is coincident with their endogenous death, but is mechanistically distinct,” Alcohol. Clin. Exp. Res. 22(1), 142–149 (1998).
[Crossref] [PubMed]

C. A. Taylor, T. J. R. Hughes, and C. K. Zarins, “Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis,” Ann. Biomed. Eng. 26(6), 975–987 (1998).
[Crossref] [PubMed]

M. Bergwerff, M. E. Verberne, M. C. DeRuiter, R. E. Poelmann, and A. C. Gittenberger-de Groot, “Neural Crest Cell Contribution to the Developing Circulatory System: Implications for Vascular Morphology?” Circ. Res. 82(2), 221–231 (1998).
[Crossref] [PubMed]

1997 (3)

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 94(9), 4256–4261 (1997).
[Crossref] [PubMed]

B. Hogers, M. C. DeRuiter, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Unilateral Vitelline Vein Ligation Alters Intracardiac Blood Flow Patterns and Morphogenesis in the Chick Embryo,” Circ. Res. 80(4), 473–481 (1997).
[Crossref] [PubMed]

S. Yazdanfar, M. Kulkarni, and J. Izatt, “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography,” Opt. Express 1(13), 424–431 (1997).
[Crossref] [PubMed]

1996 (1)

S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Investigation of Developing Embryonic Morphology using Optical Coherence Tomography,” Dev. Biol. 177(1), 54–63 (1996).
[Crossref] [PubMed]

1995 (3)

P. A. Trainor and P. P. Tam, “Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches,” Development 121(8), 2569–2582 (1995).
[PubMed]

M. M. Cartwright and S. M. Smith, “Increased cell death and reduced neural crest cell numbers in ethanol-exposed embryos: partial basis for the fetal alcohol syndrome phenotype,” Alcohol. Clin. Exp. Res. 19(2), 378–386 (1995).
[Crossref] [PubMed]

T. Hiruma and R. Hirakow, “Formation of the pharyngeal arch arteries in the chick embryo. Observations of corrosion casts by scanning electron microscopy,” Anat. Embryol. (Berl.) 191(5), 415–423 (1995).
[Crossref] [PubMed]

1993 (1)

K. L. Waldo and M. L. Kirby, “Cardiac neural crest contribution to the pulmonary artery and sixth aortic arch artery complex in chick embryos aged 6 to 18 days,” Anat. Rec. 237(3), 385–399 (1993).
[Crossref] [PubMed]

1992 (1)

L. E. Kotch and K. K. Sulik, “Experimental fetal alcohol syndrome: proposed pathogenic basis for a variety of associated facial and brain anomalies,” Am. J. Med. Genet. 44(2), 168–176 (1992).
[Crossref] [PubMed]

1991 (4)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

S. Miyagawa-Tomita, K. Waldo, H. Tomita, and M. L. Kirby, “Temporospatial study of the migration and distribution of cardiac neural crest in quail-chick chimeras,” Am. J. Anat. 192(1), 79–88 (1991).
[Crossref] [PubMed]

L. Leatherbury, D. M. Connuck, H. E. Gauldin, and M. L. Kirby, “Hemodynamic changes and compensatory mechanisms during early cardiogenesis after neural crest ablation in chick embryos,” Pediatr. Res. 30(6), 509–512 (1991).
[Crossref] [PubMed]

H. Tomita, D. M. Connuck, L. Leatherbury, and M. L. Kirby, “Relation of early hemodynamic changes to final cardiac phenotype and survival after neural crest ablation in chick embryos,” Circulation 84(3), 1289–1295 (1991).
[Crossref] [PubMed]

1990 (1)

L. Leatherbury, D. S. Braden, H. Tomita, H. E. Gauldin, and W. F. Jackson, “Hemodynamic changes. Wall stresses and pressure gradients in neural crest-ablated chick embryos,” Ann. N. Y. Acad. Sci. 588(1 Embryonic Ori), 305–313 (1990).
[Crossref] [PubMed]

1986 (1)

D. E. Stewart, M. L. Kirby, and K. K. Sulik, “Hemodynamic changes in chick embryos precede heart defects after cardiac neural crest ablation,” Circ. Res. 59(5), 545–550 (1986).
[Crossref] [PubMed]

1985 (1)

N. D. Harwood H, “Economic implications of the fetal alcohol syndrome,” Alcohol Health Res. World 10, 38–43 (1985).

1981 (1)

K. K. Sulik, M. C. Johnston, and M. A. Webb, “Fetal alcohol syndrome: embryogenesis in a mouse model,” Science 214(4523), 936–938 (1981).
[Crossref] [PubMed]

1975 (1)

C. S. Le Lièvre and N. M. Le Douarin, “Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos,” J. Embryol. Exp. Morphol. 34(1), 125–154 (1975).
[PubMed]

1951 (1)

V. Hamburger and H. L. Hamilton, “A series of normal stages in the development of the chick embryo,” J. Morphol. 88(1), 49–92 (1951).
[Crossref] [PubMed]

Abe, K.

A. Nomura-Kitabayashi, C. K. Phoon, S. Kishigami, J. Rosenthal, Y. Yamauchi, K. Abe, K. Yamamura, R. Samtani, C. W. Lo, and Y. Mishina, “Outflow tract cushions perform a critical valve-like function in the early embryonic heart requiring BMPRIA-mediated signaling in cardiac neural crest,” Am. J. Physiol. Heart Circ. Physiol. 297(5), H1617–H1628 (2009).
[Crossref] [PubMed]

Achtien, K. H.

A. Ramasubramanian, N. L. Nerurkar, K. H. Achtien, B. A. Filas, D. A. Voronov, and L. A. Taber, “On Modeling Morphogenesis of the Looping Heart Following Mechanical Perturbations,” J. Biomech. Eng. 130(6), 061018 (2008).
[Crossref] [PubMed]

Agrawal, A. K.

N. Hu, D. A. Christensen, A. K. Agrawal, C. Beaumont, E. B. Clark, and J. A. Hawkins, “Dependence of Aortic Arch Morphogenesis on Intracardiac Blood Flow in the Left Atrial Ligated Chick Embryo,” Anat. Rec. (Hoboken) 292(5), 652–660 (2009).
[Crossref] [PubMed]

Ahn, Y.-C.

Ainsworth, S. J.

S. J. Ainsworth, R. L. Stanley, and D. J. R. Evans, “Developmental stages of the Japanese quail,” J. Anat. 216(1), 3–15 (2010).
[Crossref] [PubMed]

Alati, R.

R. Alati, G. Davey Smith, S. J. Lewis, K. Sayal, E. S. Draper, J. Golding, R. Fraser, and R. Gray, “Effect of prenatal alcohol exposure on childhood academic outcomes: contrasting maternal and paternal associations in the ALSPAC study,” PLoS One 8(10), e74844 (2013).
[Crossref] [PubMed]

Alex, A.

J. Men, Y. Huang, J. Solanki, X. Zeng, A. Alex, J. Jerwick, Z. Zhang, R. E. Tanzi, A. Li, and C. Zhou, “Optical Coherence Tomography for Brain Imaging and Developmental Biology,” IEEE J. Sel. Top. Quantum Electron. 22(4), 120–132 (2016).
[Crossref] [PubMed]

Andersen, A. M.

A. M. Andersen, P. K. Andersen, J. Olsen, M. Grønbæk, and K. Strandberg-Larsen, “Moderate alcohol intake during pregnancy and risk of fetal death,” Int. J. Epidemiol. 41(2), 405–413 (2012).
[Crossref] [PubMed]

Andersen, P. E.

S. Marschall, B. Sander, M. Mogensen, T. M. Jørgensen, and P. E. Andersen, “Optical coherence tomography-current technology and applications in clinical and biomedical research,” Anal. Bioanal. Chem. 400(9), 2699–2720 (2011).
[Crossref] [PubMed]

Andersen, P. K.

A. M. Andersen, P. K. Andersen, J. Olsen, M. Grønbæk, and K. Strandberg-Larsen, “Moderate alcohol intake during pregnancy and risk of fetal death,” Int. J. Epidemiol. 41(2), 405–413 (2012).
[Crossref] [PubMed]

Autti-Rämö, I.

C. P. Klingenberg, L. Wetherill, J. Rogers, E. Moore, R. Ward, I. Autti-Rämö, A. Fagerlund, S. W. Jacobson, L. K. Robinson, H. E. Hoyme, S. N. Mattson, T. K. Li, E. P. Riley, T. Foroud, and CIFASD Consortium, “Prenatal alcohol exposure alters the patterns of facial asymmetry,” Alcohol 44(7-8), 649–657 (2010).
[Crossref] [PubMed]

Bachmann, A. H.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213 (2007).
[Crossref] [PubMed]

Bagnall, K. M.

J. Czarnobaj, K. M. Bagnall, J. S. Bamforth, and N. C. Milos, “The different effects on cranial and trunk neural crest cell behaviour following exposure to a low concentration of alcohol in vitro,” Arch. Oral Biol. 59(5), 500–512 (2014).
[Crossref] [PubMed]

Bahary, N.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Bailey, B. A.

B. A. Bailey and R. J. Sokol, “Prenatal alcohol exposure and miscarriage, stillbirth, preterm delivery, and sudden infant death syndrome,” Alcohol Res. Health 34(1), 86–91 (2011).
[PubMed]

Bamforth, J. S.

J. Czarnobaj, K. M. Bagnall, J. S. Bamforth, and N. C. Milos, “The different effects on cranial and trunk neural crest cell behaviour following exposure to a low concentration of alcohol in vitro,” Arch. Oral Biol. 59(5), 500–512 (2014).
[Crossref] [PubMed]

Barwick, L.

L. M. Peterson, M. W. Jenkins, S. Gu, L. Barwick, M. Watanabe, and A. M. Rollins, “4D shear stress maps of the developing heart using Doppler optical coherence tomography,” Biomed. Opt. Express 3(11), 3022–3032 (2012).
[Crossref] [PubMed]

L. M. Peterson, M. McPheeters, L. Barwick, S. Gu, A. M. Rollins, and M. W. Jenkins, “Altering embryonic cardiac dynamics with optical pacing,” in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012), 1382–1385.
[Crossref]

Battiato, N. L.

R. A. Rovasio and N. L. Battiato, “Ethanol induces morphological and dynamic changes on in vivo and in vitro neural crest cells,” Alcohol. Clin. Exp. Res. 26(8), 1286–1298 (2002).
[Crossref] [PubMed]

Beaumont, C.

N. Hu, D. A. Christensen, A. K. Agrawal, C. Beaumont, E. B. Clark, and J. A. Hawkins, “Dependence of Aortic Arch Morphogenesis on Intracardiac Blood Flow in the Left Atrial Ligated Chick Embryo,” Anat. Rec. (Hoboken) 292(5), 652–660 (2009).
[Crossref] [PubMed]

Bergwerff, M.

M. Bergwerff, M. E. Verberne, M. C. DeRuiter, R. E. Poelmann, and A. C. Gittenberger-de Groot, “Neural Crest Cell Contribution to the Developing Circulatory System: Implications for Vascular Morphology?” Circ. Res. 82(2), 221–231 (1998).
[Crossref] [PubMed]

Bhat, S.

S. Bhat, I. V. Larina, K. V. Larin, M. E. Dickinson, and M. Liebling, “4D reconstruction of the beating embryonic heart from two orthogonal sets of parallel optical coherence tomography slice-sequences,” IEEE Trans. Med. Imaging 32(3), 578–588 (2013).
[Crossref] [PubMed]

Blatter, C.

C. Blatter, S. Coquoz, B. Grajciar, A. S. G. Singh, M. Bonesi, R. M. Werkmeister, L. Schmetterer, and R. A. Leitgeb, “Dove prism based rotating dual beam bidirectional Doppler OCT,” Biomed. Opt. Express 4(7), 1188–1203 (2013).
[Crossref] [PubMed]

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213 (2007).
[Crossref] [PubMed]

Bloor, J. W.

A. Bradu, L. Ma, J. W. Bloor, and A. Podoleanu, “Dual optical coherence tomography/fluorescence microscopy for monitoring of Drosophila melanogaster larval heart,” J. Biophotonics 2(6-7), 380–388 (2009).
[Crossref] [PubMed]

Bodmer, R.

M. A. Choma, S. D. Izatt, R. J. Wessells, R. Bodmer, and J. A. Izatt, “Images in cardiovascular medicine: in vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography,” Circulation 114(2), e35–e36 (2006).
[Crossref] [PubMed]

Bonesi, M.

Boppart, S. A.

W. Luo, D. L. Marks, T. S. Ralston, and S. A. Boppart, “Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system,” J. Biomed. Opt. 11(2), 021014 (2006).
[Crossref] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 94(9), 4256–4261 (1997).
[Crossref] [PubMed]

S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Investigation of Developing Embryonic Morphology using Optical Coherence Tomography,” Dev. Biol. 177(1), 54–63 (1996).
[Crossref] [PubMed]

Boric, K.

K. Boric, P. Orio, T. Viéville, and K. Whitlock, “Quantitative Analysis of Cell Migration Using Optical Flow,” PLoS One 8(7), e69574 (2013).
[Crossref] [PubMed]

Boudoux, C.

R. Yelin, D. Yelin, W.-Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref] [PubMed]

Bouma, B. E.

R. Yelin, D. Yelin, W.-Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 94(9), 4256–4261 (1997).
[Crossref] [PubMed]

S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Investigation of Developing Embryonic Morphology using Optical Coherence Tomography,” Dev. Biol. 177(1), 54–63 (1996).
[Crossref] [PubMed]

Braden, D. S.

L. Leatherbury, D. S. Braden, H. Tomita, H. E. Gauldin, and W. F. Jackson, “Hemodynamic changes. Wall stresses and pressure gradients in neural crest-ablated chick embryos,” Ann. N. Y. Acad. Sci. 588(1 Embryonic Ori), 305–313 (1990).
[Crossref] [PubMed]

Bradu, A.

A. Bradu, L. Ma, J. W. Bloor, and A. Podoleanu, “Dual optical coherence tomography/fluorescence microscopy for monitoring of Drosophila melanogaster larval heart,” J. Biophotonics 2(6-7), 380–388 (2009).
[Crossref] [PubMed]

Brezinski, M. E.

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 94(9), 4256–4261 (1997).
[Crossref] [PubMed]

S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Investigation of Developing Embryonic Morphology using Optical Coherence Tomography,” Dev. Biol. 177(1), 54–63 (1996).
[Crossref] [PubMed]

Brinez, P.

M. Serrano, M. Han, P. Brinez, and K. K. Linask, “Fetal alcohol syndrome: cardiac birth defects in mice and prevention with folate,” Am. J. Obstet. Gynecol. 203(1), 75.e7 (2010).
[Crossref] [PubMed]

Burch, J.

K. Waldo, M. Zdanowicz, J. Burch, D. H. Kumiski, H. A. Stadt, R. E. Godt, T. L. Creazzo, and M. L. Kirby, “A novel role for cardiac neural crest in heart development,” J. Clin. Invest. 103(11), 1499–1507 (1999).
[Crossref] [PubMed]

Burch, J. L.

M. J. Farrell, J. L. Burch, K. Wallis, L. Rowley, D. Kumiski, H. Stadt, R. E. Godt, T. L. Creazzo, and M. L. Kirby, “FGF-8 in the ventral pharynx alters development of myocardial calcium transients after neural crest ablation,” J. Clin. Invest. 107(12), 1509–1517 (2001).
[Crossref] [PubMed]

Cable, A. E.

Carbajal, E. F.

I. V. Larina, E. F. Carbajal, V. V. Tuchin, M. E. Dickinson, and K. V. Larin, “Enhanced OCT imaging of embryonic tissue with optical clearing,” Laser Phys. Lett. 5(6), 476–479 (2008).
[Crossref]

Carmichael, S. L.

J. Grewal, S. L. Carmichael, C. Ma, E. J. Lammer, and G. M. Shaw, “Maternal periconceptional smoking and alcohol consumption and risk for select congenital anomalies,” Birth Defects Res. A Clin. Mol. Teratol. 82(7), 519–526 (2008).
[Crossref] [PubMed]

Cartwright, M. M.

M. M. Cartwright, L. L. Tessmer, and S. M. Smith, “Ethanol-induced neural crest apoptosis is coincident with their endogenous death, but is mechanistically distinct,” Alcohol. Clin. Exp. Res. 22(1), 142–149 (1998).
[Crossref] [PubMed]

M. M. Cartwright and S. M. Smith, “Increased cell death and reduced neural crest cell numbers in ethanol-exposed embryos: partial basis for the fetal alcohol syndrome phenotype,” Alcohol. Clin. Exp. Res. 19(2), 378–386 (1995).
[Crossref] [PubMed]

Chambers, C.

H. S. Feldman, K. L. Jones, S. Lindsay, D. Slymen, H. Klonoff-Cohen, K. Kao, S. Rao, and C. Chambers, “Prenatal alcohol exposure patterns and alcohol-related birth defects and growth deficiencies: a prospective study,” Alcohol. Clin. Exp. Res. 36(4), 670–676 (2012).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Charukamnoetkanok, P.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Chen, C.-Y.

W. J. Kowalski, N. C. Teslovich, C.-Y. Chen, B. B. Keller, and K. Pekkan, “Simultaneous real-time quantification of blood flow and vascular growth in the chick embryo using optical coherence tomography,” Proc. SPIE 8953, 895307 (2014).

Chen, Z.

Chivukula, V. K.

V. K. Chivukula, S. Goenezen, A. Liu, and S. Rugonyi, “Effect of Outflow Tract Banding on Embryonic Cardiac Hemodynamics,” J. Cardiovasc. Dev. Dis. 3(1), 1 (2015).
[Crossref] [PubMed]

Choma, M. A.

M. A. Choma, S. D. Izatt, R. J. Wessells, R. Bodmer, and J. A. Izatt, “Images in cardiovascular medicine: in vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography,” Circulation 114(2), e35–e36 (2006).
[Crossref] [PubMed]

T. M. Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby, and J. A. Izatt, “Optical Coherence Tomography A New High-Resolution Imaging Technology to Study Cardiac Development in Chick Embryos,” Circulation 106, 2771–2774 (2002).

Christensen, D. A.

N. Hu, D. A. Christensen, A. K. Agrawal, C. Beaumont, E. B. Clark, and J. A. Hawkins, “Dependence of Aortic Arch Morphogenesis on Intracardiac Blood Flow in the Left Atrial Ligated Chick Embryo,” Anat. Rec. (Hoboken) 292(5), 652–660 (2009).
[Crossref] [PubMed]

Clark, E. B.

N. Hu, D. A. Christensen, A. K. Agrawal, C. Beaumont, E. B. Clark, and J. A. Hawkins, “Dependence of Aortic Arch Morphogenesis on Intracardiac Blood Flow in the Left Atrial Ligated Chick Embryo,” Anat. Rec. (Hoboken) 292(5), 652–660 (2009).
[Crossref] [PubMed]

Connuck, D. M.

H. Tomita, D. M. Connuck, L. Leatherbury, and M. L. Kirby, “Relation of early hemodynamic changes to final cardiac phenotype and survival after neural crest ablation in chick embryos,” Circulation 84(3), 1289–1295 (1991).
[Crossref] [PubMed]

L. Leatherbury, D. M. Connuck, H. E. Gauldin, and M. L. Kirby, “Hemodynamic changes and compensatory mechanisms during early cardiogenesis after neural crest ablation in chick embryos,” Pediatr. Res. 30(6), 509–512 (1991).
[Crossref] [PubMed]

Coquoz, S.

Creazzo, T. L.

M. J. Farrell, J. L. Burch, K. Wallis, L. Rowley, D. Kumiski, H. Stadt, R. E. Godt, T. L. Creazzo, and M. L. Kirby, “FGF-8 in the ventral pharynx alters development of myocardial calcium transients after neural crest ablation,” J. Clin. Invest. 107(12), 1509–1517 (2001).
[Crossref] [PubMed]

K. Waldo, M. Zdanowicz, J. Burch, D. H. Kumiski, H. A. Stadt, R. E. Godt, T. L. Creazzo, and M. L. Kirby, “A novel role for cardiac neural crest in heart development,” J. Clin. Invest. 103(11), 1499–1507 (1999).
[Crossref] [PubMed]

Czarnobaj, J.

J. Czarnobaj, K. M. Bagnall, J. S. Bamforth, and N. C. Milos, “The different effects on cranial and trunk neural crest cell behaviour following exposure to a low concentration of alcohol in vitro,” Arch. Oral Biol. 59(5), 500–512 (2014).
[Crossref] [PubMed]

Davé, D. P.

Davey Smith, G.

R. Alati, G. Davey Smith, S. J. Lewis, K. Sayal, E. S. Draper, J. Golding, R. Fraser, and R. Gray, “Effect of prenatal alcohol exposure on childhood academic outcomes: contrasting maternal and paternal associations in the ALSPAC study,” PLoS One 8(10), e74844 (2013).
[Crossref] [PubMed]

Davis, A.

A. Davis, J. Izatt, and F. Rothenberg, “Quantitative Measurement of Blood Flow Dynamics in Embryonic Vasculature Using Spectral Doppler Velocimetry,” Anat. Rec. (Hoboken) 292(3), 311–319 (2009).
[Crossref] [PubMed]

Davis, A. M.

Deng, H.

DeRuiter, M. C.

B. Hogers, M. C. DeRuiter, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal,” Cardiovasc. Res. 41(1), 87–99 (1999).
[Crossref] [PubMed]

M. Bergwerff, M. E. Verberne, M. C. DeRuiter, R. E. Poelmann, and A. C. Gittenberger-de Groot, “Neural Crest Cell Contribution to the Developing Circulatory System: Implications for Vascular Morphology?” Circ. Res. 82(2), 221–231 (1998).
[Crossref] [PubMed]

B. Hogers, M. C. DeRuiter, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Unilateral Vitelline Vein Ligation Alters Intracardiac Blood Flow Patterns and Morphogenesis in the Chick Embryo,” Circ. Res. 80(4), 473–481 (1997).
[Crossref] [PubMed]

Dickinson, M. E.

R. Raghunathan, M. Singh, M. E. Dickinson, and K. V. Larin, “Optical coherence tomography for embryonic imaging: a review,” J. Biomed. Opt. 21(5), 050902 (2016).
[Crossref] [PubMed]

S. Bhat, I. V. Larina, K. V. Larin, M. E. Dickinson, and M. Liebling, “4D reconstruction of the beating embryonic heart from two orthogonal sets of parallel optical coherence tomography slice-sequences,” IEEE Trans. Med. Imaging 32(3), 578–588 (2013).
[Crossref] [PubMed]

I. V. Larina, S. Ivers, S. Syed, M. E. Dickinson, and K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34(7), 986–988 (2009).
[Crossref] [PubMed]

I. V. Larina, E. F. Carbajal, V. V. Tuchin, M. E. Dickinson, and K. V. Larin, “Enhanced OCT imaging of embryonic tissue with optical clearing,” Laser Phys. Lett. 5(6), 476–479 (2008).
[Crossref]

Dou, S.

Doughman, Y. Q.

G. Karunamuni, S. Gu, Y. Q. Doughman, A. I. Noonan, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure,” Dev. Dyn. 244(4), 607–618 (2015).
[Crossref] [PubMed]

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” Am. J. Physiol. Heart Circ. Physiol. 306(3), H414–H421 (2014).
[Crossref] [PubMed]

Doughman, Y.-Q.

S. Gu, M. W. Jenkins, L. M. Peterson, Y.-Q. Doughman, A. M. Rollins, and M. Watanabe, “Optical Coherence Tomography Captures Rapid Hemodynamic Responses to Acute Hypoxia in the Cardiovascular System of Early Embryos,” Dev. Dyn. 241(3), 534–544 (2012).
[Crossref] [PubMed]

Dragostinoff, N.

Draper, E. S.

R. Alati, G. Davey Smith, S. J. Lewis, K. Sayal, E. S. Draper, J. Golding, R. Fraser, and R. Gray, “Effect of prenatal alcohol exposure on childhood academic outcomes: contrasting maternal and paternal associations in the ALSPAC study,” PLoS One 8(10), e74844 (2013).
[Crossref] [PubMed]

Driscoll, D. A.

E. Goldmuntz, D. A. Driscoll, B. S. Emanuel, D. McDonald-McGinn, M. Mei, E. Zackai, and L. E. Mitchell, “Evaluation of potential modifiers of the cardiac phenotype in the 22q11.2 deletion syndrome,” Birth Defects Res. A Clin. Mol. Teratol. 85(2), 125–129 (2009).
[Crossref] [PubMed]

Dur, O.

W. J. Kowalski, O. Dur, Y. Wang, M. J. Patrick, J. P. Tinney, B. B. Keller, and K. Pekkan, “Critical transitions in early embryonic aortic arch patterning and hemodynamics,” PLoS One 8(3), e60271 (2013).
[Crossref] [PubMed]

Y. Wang, O. Dur, M. J. Patrick, J. P. Tinney, K. Tobita, B. B. Keller, and K. Pekkan, “Aortic arch morphogenesis and flow modeling in the chick embryo,” Ann. Biomed. Eng. 37(6), 1069–1081 (2009).
[Crossref] [PubMed]

Efimov, I. R.

B. A. Filas, I. R. Efimov, and L. A. Taber, “Optical coherence tomography as a tool for measuring morphogenetic deformation of the looping heart,” Anat. Rec. (Hoboken) 290(9), 1057–1068 (2007).
[Crossref] [PubMed]

M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, “4D embryonic cardiography using gated optical coherence tomography,” Opt. Express 14(2), 736–748 (2006).
[Crossref] [PubMed]

Emanuel, B. S.

E. Goldmuntz, D. A. Driscoll, B. S. Emanuel, D. McDonald-McGinn, M. Mei, E. Zackai, and L. E. Mitchell, “Evaluation of potential modifiers of the cardiac phenotype in the 22q11.2 deletion syndrome,” Birth Defects Res. A Clin. Mol. Teratol. 85(2), 125–129 (2009).
[Crossref] [PubMed]

Epstein, J. A.

F. A. High, M. Zhang, A. Proweller, L. Tu, M. S. Parmacek, W. S. Pear, and J. A. Epstein, “An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation,” J. Clin. Invest. 117(2), 353–363 (2007).
[Crossref] [PubMed]

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Evans, D. J. R.

S. J. Ainsworth, R. L. Stanley, and D. J. R. Evans, “Developmental stages of the Japanese quail,” J. Anat. 216(1), 3–15 (2010).
[Crossref] [PubMed]

Fabritius, T.

Fagerlund, A.

C. P. Klingenberg, L. Wetherill, J. Rogers, E. Moore, R. Ward, I. Autti-Rämö, A. Fagerlund, S. W. Jacobson, L. K. Robinson, H. E. Hoyme, S. N. Mattson, T. K. Li, E. P. Riley, T. Foroud, and CIFASD Consortium, “Prenatal alcohol exposure alters the patterns of facial asymmetry,” Alcohol 44(7-8), 649–657 (2010).
[Crossref] [PubMed]

Farrell, M. J.

M. J. Farrell, J. L. Burch, K. Wallis, L. Rowley, D. Kumiski, H. Stadt, R. E. Godt, T. L. Creazzo, and M. L. Kirby, “FGF-8 in the ventral pharynx alters development of myocardial calcium transients after neural crest ablation,” J. Clin. Invest. 107(12), 1509–1517 (2001).
[Crossref] [PubMed]

Feldman, H. S.

H. S. Feldman, K. L. Jones, S. Lindsay, D. Slymen, H. Klonoff-Cohen, K. Kao, S. Rao, and C. Chambers, “Prenatal alcohol exposure patterns and alcohol-related birth defects and growth deficiencies: a prospective study,” Alcohol. Clin. Exp. Res. 36(4), 670–676 (2012).
[Crossref] [PubMed]

Ferguson, R. D.

Ferrante, A. A.

Filas, B. A.

A. Ramasubramanian, N. L. Nerurkar, K. H. Achtien, B. A. Filas, D. A. Voronov, and L. A. Taber, “On Modeling Morphogenesis of the Looping Heart Following Mechanical Perturbations,” J. Biomech. Eng. 130(6), 061018 (2008).
[Crossref] [PubMed]

B. A. Filas, I. R. Efimov, and L. A. Taber, “Optical coherence tomography as a tool for measuring morphogenetic deformation of the looping heart,” Anat. Rec. (Hoboken) 290(9), 1057–1068 (2007).
[Crossref] [PubMed]

Finer, L. B.

L. B. Finer and M. R. Zolna, “Declines in Unintended Pregnancy in the United States, 2008-2011,” N. Engl. J. Med. 374(9), 843–852 (2016).
[Crossref] [PubMed]

Fisher, C. S.

D. S. Walker, C. S. Fisher, A. Sherman, B. Wybrecht, and K. Kyndely, “Fetal alcohol spectrum disorders prevention: an exploratory study of women’s use of, attitudes toward, and knowledge about alcohol,” J. Am. Acad. Nurse Pract. 17(5), 187–193 (2005).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Foroud, T.

C. P. Klingenberg, L. Wetherill, J. Rogers, E. Moore, R. Ward, I. Autti-Rämö, A. Fagerlund, S. W. Jacobson, L. K. Robinson, H. E. Hoyme, S. N. Mattson, T. K. Li, E. P. Riley, T. Foroud, and CIFASD Consortium, “Prenatal alcohol exposure alters the patterns of facial asymmetry,” Alcohol 44(7-8), 649–657 (2010).
[Crossref] [PubMed]

Forouhar, A. S.

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act Through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref] [PubMed]

Fraser, R.

R. Alati, G. Davey Smith, S. J. Lewis, K. Sayal, E. S. Draper, J. Golding, R. Fraser, and R. Gray, “Effect of prenatal alcohol exposure on childhood academic outcomes: contrasting maternal and paternal associations in the ALSPAC study,” PLoS One 8(10), e74844 (2013).
[Crossref] [PubMed]

Fraser, S. E.

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act Through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref] [PubMed]

Fujimoto, J. G.

B. Garita, M. W. Jenkins, M. Han, C. Zhou, M. Vanauker, A. M. Rollins, M. Watanabe, J. G. Fujimoto, and K. K. Linask, “Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping,” Am. J. Physiol. Heart Circ. Physiol. 300(3), H879–H891 (2011).
[Crossref] [PubMed]

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 94(9), 4256–4261 (1997).
[Crossref] [PubMed]

S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Investigation of Developing Embryonic Morphology using Optical Coherence Tomography,” Dev. Biol. 177(1), 54–63 (1996).
[Crossref] [PubMed]

Gabriele, M. L.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Garcia, M. D.

S. Wang, D. S. Lakomy, M. D. Garcia, A. L. Lopez, K. V. Larin, and I. V. Larina, “Four-dimensional live imaging of hemodynamics in mammalian embryonic heart with Doppler optical coherence tomography,” J. Biophotonics 9(8), 837–847 (2016).
[Crossref] [PubMed]

Gargesha, M.

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref] [PubMed]

M. Gargesha, M. W. Jenkins, D. L. Wilson, and A. M. Rollins, “High temporal resolution OCT using image-based retrospective gating,” Opt. Express 17(13), 10786–10799 (2009).
[Crossref] [PubMed]

Garita, B.

B. Garita, M. W. Jenkins, M. Han, C. Zhou, M. Vanauker, A. M. Rollins, M. Watanabe, J. G. Fujimoto, and K. K. Linask, “Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping,” Am. J. Physiol. Heart Circ. Physiol. 300(3), H879–H891 (2011).
[Crossref] [PubMed]

Gauldin, H. E.

L. Leatherbury, D. M. Connuck, H. E. Gauldin, and M. L. Kirby, “Hemodynamic changes and compensatory mechanisms during early cardiogenesis after neural crest ablation in chick embryos,” Pediatr. Res. 30(6), 509–512 (1991).
[Crossref] [PubMed]

L. Leatherbury, D. S. Braden, H. Tomita, H. E. Gauldin, and W. F. Jackson, “Hemodynamic changes. Wall stresses and pressure gradients in neural crest-ablated chick embryos,” Ann. N. Y. Acad. Sci. 588(1 Embryonic Ori), 305–313 (1990).
[Crossref] [PubMed]

Gharib, M.

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act Through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref] [PubMed]

Gittenberger-de Groot, A. C.

R. E. Poelmann and A. C. Gittenberger-de Groot, “A subpopulation of apoptosis-prone cardiac neural crest cells targets to the venous pole: multiple functions in heart development?” Dev. Biol. 207(2), 271–286 (1999).
[Crossref] [PubMed]

B. Hogers, M. C. DeRuiter, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal,” Cardiovasc. Res. 41(1), 87–99 (1999).
[Crossref] [PubMed]

M. Bergwerff, M. E. Verberne, M. C. DeRuiter, R. E. Poelmann, and A. C. Gittenberger-de Groot, “Neural Crest Cell Contribution to the Developing Circulatory System: Implications for Vascular Morphology?” Circ. Res. 82(2), 221–231 (1998).
[Crossref] [PubMed]

B. Hogers, M. C. DeRuiter, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Unilateral Vitelline Vein Ligation Alters Intracardiac Blood Flow Patterns and Morphogenesis in the Chick Embryo,” Circ. Res. 80(4), 473–481 (1997).
[Crossref] [PubMed]

Godt, R. E.

M. J. Farrell, J. L. Burch, K. Wallis, L. Rowley, D. Kumiski, H. Stadt, R. E. Godt, T. L. Creazzo, and M. L. Kirby, “FGF-8 in the ventral pharynx alters development of myocardial calcium transients after neural crest ablation,” J. Clin. Invest. 107(12), 1509–1517 (2001).
[Crossref] [PubMed]

K. Waldo, M. Zdanowicz, J. Burch, D. H. Kumiski, H. A. Stadt, R. E. Godt, T. L. Creazzo, and M. L. Kirby, “A novel role for cardiac neural crest in heart development,” J. Clin. Invest. 103(11), 1499–1507 (1999).
[Crossref] [PubMed]

Goenezen, S.

V. K. Chivukula, S. Goenezen, A. Liu, and S. Rugonyi, “Effect of Outflow Tract Banding on Embryonic Cardiac Hemodynamics,” J. Cardiovasc. Dev. Dis. 3(1), 1 (2015).
[Crossref] [PubMed]

Golding, J.

R. Alati, G. Davey Smith, S. J. Lewis, K. Sayal, E. S. Draper, J. Golding, R. Fraser, and R. Gray, “Effect of prenatal alcohol exposure on childhood academic outcomes: contrasting maternal and paternal associations in the ALSPAC study,” PLoS One 8(10), e74844 (2013).
[Crossref] [PubMed]

Goldmuntz, E.

E. Goldmuntz, D. A. Driscoll, B. S. Emanuel, D. McDonald-McGinn, M. Mei, E. Zackai, and L. E. Mitchell, “Evaluation of potential modifiers of the cardiac phenotype in the 22q11.2 deletion syndrome,” Birth Defects Res. A Clin. Mol. Teratol. 85(2), 125–129 (2009).
[Crossref] [PubMed]

Gordon, M.

Götzinger, E.

Grajciar, B.

Gray, R.

R. Alati, G. Davey Smith, S. J. Lewis, K. Sayal, E. S. Draper, J. Golding, R. Fraser, and R. Gray, “Effect of prenatal alcohol exposure on childhood academic outcomes: contrasting maternal and paternal associations in the ALSPAC study,” PLoS One 8(10), e74844 (2013).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grewal, J.

J. Grewal, S. L. Carmichael, C. Ma, E. J. Lammer, and G. M. Shaw, “Maternal periconceptional smoking and alcohol consumption and risk for select congenital anomalies,” Birth Defects Res. A Clin. Mol. Teratol. 82(7), 519–526 (2008).
[Crossref] [PubMed]

Groenendijk, B. C.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[Crossref] [PubMed]

Grønbæk, M.

A. M. Andersen, P. K. Andersen, J. Olsen, M. Grønbæk, and K. Strandberg-Larsen, “Moderate alcohol intake during pregnancy and risk of fetal death,” Int. J. Epidemiol. 41(2), 405–413 (2012).
[Crossref] [PubMed]

Gu, S.

P. Ma, S. Gu, G. H. Karunamuni, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Cardiac neural crest ablation results in early endocardial cushion and hemodynamic flow abnormalities,” Am. J. Physiol. Heart Circ. Physiol. 311(5), H1150–H1159 (2016).
[Crossref] [PubMed]

G. Karunamuni, S. Gu, Y. Q. Doughman, A. I. Noonan, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure,” Dev. Dyn. 244(4), 607–618 (2015).
[Crossref] [PubMed]

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” Am. J. Physiol. Heart Circ. Physiol. 306(3), H414–H421 (2014).
[Crossref] [PubMed]

G. H. Karunamuni, P. Ma, S. Gu, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function,” Birth Defects Res. C Embryo Today 102(3), 227–250 (2014).
[Crossref] [PubMed]

L. M. Peterson, S. Gu, M. W. Jenkins, and A. M. Rollins, “Orientation-independent rapid pulsatile flow measurement using dual-angle Doppler OCT,” Biomed. Opt. Express 5(2), 499–514 (2014).
[Crossref] [PubMed]

L. M. Peterson, M. W. Jenkins, S. Gu, L. Barwick, M. Watanabe, and A. M. Rollins, “4D shear stress maps of the developing heart using Doppler optical coherence tomography,” Biomed. Opt. Express 3(11), 3022–3032 (2012).
[Crossref] [PubMed]

S. Gu, M. W. Jenkins, L. M. Peterson, Y.-Q. Doughman, A. M. Rollins, and M. Watanabe, “Optical Coherence Tomography Captures Rapid Hemodynamic Responses to Acute Hypoxia in the Cardiovascular System of Early Embryos,” Dev. Dyn. 241(3), 534–544 (2012).
[Crossref] [PubMed]

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref] [PubMed]

L. M. Peterson, M. McPheeters, L. Barwick, S. Gu, A. M. Rollins, and M. W. Jenkins, “Altering embryonic cardiac dynamics with optical pacing,” in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012), 1382–1385.
[Crossref]

Guo, C.

Hamburger, V.

V. Hamburger and H. L. Hamilton, “A series of normal stages in the development of the chick embryo,” J. Morphol. 88(1), 49–92 (1951).
[Crossref] [PubMed]

Hamilton, H. L.

V. Hamburger and H. L. Hamilton, “A series of normal stages in the development of the chick embryo,” J. Morphol. 88(1), 49–92 (1951).
[Crossref] [PubMed]

Hammer, D. X.

Han, M.

B. Garita, M. W. Jenkins, M. Han, C. Zhou, M. Vanauker, A. M. Rollins, M. Watanabe, J. G. Fujimoto, and K. K. Linask, “Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping,” Am. J. Physiol. Heart Circ. Physiol. 300(3), H879–H891 (2011).
[Crossref] [PubMed]

M. Serrano, M. Han, P. Brinez, and K. K. Linask, “Fetal alcohol syndrome: cardiac birth defects in mice and prevention with folate,” Am. J. Obstet. Gynecol. 203(1), 75.e7 (2010).
[Crossref] [PubMed]

Hawkins, J. A.

N. Hu, D. A. Christensen, A. K. Agrawal, C. Beaumont, E. B. Clark, and J. A. Hawkins, “Dependence of Aortic Arch Morphogenesis on Intracardiac Blood Flow in the Left Atrial Ligated Chick Embryo,” Anat. Rec. (Hoboken) 292(5), 652–660 (2009).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hierck, B. P.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[Crossref] [PubMed]

High, F. A.

F. A. High, M. Zhang, A. Proweller, L. Tu, M. S. Parmacek, W. S. Pear, and J. A. Epstein, “An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation,” J. Clin. Invest. 117(2), 353–363 (2007).
[Crossref] [PubMed]

Hirakow, R.

T. Hiruma and R. Hirakow, “Formation of the pharyngeal arch arteries in the chick embryo. Observations of corrosion casts by scanning electron microscopy,” Anat. Embryol. (Berl.) 191(5), 415–423 (1995).
[Crossref] [PubMed]

Hiruma, T.

T. Hiruma, Y. Nakajima, and H. Nakamura, “Development of pharyngeal arch arteries in early mouse embryo,” J. Anat. 201(1), 15–29 (2002).
[Crossref] [PubMed]

T. Hiruma and R. Hirakow, “Formation of the pharyngeal arch arteries in the chick embryo. Observations of corrosion casts by scanning electron microscopy,” Anat. Embryol. (Berl.) 191(5), 415–423 (1995).
[Crossref] [PubMed]

Hitzenberger, C. K.

Hogers, B.

B. Hogers, M. C. DeRuiter, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal,” Cardiovasc. Res. 41(1), 87–99 (1999).
[Crossref] [PubMed]

B. Hogers, M. C. DeRuiter, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Unilateral Vitelline Vein Ligation Alters Intracardiac Blood Flow Patterns and Morphogenesis in the Chick Embryo,” Circ. Res. 80(4), 473–481 (1997).
[Crossref] [PubMed]

Hoyme, H. E.

C. P. Klingenberg, L. Wetherill, J. Rogers, E. Moore, R. Ward, I. Autti-Rämö, A. Fagerlund, S. W. Jacobson, L. K. Robinson, H. E. Hoyme, S. N. Mattson, T. K. Li, E. P. Riley, T. Foroud, and CIFASD Consortium, “Prenatal alcohol exposure alters the patterns of facial asymmetry,” Alcohol 44(7-8), 649–657 (2010).
[Crossref] [PubMed]

Hu, N.

N. Hu, D. A. Christensen, A. K. Agrawal, C. Beaumont, E. B. Clark, and J. A. Hawkins, “Dependence of Aortic Arch Morphogenesis on Intracardiac Blood Flow in the Left Atrial Ligated Chick Embryo,” Anat. Rec. (Hoboken) 292(5), 652–660 (2009).
[Crossref] [PubMed]

Hu, Z.

Huang, D.

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett. 32(5), 506–508 (2007).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, Y.

J. Men, Y. Huang, J. Solanki, X. Zeng, A. Alex, J. Jerwick, Z. Zhang, R. E. Tanzi, A. Li, and C. Zhou, “Optical Coherence Tomography for Brain Imaging and Developmental Biology,” IEEE J. Sel. Top. Quantum Electron. 22(4), 120–132 (2016).
[Crossref] [PubMed]

Hughes, T. J. R.

C. A. Taylor, T. J. R. Hughes, and C. K. Zarins, “Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis,” Ann. Biomed. Eng. 26(6), 975–987 (1998).
[Crossref] [PubMed]

Hutson, M. R.

A. Keyte and M. R. Hutson, “The Neural Crest in Cardiac Congenital Anomalies,” Differentiation; Research in Biological Diversity 84, 25–40 (2012).

M. L. Kirby and M. R. Hutson, “Factors controlling cardiac neural crest cell migration,” Cell Adhes. Migr. 4(4), 609–621 (2010).
[Crossref] [PubMed]

M. R. Hutson and M. L. Kirby, “Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations,” Semin. Cell Dev. Biol. 18(1), 101–110 (2007).
[Crossref] [PubMed]

Iftimia, N. V.

Ishikawa, H.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Ivers, S.

Izatt, J.

A. Davis, J. Izatt, and F. Rothenberg, “Quantitative Measurement of Blood Flow Dynamics in Embryonic Vasculature Using Spectral Doppler Velocimetry,” Anat. Rec. (Hoboken) 292(3), 311–319 (2009).
[Crossref] [PubMed]

S. Yazdanfar, M. Kulkarni, and J. Izatt, “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography,” Opt. Express 1(13), 424–431 (1997).
[Crossref] [PubMed]

Izatt, J. A.

A. M. Davis, F. G. Rothenberg, N. Shepherd, and J. A. Izatt, “In vivo spectral domain optical coherence tomography volumetric imaging and spectral Doppler velocimetry of early stage embryonic chicken heart development,” J. Opt. Soc. Am. A 25(12), 3134–3143 (2008).
[Crossref] [PubMed]

M. A. Choma, S. D. Izatt, R. J. Wessells, R. Bodmer, and J. A. Izatt, “Images in cardiovascular medicine: in vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography,” Circulation 114(2), e35–e36 (2006).
[Crossref] [PubMed]

T. M. Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby, and J. A. Izatt, “Optical Coherence Tomography A New High-Resolution Imaging Technology to Study Cardiac Development in Chick Embryos,” Circulation 106, 2771–2774 (2002).

T. G. van Leeuwen, M. D. Kulkarni, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography,” Opt. Lett. 24(22), 1584–1586 (1999).
[Crossref] [PubMed]

Izatt, S. D.

M. A. Choma, S. D. Izatt, R. J. Wessells, R. Bodmer, and J. A. Izatt, “Images in cardiovascular medicine: in vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography,” Circulation 114(2), e35–e36 (2006).
[Crossref] [PubMed]

Jackson, W. F.

L. Leatherbury, D. S. Braden, H. Tomita, H. E. Gauldin, and W. F. Jackson, “Hemodynamic changes. Wall stresses and pressure gradients in neural crest-ablated chick embryos,” Ann. N. Y. Acad. Sci. 588(1 Embryonic Ori), 305–313 (1990).
[Crossref] [PubMed]

Jacobson, S. W.

C. P. Klingenberg, L. Wetherill, J. Rogers, E. Moore, R. Ward, I. Autti-Rämö, A. Fagerlund, S. W. Jacobson, L. K. Robinson, H. E. Hoyme, S. N. Mattson, T. K. Li, E. P. Riley, T. Foroud, and CIFASD Consortium, “Prenatal alcohol exposure alters the patterns of facial asymmetry,” Alcohol 44(7-8), 649–657 (2010).
[Crossref] [PubMed]

Jenkins, M. W.

P. Ma, S. Gu, G. H. Karunamuni, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Cardiac neural crest ablation results in early endocardial cushion and hemodynamic flow abnormalities,” Am. J. Physiol. Heart Circ. Physiol. 311(5), H1150–H1159 (2016).
[Crossref] [PubMed]

G. Karunamuni, S. Gu, Y. Q. Doughman, A. I. Noonan, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure,” Dev. Dyn. 244(4), 607–618 (2015).
[Crossref] [PubMed]

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” Am. J. Physiol. Heart Circ. Physiol. 306(3), H414–H421 (2014).
[Crossref] [PubMed]

G. H. Karunamuni, P. Ma, S. Gu, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function,” Birth Defects Res. C Embryo Today 102(3), 227–250 (2014).
[Crossref] [PubMed]

L. M. Peterson, S. Gu, M. W. Jenkins, and A. M. Rollins, “Orientation-independent rapid pulsatile flow measurement using dual-angle Doppler OCT,” Biomed. Opt. Express 5(2), 499–514 (2014).
[Crossref] [PubMed]

L. M. Peterson, M. W. Jenkins, S. Gu, L. Barwick, M. Watanabe, and A. M. Rollins, “4D shear stress maps of the developing heart using Doppler optical coherence tomography,” Biomed. Opt. Express 3(11), 3022–3032 (2012).
[Crossref] [PubMed]

M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Longitudinal Imaging of Heart Development With Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1166–1175 (2012).
[Crossref] [PubMed]

S. Gu, M. W. Jenkins, L. M. Peterson, Y.-Q. Doughman, A. M. Rollins, and M. Watanabe, “Optical Coherence Tomography Captures Rapid Hemodynamic Responses to Acute Hypoxia in the Cardiovascular System of Early Embryos,” Dev. Dyn. 241(3), 534–544 (2012).
[Crossref] [PubMed]

B. Garita, M. W. Jenkins, M. Han, C. Zhou, M. Vanauker, A. M. Rollins, M. Watanabe, J. G. Fujimoto, and K. K. Linask, “Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping,” Am. J. Physiol. Heart Circ. Physiol. 300(3), H879–H891 (2011).
[Crossref] [PubMed]

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref] [PubMed]

M. Gargesha, M. W. Jenkins, D. L. Wilson, and A. M. Rollins, “High temporal resolution OCT using image-based retrospective gating,” Opt. Express 17(13), 10786–10799 (2009).
[Crossref] [PubMed]

M. W. Jenkins, P. Patel, H. Deng, M. M. Montano, M. Watanabe, and A. M. Rollins, “Phenotyping transgenic embryonic murine hearts using optical coherence tomography,” Appl. Opt. 46(10), 1776–1781 (2007).
[Crossref] [PubMed]

M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, “4D embryonic cardiography using gated optical coherence tomography,” Opt. Express 14(2), 736–748 (2006).
[Crossref] [PubMed]

L. M. Peterson, M. McPheeters, L. Barwick, S. Gu, A. M. Rollins, and M. W. Jenkins, “Altering embryonic cardiac dynamics with optical pacing,” in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012), 1382–1385.
[Crossref]

Jerwick, J.

J. Men, Y. Huang, J. Solanki, X. Zeng, A. Alex, J. Jerwick, Z. Zhang, R. E. Tanzi, A. Li, and C. Zhou, “Optical Coherence Tomography for Brain Imaging and Developmental Biology,” IEEE J. Sel. Top. Quantum Electron. 22(4), 120–132 (2016).
[Crossref] [PubMed]

Jiang, J. Y.

Johnston, M. C.

K. K. Sulik, M. C. Johnston, and M. A. Webb, “Fetal alcohol syndrome: embryogenesis in a mouse model,” Science 214(4523), 936–938 (1981).
[Crossref] [PubMed]

Jones, K. L.

H. S. Feldman, K. L. Jones, S. Lindsay, D. Slymen, H. Klonoff-Cohen, K. Kao, S. Rao, and C. Chambers, “Prenatal alcohol exposure patterns and alcohol-related birth defects and growth deficiencies: a prospective study,” Alcohol. Clin. Exp. Res. 36(4), 670–676 (2012).
[Crossref] [PubMed]

Jørgensen, T. M.

S. Marschall, B. Sander, M. Mogensen, T. M. Jørgensen, and P. E. Andersen, “Optical coherence tomography-current technology and applications in clinical and biomedical research,” Anal. Bioanal. Chem. 400(9), 2699–2720 (2011).
[Crossref] [PubMed]

Jung, W.

Kagemann, L.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Kao, K.

H. S. Feldman, K. L. Jones, S. Lindsay, D. Slymen, H. Klonoff-Cohen, K. Kao, S. Rao, and C. Chambers, “Prenatal alcohol exposure patterns and alcohol-related birth defects and growth deficiencies: a prospective study,” Alcohol. Clin. Exp. Res. 36(4), 670–676 (2012).
[Crossref] [PubMed]

Karunamuni, G.

G. Karunamuni, S. Gu, Y. Q. Doughman, A. I. Noonan, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure,” Dev. Dyn. 244(4), 607–618 (2015).
[Crossref] [PubMed]

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” Am. J. Physiol. Heart Circ. Physiol. 306(3), H414–H421 (2014).
[Crossref] [PubMed]

Karunamuni, G. H.

P. Ma, S. Gu, G. H. Karunamuni, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Cardiac neural crest ablation results in early endocardial cushion and hemodynamic flow abnormalities,” Am. J. Physiol. Heart Circ. Physiol. 311(5), H1150–H1159 (2016).
[Crossref] [PubMed]

G. H. Karunamuni, P. Ma, S. Gu, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function,” Birth Defects Res. C Embryo Today 102(3), 227–250 (2014).
[Crossref] [PubMed]

Keller, B. B.

W. J. Kowalski, N. C. Teslovich, C.-Y. Chen, B. B. Keller, and K. Pekkan, “Simultaneous real-time quantification of blood flow and vascular growth in the chick embryo using optical coherence tomography,” Proc. SPIE 8953, 895307 (2014).

W. J. Kowalski, O. Dur, Y. Wang, M. J. Patrick, J. P. Tinney, B. B. Keller, and K. Pekkan, “Critical transitions in early embryonic aortic arch patterning and hemodynamics,” PLoS One 8(3), e60271 (2013).
[Crossref] [PubMed]

Y. Wang, O. Dur, M. J. Patrick, J. P. Tinney, K. Tobita, B. B. Keller, and K. Pekkan, “Aortic arch morphogenesis and flow modeling in the chick embryo,” Ann. Biomed. Eng. 37(6), 1069–1081 (2009).
[Crossref] [PubMed]

Keyte, A.

A. Keyte and M. R. Hutson, “The Neural Crest in Cardiac Congenital Anomalies,” Differentiation; Research in Biological Diversity 84, 25–40 (2012).

Kiger, K. T.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[Crossref] [PubMed]

Kirby, M. L.

M. L. Kirby and M. R. Hutson, “Factors controlling cardiac neural crest cell migration,” Cell Adhes. Migr. 4(4), 609–621 (2010).
[Crossref] [PubMed]

M. R. Hutson and M. L. Kirby, “Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations,” Semin. Cell Dev. Biol. 18(1), 101–110 (2007).
[Crossref] [PubMed]

T. M. Yelbuz, K. L. Waldo, D. H. Kumiski, H. A. Stadt, R. R. Wolfe, L. Leatherbury, and M. L. Kirby, “Shortened outflow tract leads to altered cardiac looping after neural crest ablation,” Circulation 106(4), 504–510 (2002).
[Crossref] [PubMed]

T. M. Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby, and J. A. Izatt, “Optical Coherence Tomography A New High-Resolution Imaging Technology to Study Cardiac Development in Chick Embryos,” Circulation 106, 2771–2774 (2002).

M. J. Farrell, J. L. Burch, K. Wallis, L. Rowley, D. Kumiski, H. Stadt, R. E. Godt, T. L. Creazzo, and M. L. Kirby, “FGF-8 in the ventral pharynx alters development of myocardial calcium transients after neural crest ablation,” J. Clin. Invest. 107(12), 1509–1517 (2001).
[Crossref] [PubMed]

K. Waldo, M. Zdanowicz, J. Burch, D. H. Kumiski, H. A. Stadt, R. E. Godt, T. L. Creazzo, and M. L. Kirby, “A novel role for cardiac neural crest in heart development,” J. Clin. Invest. 103(11), 1499–1507 (1999).
[Crossref] [PubMed]

K. L. Waldo and M. L. Kirby, “Cardiac neural crest contribution to the pulmonary artery and sixth aortic arch artery complex in chick embryos aged 6 to 18 days,” Anat. Rec. 237(3), 385–399 (1993).
[Crossref] [PubMed]

S. Miyagawa-Tomita, K. Waldo, H. Tomita, and M. L. Kirby, “Temporospatial study of the migration and distribution of cardiac neural crest in quail-chick chimeras,” Am. J. Anat. 192(1), 79–88 (1991).
[Crossref] [PubMed]

H. Tomita, D. M. Connuck, L. Leatherbury, and M. L. Kirby, “Relation of early hemodynamic changes to final cardiac phenotype and survival after neural crest ablation in chick embryos,” Circulation 84(3), 1289–1295 (1991).
[Crossref] [PubMed]

L. Leatherbury, D. M. Connuck, H. E. Gauldin, and M. L. Kirby, “Hemodynamic changes and compensatory mechanisms during early cardiogenesis after neural crest ablation in chick embryos,” Pediatr. Res. 30(6), 509–512 (1991).
[Crossref] [PubMed]

D. E. Stewart, M. L. Kirby, and K. K. Sulik, “Hemodynamic changes in chick embryos precede heart defects after cardiac neural crest ablation,” Circ. Res. 59(5), 545–550 (1986).
[Crossref] [PubMed]

Kishigami, S.

A. Nomura-Kitabayashi, C. K. Phoon, S. Kishigami, J. Rosenthal, Y. Yamauchi, K. Abe, K. Yamamura, R. Samtani, C. W. Lo, and Y. Mishina, “Outflow tract cushions perform a critical valve-like function in the early embryonic heart requiring BMPRIA-mediated signaling in cardiac neural crest,” Am. J. Physiol. Heart Circ. Physiol. 297(5), H1617–H1628 (2009).
[Crossref] [PubMed]

Klingenberg, C. P.

C. P. Klingenberg, L. Wetherill, J. Rogers, E. Moore, R. Ward, I. Autti-Rämö, A. Fagerlund, S. W. Jacobson, L. K. Robinson, H. E. Hoyme, S. N. Mattson, T. K. Li, E. P. Riley, T. Foroud, and CIFASD Consortium, “Prenatal alcohol exposure alters the patterns of facial asymmetry,” Alcohol 44(7-8), 649–657 (2010).
[Crossref] [PubMed]

Klonoff-Cohen, H.

H. S. Feldman, K. L. Jones, S. Lindsay, D. Slymen, H. Klonoff-Cohen, K. Kao, S. Rao, and C. Chambers, “Prenatal alcohol exposure patterns and alcohol-related birth defects and growth deficiencies: a prospective study,” Alcohol. Clin. Exp. Res. 36(4), 670–676 (2012).
[Crossref] [PubMed]

Kotch, L. E.

L. E. Kotch and K. K. Sulik, “Experimental fetal alcohol syndrome: proposed pathogenic basis for a variety of associated facial and brain anomalies,” Am. J. Med. Genet. 44(2), 168–176 (1992).
[Crossref] [PubMed]

Kowalski, W. J.

W. J. Kowalski, N. C. Teslovich, C.-Y. Chen, B. B. Keller, and K. Pekkan, “Simultaneous real-time quantification of blood flow and vascular growth in the chick embryo using optical coherence tomography,” Proc. SPIE 8953, 895307 (2014).

W. J. Kowalski, O. Dur, Y. Wang, M. J. Patrick, J. P. Tinney, B. B. Keller, and K. Pekkan, “Critical transitions in early embryonic aortic arch patterning and hemodynamics,” PLoS One 8(3), e60271 (2013).
[Crossref] [PubMed]

Kulkarni, M.

Kulkarni, M. D.

Kumiski, D.

M. J. Farrell, J. L. Burch, K. Wallis, L. Rowley, D. Kumiski, H. Stadt, R. E. Godt, T. L. Creazzo, and M. L. Kirby, “FGF-8 in the ventral pharynx alters development of myocardial calcium transients after neural crest ablation,” J. Clin. Invest. 107(12), 1509–1517 (2001).
[Crossref] [PubMed]

Kumiski, D. H.

T. M. Yelbuz, K. L. Waldo, D. H. Kumiski, H. A. Stadt, R. R. Wolfe, L. Leatherbury, and M. L. Kirby, “Shortened outflow tract leads to altered cardiac looping after neural crest ablation,” Circulation 106(4), 504–510 (2002).
[Crossref] [PubMed]

K. Waldo, M. Zdanowicz, J. Burch, D. H. Kumiski, H. A. Stadt, R. E. Godt, T. L. Creazzo, and M. L. Kirby, “A novel role for cardiac neural crest in heart development,” J. Clin. Invest. 103(11), 1499–1507 (1999).
[Crossref] [PubMed]

Kyndely, K.

D. S. Walker, C. S. Fisher, A. Sherman, B. Wybrecht, and K. Kyndely, “Fetal alcohol spectrum disorders prevention: an exploratory study of women’s use of, attitudes toward, and knowledge about alcohol,” J. Am. Acad. Nurse Pract. 17(5), 187–193 (2005).
[Crossref] [PubMed]

Lakomy, D. S.

S. Wang, D. S. Lakomy, M. D. Garcia, A. L. Lopez, K. V. Larin, and I. V. Larina, “Four-dimensional live imaging of hemodynamics in mammalian embryonic heart with Doppler optical coherence tomography,” J. Biophotonics 9(8), 837–847 (2016).
[Crossref] [PubMed]

Lammer, E. J.

J. Grewal, S. L. Carmichael, C. Ma, E. J. Lammer, and G. M. Shaw, “Maternal periconceptional smoking and alcohol consumption and risk for select congenital anomalies,” Birth Defects Res. A Clin. Mol. Teratol. 82(7), 519–526 (2008).
[Crossref] [PubMed]

Larin, K. V.

S. Wang, D. S. Lakomy, M. D. Garcia, A. L. Lopez, K. V. Larin, and I. V. Larina, “Four-dimensional live imaging of hemodynamics in mammalian embryonic heart with Doppler optical coherence tomography,” J. Biophotonics 9(8), 837–847 (2016).
[Crossref] [PubMed]

R. Raghunathan, M. Singh, M. E. Dickinson, and K. V. Larin, “Optical coherence tomography for embryonic imaging: a review,” J. Biomed. Opt. 21(5), 050902 (2016).
[Crossref] [PubMed]

S. Wang, M. Singh, A. L. Lopez, C. Wu, R. Raghunathan, A. Schill, J. Li, K. V. Larin, and I. V. Larina, “Direct four-dimensional structural and functional imaging of cardiovascular dynamics in mouse embryos with 1.5 MHz optical coherence tomography,” Opt. Lett. 40(20), 4791–4794 (2015).
[Crossref] [PubMed]

S. Bhat, I. V. Larina, K. V. Larin, M. E. Dickinson, and M. Liebling, “4D reconstruction of the beating embryonic heart from two orthogonal sets of parallel optical coherence tomography slice-sequences,” IEEE Trans. Med. Imaging 32(3), 578–588 (2013).
[Crossref] [PubMed]

I. V. Larina, S. Ivers, S. Syed, M. E. Dickinson, and K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34(7), 986–988 (2009).
[Crossref] [PubMed]

I. V. Larina, E. F. Carbajal, V. V. Tuchin, M. E. Dickinson, and K. V. Larin, “Enhanced OCT imaging of embryonic tissue with optical clearing,” Laser Phys. Lett. 5(6), 476–479 (2008).
[Crossref]

Larina, I. V.

S. Wang, D. S. Lakomy, M. D. Garcia, A. L. Lopez, K. V. Larin, and I. V. Larina, “Four-dimensional live imaging of hemodynamics in mammalian embryonic heart with Doppler optical coherence tomography,” J. Biophotonics 9(8), 837–847 (2016).
[Crossref] [PubMed]

S. Wang, M. Singh, A. L. Lopez, C. Wu, R. Raghunathan, A. Schill, J. Li, K. V. Larin, and I. V. Larina, “Direct four-dimensional structural and functional imaging of cardiovascular dynamics in mouse embryos with 1.5 MHz optical coherence tomography,” Opt. Lett. 40(20), 4791–4794 (2015).
[Crossref] [PubMed]

S. Bhat, I. V. Larina, K. V. Larin, M. E. Dickinson, and M. Liebling, “4D reconstruction of the beating embryonic heart from two orthogonal sets of parallel optical coherence tomography slice-sequences,” IEEE Trans. Med. Imaging 32(3), 578–588 (2013).
[Crossref] [PubMed]

I. V. Larina, S. Ivers, S. Syed, M. E. Dickinson, and K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34(7), 986–988 (2009).
[Crossref] [PubMed]

I. V. Larina, E. F. Carbajal, V. V. Tuchin, M. E. Dickinson, and K. V. Larin, “Enhanced OCT imaging of embryonic tissue with optical clearing,” Laser Phys. Lett. 5(6), 476–479 (2008).
[Crossref]

Larsen, H. E.

L. Thrane, H. E. Larsen, K. Norozi, F. Pedersen, J. B. Thomsen, M. Trojer, and T. M. Yelbuz, “Field programmable gate-array-based real-time optical Doppler tomography system for in vivo imaging of cardiac dynamics in the chick embryo,” Optice 48, 023201 (2009).

Lasser, T.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213 (2007).
[Crossref] [PubMed]

Le Douarin, N. M.

C. S. Le Lièvre and N. M. Le Douarin, “Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos,” J. Embryol. Exp. Morphol. 34(1), 125–154 (1975).
[PubMed]

Le Lièvre, C. S.

C. S. Le Lièvre and N. M. Le Douarin, “Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos,” J. Embryol. Exp. Morphol. 34(1), 125–154 (1975).
[PubMed]

Leatherbury, L.

T. M. Yelbuz, K. L. Waldo, D. H. Kumiski, H. A. Stadt, R. R. Wolfe, L. Leatherbury, and M. L. Kirby, “Shortened outflow tract leads to altered cardiac looping after neural crest ablation,” Circulation 106(4), 504–510 (2002).
[Crossref] [PubMed]

L. Leatherbury, D. M. Connuck, H. E. Gauldin, and M. L. Kirby, “Hemodynamic changes and compensatory mechanisms during early cardiogenesis after neural crest ablation in chick embryos,” Pediatr. Res. 30(6), 509–512 (1991).
[Crossref] [PubMed]

H. Tomita, D. M. Connuck, L. Leatherbury, and M. L. Kirby, “Relation of early hemodynamic changes to final cardiac phenotype and survival after neural crest ablation in chick embryos,” Circulation 84(3), 1289–1295 (1991).
[Crossref] [PubMed]

L. Leatherbury, D. S. Braden, H. Tomita, H. E. Gauldin, and W. F. Jackson, “Hemodynamic changes. Wall stresses and pressure gradients in neural crest-ablated chick embryos,” Ann. N. Y. Acad. Sci. 588(1 Embryonic Ori), 305–313 (1990).
[Crossref] [PubMed]

Leitgeb, R. A.

Lewis, S. J.

R. Alati, G. Davey Smith, S. J. Lewis, K. Sayal, E. S. Draper, J. Golding, R. Fraser, and R. Gray, “Effect of prenatal alcohol exposure on childhood academic outcomes: contrasting maternal and paternal associations in the ALSPAC study,” PLoS One 8(10), e74844 (2013).
[Crossref] [PubMed]

Li, A.

J. Men, Y. Huang, J. Solanki, X. Zeng, A. Alex, J. Jerwick, Z. Zhang, R. E. Tanzi, A. Li, and C. Zhou, “Optical Coherence Tomography for Brain Imaging and Developmental Biology,” IEEE J. Sel. Top. Quantum Electron. 22(4), 120–132 (2016).
[Crossref] [PubMed]

Li, J.

Li, P.

P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt. 17(9), 096006 (2012).
[Crossref] [PubMed]

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling,” PLoS One 7(7), e40869 (2012).
[Crossref] [PubMed]

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol. 56(22), 7081–7092 (2011).
[Crossref] [PubMed]

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol. 56(22), 7081–7092 (2011).
[Crossref] [PubMed]

Li, T. K.

C. P. Klingenberg, L. Wetherill, J. Rogers, E. Moore, R. Ward, I. Autti-Rämö, A. Fagerlund, S. W. Jacobson, L. K. Robinson, H. E. Hoyme, S. N. Mattson, T. K. Li, E. P. Riley, T. Foroud, and CIFASD Consortium, “Prenatal alcohol exposure alters the patterns of facial asymmetry,” Alcohol 44(7-8), 649–657 (2010).
[Crossref] [PubMed]

Liebling, M.

S. Bhat, I. V. Larina, K. V. Larin, M. E. Dickinson, and M. Liebling, “4D reconstruction of the beating embryonic heart from two orthogonal sets of parallel optical coherence tomography slice-sequences,” IEEE Trans. Med. Imaging 32(3), 578–588 (2013).
[Crossref] [PubMed]

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act Through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Linask, K. K.

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” Am. J. Physiol. Heart Circ. Physiol. 306(3), H414–H421 (2014).
[Crossref] [PubMed]

B. Garita, M. W. Jenkins, M. Han, C. Zhou, M. Vanauker, A. M. Rollins, M. Watanabe, J. G. Fujimoto, and K. K. Linask, “Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping,” Am. J. Physiol. Heart Circ. Physiol. 300(3), H879–H891 (2011).
[Crossref] [PubMed]

M. Serrano, M. Han, P. Brinez, and K. K. Linask, “Fetal alcohol syndrome: cardiac birth defects in mice and prevention with folate,” Am. J. Obstet. Gynecol. 203(1), 75.e7 (2010).
[Crossref] [PubMed]

Lindken, R.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[Crossref] [PubMed]

Lindsay, S.

H. S. Feldman, K. L. Jones, S. Lindsay, D. Slymen, H. Klonoff-Cohen, K. Kao, S. Rao, and C. Chambers, “Prenatal alcohol exposure patterns and alcohol-related birth defects and growth deficiencies: a prospective study,” Alcohol. Clin. Exp. Res. 36(4), 670–676 (2012).
[Crossref] [PubMed]

Liu, A.

V. K. Chivukula, S. Goenezen, A. Liu, and S. Rugonyi, “Effect of Outflow Tract Banding on Embryonic Cardiac Hemodynamics,” J. Cardiovasc. Dev. Dis. 3(1), 1 (2015).
[Crossref] [PubMed]

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling,” PLoS One 7(7), e40869 (2012).
[Crossref] [PubMed]

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol. 56(22), 7081–7092 (2011).
[Crossref] [PubMed]

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol. 56(22), 7081–7092 (2011).
[Crossref] [PubMed]

Z. Ma, A. Liu, X. Yin, A. Troyer, K. Thornburg, R. K. Wang, and S. Rugonyi, “Measurement of absolute blood flow velocity in outflow tract of HH18 chicken embryo based on 4D reconstruction using spectral domain optical coherence tomography,” Biomed. Opt. Express 1(3), 798–811 (2010).
[Crossref] [PubMed]

S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref] [PubMed]

Liu, G.

Liu, J.

Lo, C. W.

A. Nomura-Kitabayashi, C. K. Phoon, S. Kishigami, J. Rosenthal, Y. Yamauchi, K. Abe, K. Yamamura, R. Samtani, C. W. Lo, and Y. Mishina, “Outflow tract cushions perform a critical valve-like function in the early embryonic heart requiring BMPRIA-mediated signaling in cardiac neural crest,” Am. J. Physiol. Heart Circ. Physiol. 297(5), H1617–H1628 (2009).
[Crossref] [PubMed]

Lo, S.

Lopez, A. L.

S. Wang, D. S. Lakomy, M. D. Garcia, A. L. Lopez, K. V. Larin, and I. V. Larina, “Four-dimensional live imaging of hemodynamics in mammalian embryonic heart with Doppler optical coherence tomography,” J. Biophotonics 9(8), 837–847 (2016).
[Crossref] [PubMed]

S. Wang, M. Singh, A. L. Lopez, C. Wu, R. Raghunathan, A. Schill, J. Li, K. V. Larin, and I. V. Larina, “Direct four-dimensional structural and functional imaging of cardiovascular dynamics in mouse embryos with 1.5 MHz optical coherence tomography,” Opt. Lett. 40(20), 4791–4794 (2015).
[Crossref] [PubMed]

Luo, W.

W. Luo, D. L. Marks, T. S. Ralston, and S. A. Boppart, “Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system,” J. Biomed. Opt. 11(2), 021014 (2006).
[Crossref] [PubMed]

Ma, C.

J. Grewal, S. L. Carmichael, C. Ma, E. J. Lammer, and G. M. Shaw, “Maternal periconceptional smoking and alcohol consumption and risk for select congenital anomalies,” Birth Defects Res. A Clin. Mol. Teratol. 82(7), 519–526 (2008).
[Crossref] [PubMed]

Ma, L.

A. Bradu, L. Ma, J. W. Bloor, and A. Podoleanu, “Dual optical coherence tomography/fluorescence microscopy for monitoring of Drosophila melanogaster larval heart,” J. Biophotonics 2(6-7), 380–388 (2009).
[Crossref] [PubMed]

Ma, P.

P. Ma, S. Gu, G. H. Karunamuni, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Cardiac neural crest ablation results in early endocardial cushion and hemodynamic flow abnormalities,” Am. J. Physiol. Heart Circ. Physiol. 311(5), H1150–H1159 (2016).
[Crossref] [PubMed]

G. H. Karunamuni, P. Ma, S. Gu, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function,” Birth Defects Res. C Embryo Today 102(3), 227–250 (2014).
[Crossref] [PubMed]

Ma, Z.

Mai, K.

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” Am. J. Physiol. Heart Circ. Physiol. 306(3), H414–H421 (2014).
[Crossref] [PubMed]

Makita, S.

Mariampillai, A.

Marks, D. L.

W. Luo, D. L. Marks, T. S. Ralston, and S. A. Boppart, “Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system,” J. Biomed. Opt. 11(2), 021014 (2006).
[Crossref] [PubMed]

Marschall, S.

S. Marschall, B. Sander, M. Mogensen, T. M. Jørgensen, and P. E. Andersen, “Optical coherence tomography-current technology and applications in clinical and biomedical research,” Anal. Bioanal. Chem. 400(9), 2699–2720 (2011).
[Crossref] [PubMed]

Mattson, S. N.

C. P. Klingenberg, L. Wetherill, J. Rogers, E. Moore, R. Ward, I. Autti-Rämö, A. Fagerlund, S. W. Jacobson, L. K. Robinson, H. E. Hoyme, S. N. Mattson, T. K. Li, E. P. Riley, T. Foroud, and CIFASD Consortium, “Prenatal alcohol exposure alters the patterns of facial asymmetry,” Alcohol 44(7-8), 649–657 (2010).
[Crossref] [PubMed]

McDonald-McGinn, D.

E. Goldmuntz, D. A. Driscoll, B. S. Emanuel, D. McDonald-McGinn, M. Mei, E. Zackai, and L. E. Mitchell, “Evaluation of potential modifiers of the cardiac phenotype in the 22q11.2 deletion syndrome,” Birth Defects Res. A Clin. Mol. Teratol. 85(2), 125–129 (2009).
[Crossref] [PubMed]

McHale, Q.

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” Am. J. Physiol. Heart Circ. Physiol. 306(3), H414–H421 (2014).
[Crossref] [PubMed]

McPheeters, M.

L. M. Peterson, M. McPheeters, L. Barwick, S. Gu, A. M. Rollins, and M. W. Jenkins, “Altering embryonic cardiac dynamics with optical pacing,” in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012), 1382–1385.
[Crossref]

Mei, M.

E. Goldmuntz, D. A. Driscoll, B. S. Emanuel, D. McDonald-McGinn, M. Mei, E. Zackai, and L. E. Mitchell, “Evaluation of potential modifiers of the cardiac phenotype in the 22q11.2 deletion syndrome,” Birth Defects Res. A Clin. Mol. Teratol. 85(2), 125–129 (2009).
[Crossref] [PubMed]

Men, J.

J. Men, Y. Huang, J. Solanki, X. Zeng, A. Alex, J. Jerwick, Z. Zhang, R. E. Tanzi, A. Li, and C. Zhou, “Optical Coherence Tomography for Brain Imaging and Developmental Biology,” IEEE J. Sel. Top. Quantum Electron. 22(4), 120–132 (2016).
[Crossref] [PubMed]

Michaely, R.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213 (2007).
[Crossref] [PubMed]

Milner, T. E.

Milos, N. C.

J. Czarnobaj, K. M. Bagnall, J. S. Bamforth, and N. C. Milos, “The different effects on cranial and trunk neural crest cell behaviour following exposure to a low concentration of alcohol in vitro,” Arch. Oral Biol. 59(5), 500–512 (2014).
[Crossref] [PubMed]

Mishina, Y.

A. Nomura-Kitabayashi, C. K. Phoon, S. Kishigami, J. Rosenthal, Y. Yamauchi, K. Abe, K. Yamamura, R. Samtani, C. W. Lo, and Y. Mishina, “Outflow tract cushions perform a critical valve-like function in the early embryonic heart requiring BMPRIA-mediated signaling in cardiac neural crest,” Am. J. Physiol. Heart Circ. Physiol. 297(5), H1617–H1628 (2009).
[Crossref] [PubMed]

Mitchell, L. E.

E. Goldmuntz, D. A. Driscoll, B. S. Emanuel, D. McDonald-McGinn, M. Mei, E. Zackai, and L. E. Mitchell, “Evaluation of potential modifiers of the cardiac phenotype in the 22q11.2 deletion syndrome,” Birth Defects Res. A Clin. Mol. Teratol. 85(2), 125–129 (2009).
[Crossref] [PubMed]

Miyagawa-Tomita, S.

S. Miyagawa-Tomita, K. Waldo, H. Tomita, and M. L. Kirby, “Temporospatial study of the migration and distribution of cardiac neural crest in quail-chick chimeras,” Am. J. Anat. 192(1), 79–88 (1991).
[Crossref] [PubMed]

Mogensen, M.

S. Marschall, B. Sander, M. Mogensen, T. M. Jørgensen, and P. E. Andersen, “Optical coherence tomography-current technology and applications in clinical and biomedical research,” Anal. Bioanal. Chem. 400(9), 2699–2720 (2011).
[Crossref] [PubMed]

Mok, A.

Montano, M. M.

Moore, E.

C. P. Klingenberg, L. Wetherill, J. Rogers, E. Moore, R. Ward, I. Autti-Rämö, A. Fagerlund, S. W. Jacobson, L. K. Robinson, H. E. Hoyme, S. N. Mattson, T. K. Li, E. P. Riley, T. Foroud, and CIFASD Consortium, “Prenatal alcohol exposure alters the patterns of facial asymmetry,” Alcohol 44(7-8), 649–657 (2010).
[Crossref] [PubMed]

Mujat, M.

Munce, N. R.

Nakajima, Y.

T. Hiruma, Y. Nakajima, and H. Nakamura, “Development of pharyngeal arch arteries in early mouse embryo,” J. Anat. 201(1), 15–29 (2002).
[Crossref] [PubMed]

Nakamura, H.

T. Hiruma, Y. Nakajima, and H. Nakamura, “Development of pharyngeal arch arteries in early mouse embryo,” J. Anat. 201(1), 15–29 (2002).
[Crossref] [PubMed]

Nerurkar, N. L.

A. Ramasubramanian, N. L. Nerurkar, K. H. Achtien, B. A. Filas, D. A. Voronov, and L. A. Taber, “On Modeling Morphogenesis of the Looping Heart Following Mechanical Perturbations,” J. Biomech. Eng. 130(6), 061018 (2008).
[Crossref] [PubMed]

Nikolski, V. P.

Nomura-Kitabayashi, A.

A. Nomura-Kitabayashi, C. K. Phoon, S. Kishigami, J. Rosenthal, Y. Yamauchi, K. Abe, K. Yamamura, R. Samtani, C. W. Lo, and Y. Mishina, “Outflow tract cushions perform a critical valve-like function in the early embryonic heart requiring BMPRIA-mediated signaling in cardiac neural crest,” Am. J. Physiol. Heart Circ. Physiol. 297(5), H1617–H1628 (2009).
[Crossref] [PubMed]

Noonan, A. I.

G. Karunamuni, S. Gu, Y. Q. Doughman, A. I. Noonan, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure,” Dev. Dyn. 244(4), 607–618 (2015).
[Crossref] [PubMed]

Norozi, K.

L. Thrane, H. E. Larsen, K. Norozi, F. Pedersen, J. B. Thomsen, M. Trojer, and T. M. Yelbuz, “Field programmable gate-array-based real-time optical Doppler tomography system for in vivo imaging of cardiac dynamics in the chick embryo,” Optice 48, 023201 (2009).

Oh, W.-Y.

R. Yelin, D. Yelin, W.-Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref] [PubMed]

Olsen, J.

A. M. Andersen, P. K. Andersen, J. Olsen, M. Grønbæk, and K. Strandberg-Larsen, “Moderate alcohol intake during pregnancy and risk of fetal death,” Int. J. Epidemiol. 41(2), 405–413 (2012).
[Crossref] [PubMed]

Orio, P.

K. Boric, P. Orio, T. Viéville, and K. Whitlock, “Quantitative Analysis of Cell Migration Using Optical Flow,” PLoS One 8(7), e69574 (2013).
[Crossref] [PubMed]

Parmacek, M. S.

F. A. High, M. Zhang, A. Proweller, L. Tu, M. S. Parmacek, W. S. Pear, and J. A. Epstein, “An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation,” J. Clin. Invest. 117(2), 353–363 (2007).
[Crossref] [PubMed]

Patel, P.

Patrick, M. J.

W. J. Kowalski, O. Dur, Y. Wang, M. J. Patrick, J. P. Tinney, B. B. Keller, and K. Pekkan, “Critical transitions in early embryonic aortic arch patterning and hemodynamics,” PLoS One 8(3), e60271 (2013).
[Crossref] [PubMed]

Y. Wang, O. Dur, M. J. Patrick, J. P. Tinney, K. Tobita, B. B. Keller, and K. Pekkan, “Aortic arch morphogenesis and flow modeling in the chick embryo,” Ann. Biomed. Eng. 37(6), 1069–1081 (2009).
[Crossref] [PubMed]

Pear, W. S.

F. A. High, M. Zhang, A. Proweller, L. Tu, M. S. Parmacek, W. S. Pear, and J. A. Epstein, “An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation,” J. Clin. Invest. 117(2), 353–363 (2007).
[Crossref] [PubMed]

Pedersen, C. J.

Pedersen, F.

L. Thrane, H. E. Larsen, K. Norozi, F. Pedersen, J. B. Thomsen, M. Trojer, and T. M. Yelbuz, “Field programmable gate-array-based real-time optical Doppler tomography system for in vivo imaging of cardiac dynamics in the chick embryo,” Optice 48, 023201 (2009).

Pekar, J.

Pekkan, K.

W. J. Kowalski, N. C. Teslovich, C.-Y. Chen, B. B. Keller, and K. Pekkan, “Simultaneous real-time quantification of blood flow and vascular growth in the chick embryo using optical coherence tomography,” Proc. SPIE 8953, 895307 (2014).

W. J. Kowalski, O. Dur, Y. Wang, M. J. Patrick, J. P. Tinney, B. B. Keller, and K. Pekkan, “Critical transitions in early embryonic aortic arch patterning and hemodynamics,” PLoS One 8(3), e60271 (2013).
[Crossref] [PubMed]

Y. Wang, O. Dur, M. J. Patrick, J. P. Tinney, K. Tobita, B. B. Keller, and K. Pekkan, “Aortic arch morphogenesis and flow modeling in the chick embryo,” Ann. Biomed. Eng. 37(6), 1069–1081 (2009).
[Crossref] [PubMed]

Peterson, L.

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref] [PubMed]

Peterson, L. M.

L. M. Peterson, S. Gu, M. W. Jenkins, and A. M. Rollins, “Orientation-independent rapid pulsatile flow measurement using dual-angle Doppler OCT,” Biomed. Opt. Express 5(2), 499–514 (2014).
[Crossref] [PubMed]

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” Am. J. Physiol. Heart Circ. Physiol. 306(3), H414–H421 (2014).
[Crossref] [PubMed]

S. Gu, M. W. Jenkins, L. M. Peterson, Y.-Q. Doughman, A. M. Rollins, and M. Watanabe, “Optical Coherence Tomography Captures Rapid Hemodynamic Responses to Acute Hypoxia in the Cardiovascular System of Early Embryos,” Dev. Dyn. 241(3), 534–544 (2012).
[Crossref] [PubMed]

L. M. Peterson, M. W. Jenkins, S. Gu, L. Barwick, M. Watanabe, and A. M. Rollins, “4D shear stress maps of the developing heart using Doppler optical coherence tomography,” Biomed. Opt. Express 3(11), 3022–3032 (2012).
[Crossref] [PubMed]

L. M. Peterson, M. McPheeters, L. Barwick, S. Gu, A. M. Rollins, and M. W. Jenkins, “Altering embryonic cardiac dynamics with optical pacing,” in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012), 1382–1385.
[Crossref]

Phoon, C. K.

A. Nomura-Kitabayashi, C. K. Phoon, S. Kishigami, J. Rosenthal, Y. Yamauchi, K. Abe, K. Yamamura, R. Samtani, C. W. Lo, and Y. Mishina, “Outflow tract cushions perform a critical valve-like function in the early embryonic heart requiring BMPRIA-mediated signaling in cardiac neural crest,” Am. J. Physiol. Heart Circ. Physiol. 297(5), H1617–H1628 (2009).
[Crossref] [PubMed]

Pircher, M.

Plummer, D.

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act Through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref] [PubMed]

Podoleanu, A.

A. Bradu, L. Ma, J. W. Bloor, and A. Podoleanu, “Dual optical coherence tomography/fluorescence microscopy for monitoring of Drosophila melanogaster larval heart,” J. Biophotonics 2(6-7), 380–388 (2009).
[Crossref] [PubMed]

Poelmann, R. E.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[Crossref] [PubMed]

B. Hogers, M. C. DeRuiter, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal,” Cardiovasc. Res. 41(1), 87–99 (1999).
[Crossref] [PubMed]

R. E. Poelmann and A. C. Gittenberger-de Groot, “A subpopulation of apoptosis-prone cardiac neural crest cells targets to the venous pole: multiple functions in heart development?” Dev. Biol. 207(2), 271–286 (1999).
[Crossref] [PubMed]

M. Bergwerff, M. E. Verberne, M. C. DeRuiter, R. E. Poelmann, and A. C. Gittenberger-de Groot, “Neural Crest Cell Contribution to the Developing Circulatory System: Implications for Vascular Morphology?” Circ. Res. 82(2), 221–231 (1998).
[Crossref] [PubMed]

B. Hogers, M. C. DeRuiter, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Unilateral Vitelline Vein Ligation Alters Intracardiac Blood Flow Patterns and Morphogenesis in the Chick Embryo,” Circ. Res. 80(4), 473–481 (1997).
[Crossref] [PubMed]

Proweller, A.

F. A. High, M. Zhang, A. Proweller, L. Tu, M. S. Parmacek, W. S. Pear, and J. A. Epstein, “An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation,” J. Clin. Invest. 117(2), 353–363 (2007).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Qi, B.

Raghunathan, R.

Ralston, T. S.

W. Luo, D. L. Marks, T. S. Ralston, and S. A. Boppart, “Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system,” J. Biomed. Opt. 11(2), 021014 (2006).
[Crossref] [PubMed]

Ramasubramanian, A.

A. Ramasubramanian, N. L. Nerurkar, K. H. Achtien, B. A. Filas, D. A. Voronov, and L. A. Taber, “On Modeling Morphogenesis of the Looping Heart Following Mechanical Perturbations,” J. Biomech. Eng. 130(6), 061018 (2008).
[Crossref] [PubMed]

Randall, C.

Rao, S.

H. S. Feldman, K. L. Jones, S. Lindsay, D. Slymen, H. Klonoff-Cohen, K. Kao, S. Rao, and C. Chambers, “Prenatal alcohol exposure patterns and alcohol-related birth defects and growth deficiencies: a prospective study,” Alcohol. Clin. Exp. Res. 36(4), 670–676 (2012).
[Crossref] [PubMed]

Riley, E. P.

C. P. Klingenberg, L. Wetherill, J. Rogers, E. Moore, R. Ward, I. Autti-Rämö, A. Fagerlund, S. W. Jacobson, L. K. Robinson, H. E. Hoyme, S. N. Mattson, T. K. Li, E. P. Riley, T. Foroud, and CIFASD Consortium, “Prenatal alcohol exposure alters the patterns of facial asymmetry,” Alcohol 44(7-8), 649–657 (2010).
[Crossref] [PubMed]

Robinson, L. K.

C. P. Klingenberg, L. Wetherill, J. Rogers, E. Moore, R. Ward, I. Autti-Rämö, A. Fagerlund, S. W. Jacobson, L. K. Robinson, H. E. Hoyme, S. N. Mattson, T. K. Li, E. P. Riley, T. Foroud, and CIFASD Consortium, “Prenatal alcohol exposure alters the patterns of facial asymmetry,” Alcohol 44(7-8), 649–657 (2010).
[Crossref] [PubMed]

Rogers, J.

C. P. Klingenberg, L. Wetherill, J. Rogers, E. Moore, R. Ward, I. Autti-Rämö, A. Fagerlund, S. W. Jacobson, L. K. Robinson, H. E. Hoyme, S. N. Mattson, T. K. Li, E. P. Riley, T. Foroud, and CIFASD Consortium, “Prenatal alcohol exposure alters the patterns of facial asymmetry,” Alcohol 44(7-8), 649–657 (2010).
[Crossref] [PubMed]

Rollins, A.

Rollins, A. M.

P. Ma, S. Gu, G. H. Karunamuni, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Cardiac neural crest ablation results in early endocardial cushion and hemodynamic flow abnormalities,” Am. J. Physiol. Heart Circ. Physiol. 311(5), H1150–H1159 (2016).
[Crossref] [PubMed]

G. Karunamuni, S. Gu, Y. Q. Doughman, A. I. Noonan, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure,” Dev. Dyn. 244(4), 607–618 (2015).
[Crossref] [PubMed]

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” Am. J. Physiol. Heart Circ. Physiol. 306(3), H414–H421 (2014).
[Crossref] [PubMed]

G. H. Karunamuni, P. Ma, S. Gu, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function,” Birth Defects Res. C Embryo Today 102(3), 227–250 (2014).
[Crossref] [PubMed]

L. M. Peterson, S. Gu, M. W. Jenkins, and A. M. Rollins, “Orientation-independent rapid pulsatile flow measurement using dual-angle Doppler OCT,” Biomed. Opt. Express 5(2), 499–514 (2014).
[Crossref] [PubMed]

L. M. Peterson, M. W. Jenkins, S. Gu, L. Barwick, M. Watanabe, and A. M. Rollins, “4D shear stress maps of the developing heart using Doppler optical coherence tomography,” Biomed. Opt. Express 3(11), 3022–3032 (2012).
[Crossref] [PubMed]

M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Longitudinal Imaging of Heart Development With Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1166–1175 (2012).
[Crossref] [PubMed]

S. Gu, M. W. Jenkins, L. M. Peterson, Y.-Q. Doughman, A. M. Rollins, and M. Watanabe, “Optical Coherence Tomography Captures Rapid Hemodynamic Responses to Acute Hypoxia in the Cardiovascular System of Early Embryos,” Dev. Dyn. 241(3), 534–544 (2012).
[Crossref] [PubMed]

B. Garita, M. W. Jenkins, M. Han, C. Zhou, M. Vanauker, A. M. Rollins, M. Watanabe, J. G. Fujimoto, and K. K. Linask, “Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping,” Am. J. Physiol. Heart Circ. Physiol. 300(3), H879–H891 (2011).
[Crossref] [PubMed]

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref] [PubMed]

M. Gargesha, M. W. Jenkins, D. L. Wilson, and A. M. Rollins, “High temporal resolution OCT using image-based retrospective gating,” Opt. Express 17(13), 10786–10799 (2009).
[Crossref] [PubMed]

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett. 32(5), 506–508 (2007).
[Crossref] [PubMed]

M. W. Jenkins, P. Patel, H. Deng, M. M. Montano, M. Watanabe, and A. M. Rollins, “Phenotyping transgenic embryonic murine hearts using optical coherence tomography,” Appl. Opt. 46(10), 1776–1781 (2007).
[Crossref] [PubMed]

M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, “4D embryonic cardiography using gated optical coherence tomography,” Opt. Express 14(2), 736–748 (2006).
[Crossref] [PubMed]

T. G. van Leeuwen, M. D. Kulkarni, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography,” Opt. Lett. 24(22), 1584–1586 (1999).
[Crossref] [PubMed]

L. M. Peterson, M. McPheeters, L. Barwick, S. Gu, A. M. Rollins, and M. W. Jenkins, “Altering embryonic cardiac dynamics with optical pacing,” in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012), 1382–1385.
[Crossref]

Rosenthal, J.

A. Nomura-Kitabayashi, C. K. Phoon, S. Kishigami, J. Rosenthal, Y. Yamauchi, K. Abe, K. Yamamura, R. Samtani, C. W. Lo, and Y. Mishina, “Outflow tract cushions perform a critical valve-like function in the early embryonic heart requiring BMPRIA-mediated signaling in cardiac neural crest,” Am. J. Physiol. Heart Circ. Physiol. 297(5), H1617–H1628 (2009).
[Crossref] [PubMed]

Rothenberg, F.

A. Davis, J. Izatt, and F. Rothenberg, “Quantitative Measurement of Blood Flow Dynamics in Embryonic Vasculature Using Spectral Doppler Velocimetry,” Anat. Rec. (Hoboken) 292(3), 311–319 (2009).
[Crossref] [PubMed]

M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, “4D embryonic cardiography using gated optical coherence tomography,” Opt. Express 14(2), 736–748 (2006).
[Crossref] [PubMed]

Rothenberg, F. G.

Rovasio, R. A.

R. A. Rovasio and N. L. Battiato, “Ethanol induces morphological and dynamic changes on in vivo and in vitro neural crest cells,” Alcohol. Clin. Exp. Res. 26(8), 1286–1298 (2002).
[Crossref] [PubMed]

Rowley, L.

M. J. Farrell, J. L. Burch, K. Wallis, L. Rowley, D. Kumiski, H. Stadt, R. E. Godt, T. L. Creazzo, and M. L. Kirby, “FGF-8 in the ventral pharynx alters development of myocardial calcium transients after neural crest ablation,” J. Clin. Invest. 107(12), 1509–1517 (2001).
[Crossref] [PubMed]

Roy, D.

Rugonyi, S.

V. K. Chivukula, S. Goenezen, A. Liu, and S. Rugonyi, “Effect of Outflow Tract Banding on Embryonic Cardiac Hemodynamics,” J. Cardiovasc. Dev. Dis. 3(1), 1 (2015).
[Crossref] [PubMed]

P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt. 17(9), 096006 (2012).
[Crossref] [PubMed]

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling,” PLoS One 7(7), e40869 (2012).
[Crossref] [PubMed]

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol. 56(22), 7081–7092 (2011).
[Crossref] [PubMed]

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol. 56(22), 7081–7092 (2011).
[Crossref] [PubMed]

Z. Ma, A. Liu, X. Yin, A. Troyer, K. Thornburg, R. K. Wang, and S. Rugonyi, “Measurement of absolute blood flow velocity in outflow tract of HH18 chicken embryo based on 4D reconstruction using spectral domain optical coherence tomography,” Biomed. Opt. Express 1(3), 798–811 (2010).
[Crossref] [PubMed]

S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref] [PubMed]

Samtani, R.

A. Nomura-Kitabayashi, C. K. Phoon, S. Kishigami, J. Rosenthal, Y. Yamauchi, K. Abe, K. Yamamura, R. Samtani, C. W. Lo, and Y. Mishina, “Outflow tract cushions perform a critical valve-like function in the early embryonic heart requiring BMPRIA-mediated signaling in cardiac neural crest,” Am. J. Physiol. Heart Circ. Physiol. 297(5), H1617–H1628 (2009).
[Crossref] [PubMed]

Sander, B.

S. Marschall, B. Sander, M. Mogensen, T. M. Jørgensen, and P. E. Andersen, “Optical coherence tomography-current technology and applications in clinical and biomedical research,” Anal. Bioanal. Chem. 400(9), 2699–2720 (2011).
[Crossref] [PubMed]

Sayal, K.

R. Alati, G. Davey Smith, S. J. Lewis, K. Sayal, E. S. Draper, J. Golding, R. Fraser, and R. Gray, “Effect of prenatal alcohol exposure on childhood academic outcomes: contrasting maternal and paternal associations in the ALSPAC study,” PLoS One 8(10), e74844 (2013).
[Crossref] [PubMed]

Schill, A.

Schmetterer, L.

Schuman, J. S.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Seng-Yue, E.

Serrano, M.

M. Serrano, M. Han, P. Brinez, and K. K. Linask, “Fetal alcohol syndrome: cardiac birth defects in mice and prevention with folate,” Am. J. Obstet. Gynecol. 203(1), 75.e7 (2010).
[Crossref] [PubMed]

Shaut, C.

S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref] [PubMed]

Shaw, G. M.

J. Grewal, S. L. Carmichael, C. Ma, E. J. Lammer, and G. M. Shaw, “Maternal periconceptional smoking and alcohol consumption and risk for select congenital anomalies,” Birth Defects Res. A Clin. Mol. Teratol. 82(7), 519–526 (2008).
[Crossref] [PubMed]

Shepherd, N.

Sherman, A.

D. S. Walker, C. S. Fisher, A. Sherman, B. Wybrecht, and K. Kyndely, “Fetal alcohol spectrum disorders prevention: an exploratory study of women’s use of, attitudes toward, and knowledge about alcohol,” J. Am. Acad. Nurse Pract. 17(5), 187–193 (2005).
[Crossref] [PubMed]

Shi, L.

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling,” PLoS One 7(7), e40869 (2012).
[Crossref] [PubMed]

P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt. 17(9), 096006 (2012).
[Crossref] [PubMed]

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol. 56(22), 7081–7092 (2011).
[Crossref] [PubMed]

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol. 56(22), 7081–7092 (2011).
[Crossref] [PubMed]

Shure, M. A.

Singh, A. S. G.

Singh, M.

Slymen, D.

H. S. Feldman, K. L. Jones, S. Lindsay, D. Slymen, H. Klonoff-Cohen, K. Kao, S. Rao, and C. Chambers, “Prenatal alcohol exposure patterns and alcohol-related birth defects and growth deficiencies: a prospective study,” Alcohol. Clin. Exp. Res. 36(4), 670–676 (2012).
[Crossref] [PubMed]

Smith, S. M.

M. M. Cartwright, L. L. Tessmer, and S. M. Smith, “Ethanol-induced neural crest apoptosis is coincident with their endogenous death, but is mechanistically distinct,” Alcohol. Clin. Exp. Res. 22(1), 142–149 (1998).
[Crossref] [PubMed]

M. M. Cartwright and S. M. Smith, “Increased cell death and reduced neural crest cell numbers in ethanol-exposed embryos: partial basis for the fetal alcohol syndrome phenotype,” Alcohol. Clin. Exp. Res. 19(2), 378–386 (1995).
[Crossref] [PubMed]

Sokol, R. J.

B. A. Bailey and R. J. Sokol, “Prenatal alcohol exposure and miscarriage, stillbirth, preterm delivery, and sudden infant death syndrome,” Alcohol Res. Health 34(1), 86–91 (2011).
[PubMed]

Solanki, J.

J. Men, Y. Huang, J. Solanki, X. Zeng, A. Alex, J. Jerwick, Z. Zhang, R. E. Tanzi, A. Li, and C. Zhou, “Optical Coherence Tomography for Brain Imaging and Developmental Biology,” IEEE J. Sel. Top. Quantum Electron. 22(4), 120–132 (2016).
[Crossref] [PubMed]

Southern, J. F.

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 94(9), 4256–4261 (1997).
[Crossref] [PubMed]

Stadt, H.

M. J. Farrell, J. L. Burch, K. Wallis, L. Rowley, D. Kumiski, H. Stadt, R. E. Godt, T. L. Creazzo, and M. L. Kirby, “FGF-8 in the ventral pharynx alters development of myocardial calcium transients after neural crest ablation,” J. Clin. Invest. 107(12), 1509–1517 (2001).
[Crossref] [PubMed]

Stadt, H. A.

T. M. Yelbuz, K. L. Waldo, D. H. Kumiski, H. A. Stadt, R. R. Wolfe, L. Leatherbury, and M. L. Kirby, “Shortened outflow tract leads to altered cardiac looping after neural crest ablation,” Circulation 106(4), 504–510 (2002).
[Crossref] [PubMed]

K. Waldo, M. Zdanowicz, J. Burch, D. H. Kumiski, H. A. Stadt, R. E. Godt, T. L. Creazzo, and M. L. Kirby, “A novel role for cardiac neural crest in heart development,” J. Clin. Invest. 103(11), 1499–1507 (1999).
[Crossref] [PubMed]

Standish, B. A.

Stanley, R. L.

S. J. Ainsworth, R. L. Stanley, and D. J. R. Evans, “Developmental stages of the Japanese quail,” J. Anat. 216(1), 3–15 (2010).
[Crossref] [PubMed]

Stekelenburg-de Vos, S.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[Crossref] [PubMed]

Stewart, D. E.

D. E. Stewart, M. L. Kirby, and K. K. Sulik, “Hemodynamic changes in chick embryos precede heart defects after cardiac neural crest ablation,” Circ. Res. 59(5), 545–550 (1986).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Strandberg-Larsen, K.

A. M. Andersen, P. K. Andersen, J. Olsen, M. Grønbæk, and K. Strandberg-Larsen, “Moderate alcohol intake during pregnancy and risk of fetal death,” Int. J. Epidemiol. 41(2), 405–413 (2012).
[Crossref] [PubMed]

Sulik, K. K.

L. E. Kotch and K. K. Sulik, “Experimental fetal alcohol syndrome: proposed pathogenic basis for a variety of associated facial and brain anomalies,” Am. J. Med. Genet. 44(2), 168–176 (1992).
[Crossref] [PubMed]

D. E. Stewart, M. L. Kirby, and K. K. Sulik, “Hemodynamic changes in chick embryos precede heart defects after cardiac neural crest ablation,” Circ. Res. 59(5), 545–550 (1986).
[Crossref] [PubMed]

K. K. Sulik, M. C. Johnston, and M. A. Webb, “Fetal alcohol syndrome: embryogenesis in a mouse model,” Science 214(4523), 936–938 (1981).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Syed, S.

Taber, L. A.

A. Ramasubramanian, N. L. Nerurkar, K. H. Achtien, B. A. Filas, D. A. Voronov, and L. A. Taber, “On Modeling Morphogenesis of the Looping Heart Following Mechanical Perturbations,” J. Biomech. Eng. 130(6), 061018 (2008).
[Crossref] [PubMed]

B. A. Filas, I. R. Efimov, and L. A. Taber, “Optical coherence tomography as a tool for measuring morphogenetic deformation of the looping heart,” Anat. Rec. (Hoboken) 290(9), 1057–1068 (2007).
[Crossref] [PubMed]

Tam, P. P.

P. A. Trainor and P. P. Tam, “Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches,” Development 121(8), 2569–2582 (1995).
[PubMed]

Tanzi, R. E.

J. Men, Y. Huang, J. Solanki, X. Zeng, A. Alex, J. Jerwick, Z. Zhang, R. E. Tanzi, A. Li, and C. Zhou, “Optical Coherence Tomography for Brain Imaging and Developmental Biology,” IEEE J. Sel. Top. Quantum Electron. 22(4), 120–132 (2016).
[Crossref] [PubMed]

Tao, X.

Z. Ma and X. Tao, “Two wavelength spectral domain optical coherence tomography systems for early stage chicken embryonic heart imaging,” in 2012 IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS) Proceedings, 2012), 13–16.
[Crossref]

Taylor, C. A.

C. A. Taylor, T. J. R. Hughes, and C. K. Zarins, “Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis,” Ann. Biomed. Eng. 26(6), 975–987 (1998).
[Crossref] [PubMed]

Tearney, G. J.

R. Yelin, D. Yelin, W.-Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 94(9), 4256–4261 (1997).
[Crossref] [PubMed]

S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Investigation of Developing Embryonic Morphology using Optical Coherence Tomography,” Dev. Biol. 177(1), 54–63 (1996).
[Crossref] [PubMed]

ten Hagen, T. L.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[Crossref] [PubMed]

Teslovich, N. C.

W. J. Kowalski, N. C. Teslovich, C.-Y. Chen, B. B. Keller, and K. Pekkan, “Simultaneous real-time quantification of blood flow and vascular growth in the chick embryo using optical coherence tomography,” Proc. SPIE 8953, 895307 (2014).

Tessmer, L. L.

M. M. Cartwright, L. L. Tessmer, and S. M. Smith, “Ethanol-induced neural crest apoptosis is coincident with their endogenous death, but is mechanistically distinct,” Alcohol. Clin. Exp. Res. 22(1), 142–149 (1998).
[Crossref] [PubMed]

Thomsen, J. B.

L. Thrane, H. E. Larsen, K. Norozi, F. Pedersen, J. B. Thomsen, M. Trojer, and T. M. Yelbuz, “Field programmable gate-array-based real-time optical Doppler tomography system for in vivo imaging of cardiac dynamics in the chick embryo,” Optice 48, 023201 (2009).

Thornburg, K.

Z. Ma, A. Liu, X. Yin, A. Troyer, K. Thornburg, R. K. Wang, and S. Rugonyi, “Measurement of absolute blood flow velocity in outflow tract of HH18 chicken embryo based on 4D reconstruction using spectral domain optical coherence tomography,” Biomed. Opt. Express 1(3), 798–811 (2010).
[Crossref] [PubMed]

S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref] [PubMed]

Thornburg, K. L.

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling,” PLoS One 7(7), e40869 (2012).
[Crossref] [PubMed]

Thrane, L.

L. Thrane, H. E. Larsen, K. Norozi, F. Pedersen, J. B. Thomsen, M. Trojer, and T. M. Yelbuz, “Field programmable gate-array-based real-time optical Doppler tomography system for in vivo imaging of cardiac dynamics in the chick embryo,” Optice 48, 023201 (2009).

T. M. Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby, and J. A. Izatt, “Optical Coherence Tomography A New High-Resolution Imaging Technology to Study Cardiac Development in Chick Embryos,” Circulation 106, 2771–2774 (2002).

Tinney, J. P.

W. J. Kowalski, O. Dur, Y. Wang, M. J. Patrick, J. P. Tinney, B. B. Keller, and K. Pekkan, “Critical transitions in early embryonic aortic arch patterning and hemodynamics,” PLoS One 8(3), e60271 (2013).
[Crossref] [PubMed]

Y. Wang, O. Dur, M. J. Patrick, J. P. Tinney, K. Tobita, B. B. Keller, and K. Pekkan, “Aortic arch morphogenesis and flow modeling in the chick embryo,” Ann. Biomed. Eng. 37(6), 1069–1081 (2009).
[Crossref] [PubMed]

Tobita, K.

Y. Wang, O. Dur, M. J. Patrick, J. P. Tinney, K. Tobita, B. B. Keller, and K. Pekkan, “Aortic arch morphogenesis and flow modeling in the chick embryo,” Ann. Biomed. Eng. 37(6), 1069–1081 (2009).
[Crossref] [PubMed]

Tomita, H.

H. Tomita, D. M. Connuck, L. Leatherbury, and M. L. Kirby, “Relation of early hemodynamic changes to final cardiac phenotype and survival after neural crest ablation in chick embryos,” Circulation 84(3), 1289–1295 (1991).
[Crossref] [PubMed]

S. Miyagawa-Tomita, K. Waldo, H. Tomita, and M. L. Kirby, “Temporospatial study of the migration and distribution of cardiac neural crest in quail-chick chimeras,” Am. J. Anat. 192(1), 79–88 (1991).
[Crossref] [PubMed]

L. Leatherbury, D. S. Braden, H. Tomita, H. E. Gauldin, and W. F. Jackson, “Hemodynamic changes. Wall stresses and pressure gradients in neural crest-ablated chick embryos,” Ann. N. Y. Acad. Sci. 588(1 Embryonic Ori), 305–313 (1990).
[Crossref] [PubMed]

Townsend, K. A.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Trainor, P. A.

P. A. Trainor and P. P. Tam, “Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches,” Development 121(8), 2569–2582 (1995).
[PubMed]

Trojer, M.

L. Thrane, H. E. Larsen, K. Norozi, F. Pedersen, J. B. Thomsen, M. Trojer, and T. M. Yelbuz, “Field programmable gate-array-based real-time optical Doppler tomography system for in vivo imaging of cardiac dynamics in the chick embryo,” Optice 48, 023201 (2009).

Troyer, A.

Tu, L.

F. A. High, M. Zhang, A. Proweller, L. Tu, M. S. Parmacek, W. S. Pear, and J. A. Epstein, “An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation,” J. Clin. Invest. 117(2), 353–363 (2007).
[Crossref] [PubMed]

Tuchin, V. V.

I. V. Larina, E. F. Carbajal, V. V. Tuchin, M. E. Dickinson, and K. V. Larin, “Enhanced OCT imaging of embryonic tissue with optical clearing,” Laser Phys. Lett. 5(6), 476–479 (2008).
[Crossref]

Ursem, N. T.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[Crossref] [PubMed]

Vakoc, B. J.

R. Yelin, D. Yelin, W.-Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref] [PubMed]

van Leeuwen, T. G.

Vanauker, M.

B. Garita, M. W. Jenkins, M. Han, C. Zhou, M. Vanauker, A. M. Rollins, M. Watanabe, J. G. Fujimoto, and K. K. Linask, “Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping,” Am. J. Physiol. Heart Circ. Physiol. 300(3), H879–H891 (2011).
[Crossref] [PubMed]

Vennemann, P.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[Crossref] [PubMed]

Verberne, M. E.

M. Bergwerff, M. E. Verberne, M. C. DeRuiter, R. E. Poelmann, and A. C. Gittenberger-de Groot, “Neural Crest Cell Contribution to the Developing Circulatory System: Implications for Vascular Morphology?” Circ. Res. 82(2), 221–231 (1998).
[Crossref] [PubMed]

Vermot, J.

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act Through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref] [PubMed]

Viéville, T.

K. Boric, P. Orio, T. Viéville, and K. Whitlock, “Quantitative Analysis of Cell Migration Using Optical Flow,” PLoS One 8(7), e69574 (2013).
[Crossref] [PubMed]

Villiger, M. L.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213 (2007).
[Crossref] [PubMed]

Vitkin, I.

Vitkin, I. A.

Voronov, D. A.

A. Ramasubramanian, N. L. Nerurkar, K. H. Achtien, B. A. Filas, D. A. Voronov, and L. A. Taber, “On Modeling Morphogenesis of the Looping Heart Following Mechanical Perturbations,” J. Biomech. Eng. 130(6), 061018 (2008).
[Crossref] [PubMed]

Vu, D.

Waldo, K.

K. Waldo, M. Zdanowicz, J. Burch, D. H. Kumiski, H. A. Stadt, R. E. Godt, T. L. Creazzo, and M. L. Kirby, “A novel role for cardiac neural crest in heart development,” J. Clin. Invest. 103(11), 1499–1507 (1999).
[Crossref] [PubMed]

S. Miyagawa-Tomita, K. Waldo, H. Tomita, and M. L. Kirby, “Temporospatial study of the migration and distribution of cardiac neural crest in quail-chick chimeras,” Am. J. Anat. 192(1), 79–88 (1991).
[Crossref] [PubMed]

Waldo, K. L.

T. M. Yelbuz, K. L. Waldo, D. H. Kumiski, H. A. Stadt, R. R. Wolfe, L. Leatherbury, and M. L. Kirby, “Shortened outflow tract leads to altered cardiac looping after neural crest ablation,” Circulation 106(4), 504–510 (2002).
[Crossref] [PubMed]

K. L. Waldo and M. L. Kirby, “Cardiac neural crest contribution to the pulmonary artery and sixth aortic arch artery complex in chick embryos aged 6 to 18 days,” Anat. Rec. 237(3), 385–399 (1993).
[Crossref] [PubMed]

Walker, D. S.

D. S. Walker, C. S. Fisher, A. Sherman, B. Wybrecht, and K. Kyndely, “Fetal alcohol spectrum disorders prevention: an exploratory study of women’s use of, attitudes toward, and knowledge about alcohol,” J. Am. Acad. Nurse Pract. 17(5), 187–193 (2005).
[Crossref] [PubMed]

Wallis, K.

M. J. Farrell, J. L. Burch, K. Wallis, L. Rowley, D. Kumiski, H. Stadt, R. E. Godt, T. L. Creazzo, and M. L. Kirby, “FGF-8 in the ventral pharynx alters development of myocardial calcium transients after neural crest ablation,” J. Clin. Invest. 107(12), 1509–1517 (2001).
[Crossref] [PubMed]

Wang, Q.

Wang, R.

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling,” PLoS One 7(7), e40869 (2012).
[Crossref] [PubMed]

Wang, R. K.

Z. Ma, S. Dou, Y. Zhao, C. Guo, J. Liu, Q. Wang, T. Xu, R. K. Wang, and Y. Wang, “In vivo assessment of wall strain in embryonic chick heart by spectral domain optical coherence tomography,” Appl. Opt. 54(31), 9253–9257 (2015).
[Crossref] [PubMed]

P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt. 17(9), 096006 (2012).
[Crossref] [PubMed]

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol. 56(22), 7081–7092 (2011).
[Crossref] [PubMed]

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol. 56(22), 7081–7092 (2011).
[Crossref] [PubMed]

Z. Ma, A. Liu, X. Yin, A. Troyer, K. Thornburg, R. K. Wang, and S. Rugonyi, “Measurement of absolute blood flow velocity in outflow tract of HH18 chicken embryo based on 4D reconstruction using spectral domain optical coherence tomography,” Biomed. Opt. Express 1(3), 798–811 (2010).
[Crossref] [PubMed]

S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref] [PubMed]

Wang, S.

S. Wang, D. S. Lakomy, M. D. Garcia, A. L. Lopez, K. V. Larin, and I. V. Larina, “Four-dimensional live imaging of hemodynamics in mammalian embryonic heart with Doppler optical coherence tomography,” J. Biophotonics 9(8), 837–847 (2016).
[Crossref] [PubMed]

S. Wang, M. Singh, A. L. Lopez, C. Wu, R. Raghunathan, A. Schill, J. Li, K. V. Larin, and I. V. Larina, “Direct four-dimensional structural and functional imaging of cardiovascular dynamics in mouse embryos with 1.5 MHz optical coherence tomography,” Opt. Lett. 40(20), 4791–4794 (2015).
[Crossref] [PubMed]

Wang, Y.

Z. Ma, S. Dou, Y. Zhao, C. Guo, J. Liu, Q. Wang, T. Xu, R. K. Wang, and Y. Wang, “In vivo assessment of wall strain in embryonic chick heart by spectral domain optical coherence tomography,” Appl. Opt. 54(31), 9253–9257 (2015).
[Crossref] [PubMed]

W. J. Kowalski, O. Dur, Y. Wang, M. J. Patrick, J. P. Tinney, B. B. Keller, and K. Pekkan, “Critical transitions in early embryonic aortic arch patterning and hemodynamics,” PLoS One 8(3), e60271 (2013).
[Crossref] [PubMed]

Y. Wang, O. Dur, M. J. Patrick, J. P. Tinney, K. Tobita, B. B. Keller, and K. Pekkan, “Aortic arch morphogenesis and flow modeling in the chick embryo,” Ann. Biomed. Eng. 37(6), 1069–1081 (2009).
[Crossref] [PubMed]

Ward, R.

C. P. Klingenberg, L. Wetherill, J. Rogers, E. Moore, R. Ward, I. Autti-Rämö, A. Fagerlund, S. W. Jacobson, L. K. Robinson, H. E. Hoyme, S. N. Mattson, T. K. Li, E. P. Riley, T. Foroud, and CIFASD Consortium, “Prenatal alcohol exposure alters the patterns of facial asymmetry,” Alcohol 44(7-8), 649–657 (2010).
[Crossref] [PubMed]

Watanabe, M.

P. Ma, S. Gu, G. H. Karunamuni, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Cardiac neural crest ablation results in early endocardial cushion and hemodynamic flow abnormalities,” Am. J. Physiol. Heart Circ. Physiol. 311(5), H1150–H1159 (2016).
[Crossref] [PubMed]

G. Karunamuni, S. Gu, Y. Q. Doughman, A. I. Noonan, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure,” Dev. Dyn. 244(4), 607–618 (2015).
[Crossref] [PubMed]

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” Am. J. Physiol. Heart Circ. Physiol. 306(3), H414–H421 (2014).
[Crossref] [PubMed]

G. H. Karunamuni, P. Ma, S. Gu, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function,” Birth Defects Res. C Embryo Today 102(3), 227–250 (2014).
[Crossref] [PubMed]

L. M. Peterson, M. W. Jenkins, S. Gu, L. Barwick, M. Watanabe, and A. M. Rollins, “4D shear stress maps of the developing heart using Doppler optical coherence tomography,” Biomed. Opt. Express 3(11), 3022–3032 (2012).
[Crossref] [PubMed]

M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Longitudinal Imaging of Heart Development With Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1166–1175 (2012).
[Crossref] [PubMed]

S. Gu, M. W. Jenkins, L. M. Peterson, Y.-Q. Doughman, A. M. Rollins, and M. Watanabe, “Optical Coherence Tomography Captures Rapid Hemodynamic Responses to Acute Hypoxia in the Cardiovascular System of Early Embryos,” Dev. Dyn. 241(3), 534–544 (2012).
[Crossref] [PubMed]

B. Garita, M. W. Jenkins, M. Han, C. Zhou, M. Vanauker, A. M. Rollins, M. Watanabe, J. G. Fujimoto, and K. K. Linask, “Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping,” Am. J. Physiol. Heart Circ. Physiol. 300(3), H879–H891 (2011).
[Crossref] [PubMed]

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref] [PubMed]

M. W. Jenkins, P. Patel, H. Deng, M. M. Montano, M. Watanabe, and A. M. Rollins, “Phenotyping transgenic embryonic murine hearts using optical coherence tomography,” Appl. Opt. 46(10), 1776–1781 (2007).
[Crossref] [PubMed]

M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, “4D embryonic cardiography using gated optical coherence tomography,” Opt. Express 14(2), 736–748 (2006).
[Crossref] [PubMed]

Webb, M. A.

K. K. Sulik, M. C. Johnston, and M. A. Webb, “Fetal alcohol syndrome: embryogenesis in a mouse model,” Science 214(4523), 936–938 (1981).
[Crossref] [PubMed]

Wei, X.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Werkmeister, R. M.

Wessells, R. J.

M. A. Choma, S. D. Izatt, R. J. Wessells, R. Bodmer, and J. A. Izatt, “Images in cardiovascular medicine: in vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography,” Circulation 114(2), e35–e36 (2006).
[Crossref] [PubMed]

Westerweel, J.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[Crossref] [PubMed]

Wetherill, L.

C. P. Klingenberg, L. Wetherill, J. Rogers, E. Moore, R. Ward, I. Autti-Rämö, A. Fagerlund, S. W. Jacobson, L. K. Robinson, H. E. Hoyme, S. N. Mattson, T. K. Li, E. P. Riley, T. Foroud, and CIFASD Consortium, “Prenatal alcohol exposure alters the patterns of facial asymmetry,” Alcohol 44(7-8), 649–657 (2010).
[Crossref] [PubMed]

Whitlock, K.

K. Boric, P. Orio, T. Viéville, and K. Whitlock, “Quantitative Analysis of Cell Migration Using Optical Flow,” PLoS One 8(7), e69574 (2013).
[Crossref] [PubMed]

Wilson, B.

Wilson, D. L.

Wolfe, R. R.

T. M. Yelbuz, K. L. Waldo, D. H. Kumiski, H. A. Stadt, R. R. Wolfe, L. Leatherbury, and M. L. Kirby, “Shortened outflow tract leads to altered cardiac looping after neural crest ablation,” Circulation 106(4), 504–510 (2002).
[Crossref] [PubMed]

Wollstein, G.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Wu, C.

Wu, D.

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act Through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref] [PubMed]

Wybrecht, B.

D. S. Walker, C. S. Fisher, A. Sherman, B. Wybrecht, and K. Kyndely, “Fetal alcohol spectrum disorders prevention: an exploratory study of women’s use of, attitudes toward, and knowledge about alcohol,” J. Am. Acad. Nurse Pract. 17(5), 187–193 (2005).
[Crossref] [PubMed]

Xu, T.

Yamamura, K.

A. Nomura-Kitabayashi, C. K. Phoon, S. Kishigami, J. Rosenthal, Y. Yamauchi, K. Abe, K. Yamamura, R. Samtani, C. W. Lo, and Y. Mishina, “Outflow tract cushions perform a critical valve-like function in the early embryonic heart requiring BMPRIA-mediated signaling in cardiac neural crest,” Am. J. Physiol. Heart Circ. Physiol. 297(5), H1617–H1628 (2009).
[Crossref] [PubMed]

Yamauchi, Y.

A. Nomura-Kitabayashi, C. K. Phoon, S. Kishigami, J. Rosenthal, Y. Yamauchi, K. Abe, K. Yamamura, R. Samtani, C. W. Lo, and Y. Mishina, “Outflow tract cushions perform a critical valve-like function in the early embryonic heart requiring BMPRIA-mediated signaling in cardiac neural crest,” Am. J. Physiol. Heart Circ. Physiol. 297(5), H1617–H1628 (2009).
[Crossref] [PubMed]

Yang, V. X. D.

Yasuno, Y.

Yazdanfar, S.

Yelbuz, T. M.

L. Thrane, H. E. Larsen, K. Norozi, F. Pedersen, J. B. Thomsen, M. Trojer, and T. M. Yelbuz, “Field programmable gate-array-based real-time optical Doppler tomography system for in vivo imaging of cardiac dynamics in the chick embryo,” Optice 48, 023201 (2009).

T. M. Yelbuz, K. L. Waldo, D. H. Kumiski, H. A. Stadt, R. R. Wolfe, L. Leatherbury, and M. L. Kirby, “Shortened outflow tract leads to altered cardiac looping after neural crest ablation,” Circulation 106(4), 504–510 (2002).
[Crossref] [PubMed]

T. M. Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby, and J. A. Izatt, “Optical Coherence Tomography A New High-Resolution Imaging Technology to Study Cardiac Development in Chick Embryos,” Circulation 106, 2771–2774 (2002).

Yelin, D.

R. Yelin, D. Yelin, W.-Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref] [PubMed]

Yelin, R.

R. Yelin, D. Yelin, W.-Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref] [PubMed]

Yin, X.

P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt. 17(9), 096006 (2012).
[Crossref] [PubMed]

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling,” PLoS One 7(7), e40869 (2012).
[Crossref] [PubMed]

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol. 56(22), 7081–7092 (2011).
[Crossref] [PubMed]

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol. 56(22), 7081–7092 (2011).
[Crossref] [PubMed]

Z. Ma, A. Liu, X. Yin, A. Troyer, K. Thornburg, R. K. Wang, and S. Rugonyi, “Measurement of absolute blood flow velocity in outflow tract of HH18 chicken embryo based on 4D reconstruction using spectral domain optical coherence tomography,” Biomed. Opt. Express 1(3), 798–811 (2010).
[Crossref] [PubMed]

Yun, S. H.

R. Yelin, D. Yelin, W.-Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref] [PubMed]

Zackai, E.

E. Goldmuntz, D. A. Driscoll, B. S. Emanuel, D. McDonald-McGinn, M. Mei, E. Zackai, and L. E. Mitchell, “Evaluation of potential modifiers of the cardiac phenotype in the 22q11.2 deletion syndrome,” Birth Defects Res. A Clin. Mol. Teratol. 85(2), 125–129 (2009).
[Crossref] [PubMed]

Zarins, C. K.

C. A. Taylor, T. J. R. Hughes, and C. K. Zarins, “Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis,” Ann. Biomed. Eng. 26(6), 975–987 (1998).
[Crossref] [PubMed]

Zdanowicz, M.

K. Waldo, M. Zdanowicz, J. Burch, D. H. Kumiski, H. A. Stadt, R. E. Godt, T. L. Creazzo, and M. L. Kirby, “A novel role for cardiac neural crest in heart development,” J. Clin. Invest. 103(11), 1499–1507 (1999).
[Crossref] [PubMed]

Zeng, X.

J. Men, Y. Huang, J. Solanki, X. Zeng, A. Alex, J. Jerwick, Z. Zhang, R. E. Tanzi, A. Li, and C. Zhou, “Optical Coherence Tomography for Brain Imaging and Developmental Biology,” IEEE J. Sel. Top. Quantum Electron. 22(4), 120–132 (2016).
[Crossref] [PubMed]

Zhang, M.

F. A. High, M. Zhang, A. Proweller, L. Tu, M. S. Parmacek, W. S. Pear, and J. A. Epstein, “An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation,” J. Clin. Invest. 117(2), 353–363 (2007).
[Crossref] [PubMed]

Zhang, Z.

J. Men, Y. Huang, J. Solanki, X. Zeng, A. Alex, J. Jerwick, Z. Zhang, R. E. Tanzi, A. Li, and C. Zhou, “Optical Coherence Tomography for Brain Imaging and Developmental Biology,” IEEE J. Sel. Top. Quantum Electron. 22(4), 120–132 (2016).
[Crossref] [PubMed]

Zhao, Y.

Zhou, C.

J. Men, Y. Huang, J. Solanki, X. Zeng, A. Alex, J. Jerwick, Z. Zhang, R. E. Tanzi, A. Li, and C. Zhou, “Optical Coherence Tomography for Brain Imaging and Developmental Biology,” IEEE J. Sel. Top. Quantum Electron. 22(4), 120–132 (2016).
[Crossref] [PubMed]

B. Garita, M. W. Jenkins, M. Han, C. Zhou, M. Vanauker, A. M. Rollins, M. Watanabe, J. G. Fujimoto, and K. K. Linask, “Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping,” Am. J. Physiol. Heart Circ. Physiol. 300(3), H879–H891 (2011).
[Crossref] [PubMed]

Zolna, M. R.

L. B. Finer and M. R. Zolna, “Declines in Unintended Pregnancy in the United States, 2008-2011,” N. Engl. J. Med. 374(9), 843–852 (2016).
[Crossref] [PubMed]

Zou, J.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Alcohol (1)

C. P. Klingenberg, L. Wetherill, J. Rogers, E. Moore, R. Ward, I. Autti-Rämö, A. Fagerlund, S. W. Jacobson, L. K. Robinson, H. E. Hoyme, S. N. Mattson, T. K. Li, E. P. Riley, T. Foroud, and CIFASD Consortium, “Prenatal alcohol exposure alters the patterns of facial asymmetry,” Alcohol 44(7-8), 649–657 (2010).
[Crossref] [PubMed]

Alcohol Health Res. World (1)

N. D. Harwood H, “Economic implications of the fetal alcohol syndrome,” Alcohol Health Res. World 10, 38–43 (1985).

Alcohol Res. Health (1)

B. A. Bailey and R. J. Sokol, “Prenatal alcohol exposure and miscarriage, stillbirth, preterm delivery, and sudden infant death syndrome,” Alcohol Res. Health 34(1), 86–91 (2011).
[PubMed]

Alcohol. Clin. Exp. Res. (4)

H. S. Feldman, K. L. Jones, S. Lindsay, D. Slymen, H. Klonoff-Cohen, K. Kao, S. Rao, and C. Chambers, “Prenatal alcohol exposure patterns and alcohol-related birth defects and growth deficiencies: a prospective study,” Alcohol. Clin. Exp. Res. 36(4), 670–676 (2012).
[Crossref] [PubMed]

M. M. Cartwright and S. M. Smith, “Increased cell death and reduced neural crest cell numbers in ethanol-exposed embryos: partial basis for the fetal alcohol syndrome phenotype,” Alcohol. Clin. Exp. Res. 19(2), 378–386 (1995).
[Crossref] [PubMed]

M. M. Cartwright, L. L. Tessmer, and S. M. Smith, “Ethanol-induced neural crest apoptosis is coincident with their endogenous death, but is mechanistically distinct,” Alcohol. Clin. Exp. Res. 22(1), 142–149 (1998).
[Crossref] [PubMed]

R. A. Rovasio and N. L. Battiato, “Ethanol induces morphological and dynamic changes on in vivo and in vitro neural crest cells,” Alcohol. Clin. Exp. Res. 26(8), 1286–1298 (2002).
[Crossref] [PubMed]

Am. J. Anat. (1)

S. Miyagawa-Tomita, K. Waldo, H. Tomita, and M. L. Kirby, “Temporospatial study of the migration and distribution of cardiac neural crest in quail-chick chimeras,” Am. J. Anat. 192(1), 79–88 (1991).
[Crossref] [PubMed]

Am. J. Med. Genet. (1)

L. E. Kotch and K. K. Sulik, “Experimental fetal alcohol syndrome: proposed pathogenic basis for a variety of associated facial and brain anomalies,” Am. J. Med. Genet. 44(2), 168–176 (1992).
[Crossref] [PubMed]

Am. J. Obstet. Gynecol. (1)

M. Serrano, M. Han, P. Brinez, and K. K. Linask, “Fetal alcohol syndrome: cardiac birth defects in mice and prevention with folate,” Am. J. Obstet. Gynecol. 203(1), 75.e7 (2010).
[Crossref] [PubMed]

Am. J. Physiol. Heart Circ. Physiol. (4)

P. Ma, S. Gu, G. H. Karunamuni, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Cardiac neural crest ablation results in early endocardial cushion and hemodynamic flow abnormalities,” Am. J. Physiol. Heart Circ. Physiol. 311(5), H1150–H1159 (2016).
[Crossref] [PubMed]

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” Am. J. Physiol. Heart Circ. Physiol. 306(3), H414–H421 (2014).
[Crossref] [PubMed]

A. Nomura-Kitabayashi, C. K. Phoon, S. Kishigami, J. Rosenthal, Y. Yamauchi, K. Abe, K. Yamamura, R. Samtani, C. W. Lo, and Y. Mishina, “Outflow tract cushions perform a critical valve-like function in the early embryonic heart requiring BMPRIA-mediated signaling in cardiac neural crest,” Am. J. Physiol. Heart Circ. Physiol. 297(5), H1617–H1628 (2009).
[Crossref] [PubMed]

B. Garita, M. W. Jenkins, M. Han, C. Zhou, M. Vanauker, A. M. Rollins, M. Watanabe, J. G. Fujimoto, and K. K. Linask, “Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping,” Am. J. Physiol. Heart Circ. Physiol. 300(3), H879–H891 (2011).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

S. Marschall, B. Sander, M. Mogensen, T. M. Jørgensen, and P. E. Andersen, “Optical coherence tomography-current technology and applications in clinical and biomedical research,” Anal. Bioanal. Chem. 400(9), 2699–2720 (2011).
[Crossref] [PubMed]

Anat. Embryol. (Berl.) (1)

T. Hiruma and R. Hirakow, “Formation of the pharyngeal arch arteries in the chick embryo. Observations of corrosion casts by scanning electron microscopy,” Anat. Embryol. (Berl.) 191(5), 415–423 (1995).
[Crossref] [PubMed]

Anat. Rec. (1)

K. L. Waldo and M. L. Kirby, “Cardiac neural crest contribution to the pulmonary artery and sixth aortic arch artery complex in chick embryos aged 6 to 18 days,” Anat. Rec. 237(3), 385–399 (1993).
[Crossref] [PubMed]

Anat. Rec. (Hoboken) (3)

A. Davis, J. Izatt, and F. Rothenberg, “Quantitative Measurement of Blood Flow Dynamics in Embryonic Vasculature Using Spectral Doppler Velocimetry,” Anat. Rec. (Hoboken) 292(3), 311–319 (2009).
[Crossref] [PubMed]

N. Hu, D. A. Christensen, A. K. Agrawal, C. Beaumont, E. B. Clark, and J. A. Hawkins, “Dependence of Aortic Arch Morphogenesis on Intracardiac Blood Flow in the Left Atrial Ligated Chick Embryo,” Anat. Rec. (Hoboken) 292(5), 652–660 (2009).
[Crossref] [PubMed]

B. A. Filas, I. R. Efimov, and L. A. Taber, “Optical coherence tomography as a tool for measuring morphogenetic deformation of the looping heart,” Anat. Rec. (Hoboken) 290(9), 1057–1068 (2007).
[Crossref] [PubMed]

Ann. Biomed. Eng. (2)

Y. Wang, O. Dur, M. J. Patrick, J. P. Tinney, K. Tobita, B. B. Keller, and K. Pekkan, “Aortic arch morphogenesis and flow modeling in the chick embryo,” Ann. Biomed. Eng. 37(6), 1069–1081 (2009).
[Crossref] [PubMed]

C. A. Taylor, T. J. R. Hughes, and C. K. Zarins, “Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis,” Ann. Biomed. Eng. 26(6), 975–987 (1998).
[Crossref] [PubMed]

Ann. N. Y. Acad. Sci. (1)

L. Leatherbury, D. S. Braden, H. Tomita, H. E. Gauldin, and W. F. Jackson, “Hemodynamic changes. Wall stresses and pressure gradients in neural crest-ablated chick embryos,” Ann. N. Y. Acad. Sci. 588(1 Embryonic Ori), 305–313 (1990).
[Crossref] [PubMed]

Appl. Opt. (2)

Arch. Oral Biol. (1)

J. Czarnobaj, K. M. Bagnall, J. S. Bamforth, and N. C. Milos, “The different effects on cranial and trunk neural crest cell behaviour following exposure to a low concentration of alcohol in vitro,” Arch. Oral Biol. 59(5), 500–512 (2014).
[Crossref] [PubMed]

Biomed. Opt. Express (4)

Birth Defects Res. A Clin. Mol. Teratol. (2)

J. Grewal, S. L. Carmichael, C. Ma, E. J. Lammer, and G. M. Shaw, “Maternal periconceptional smoking and alcohol consumption and risk for select congenital anomalies,” Birth Defects Res. A Clin. Mol. Teratol. 82(7), 519–526 (2008).
[Crossref] [PubMed]

E. Goldmuntz, D. A. Driscoll, B. S. Emanuel, D. McDonald-McGinn, M. Mei, E. Zackai, and L. E. Mitchell, “Evaluation of potential modifiers of the cardiac phenotype in the 22q11.2 deletion syndrome,” Birth Defects Res. A Clin. Mol. Teratol. 85(2), 125–129 (2009).
[Crossref] [PubMed]

Birth Defects Res. C Embryo Today (1)

G. H. Karunamuni, P. Ma, S. Gu, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function,” Birth Defects Res. C Embryo Today 102(3), 227–250 (2014).
[Crossref] [PubMed]

Cardiovasc. Res. (1)

B. Hogers, M. C. DeRuiter, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal,” Cardiovasc. Res. 41(1), 87–99 (1999).
[Crossref] [PubMed]

Cell Adhes. Migr. (1)

M. L. Kirby and M. R. Hutson, “Factors controlling cardiac neural crest cell migration,” Cell Adhes. Migr. 4(4), 609–621 (2010).
[Crossref] [PubMed]

Circ. Res. (3)

B. Hogers, M. C. DeRuiter, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Unilateral Vitelline Vein Ligation Alters Intracardiac Blood Flow Patterns and Morphogenesis in the Chick Embryo,” Circ. Res. 80(4), 473–481 (1997).
[Crossref] [PubMed]

D. E. Stewart, M. L. Kirby, and K. K. Sulik, “Hemodynamic changes in chick embryos precede heart defects after cardiac neural crest ablation,” Circ. Res. 59(5), 545–550 (1986).
[Crossref] [PubMed]

M. Bergwerff, M. E. Verberne, M. C. DeRuiter, R. E. Poelmann, and A. C. Gittenberger-de Groot, “Neural Crest Cell Contribution to the Developing Circulatory System: Implications for Vascular Morphology?” Circ. Res. 82(2), 221–231 (1998).
[Crossref] [PubMed]

Circulation (4)

H. Tomita, D. M. Connuck, L. Leatherbury, and M. L. Kirby, “Relation of early hemodynamic changes to final cardiac phenotype and survival after neural crest ablation in chick embryos,” Circulation 84(3), 1289–1295 (1991).
[Crossref] [PubMed]

T. M. Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby, and J. A. Izatt, “Optical Coherence Tomography A New High-Resolution Imaging Technology to Study Cardiac Development in Chick Embryos,” Circulation 106, 2771–2774 (2002).

M. A. Choma, S. D. Izatt, R. J. Wessells, R. Bodmer, and J. A. Izatt, “Images in cardiovascular medicine: in vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography,” Circulation 114(2), e35–e36 (2006).
[Crossref] [PubMed]

T. M. Yelbuz, K. L. Waldo, D. H. Kumiski, H. A. Stadt, R. R. Wolfe, L. Leatherbury, and M. L. Kirby, “Shortened outflow tract leads to altered cardiac looping after neural crest ablation,” Circulation 106(4), 504–510 (2002).
[Crossref] [PubMed]

Dev. Biol. (2)

R. E. Poelmann and A. C. Gittenberger-de Groot, “A subpopulation of apoptosis-prone cardiac neural crest cells targets to the venous pole: multiple functions in heart development?” Dev. Biol. 207(2), 271–286 (1999).
[Crossref] [PubMed]

S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Investigation of Developing Embryonic Morphology using Optical Coherence Tomography,” Dev. Biol. 177(1), 54–63 (1996).
[Crossref] [PubMed]

Dev. Dyn. (2)

S. Gu, M. W. Jenkins, L. M. Peterson, Y.-Q. Doughman, A. M. Rollins, and M. Watanabe, “Optical Coherence Tomography Captures Rapid Hemodynamic Responses to Acute Hypoxia in the Cardiovascular System of Early Embryos,” Dev. Dyn. 241(3), 534–544 (2012).
[Crossref] [PubMed]

G. Karunamuni, S. Gu, Y. Q. Doughman, A. I. Noonan, A. M. Rollins, M. W. Jenkins, and M. Watanabe, “Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure,” Dev. Dyn. 244(4), 607–618 (2015).
[Crossref] [PubMed]

Development (1)

P. A. Trainor and P. P. Tam, “Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches,” Development 121(8), 2569–2582 (1995).
[PubMed]

Differentiation; Research in Biological Diversity (1)

A. Keyte and M. R. Hutson, “The Neural Crest in Cardiac Congenital Anomalies,” Differentiation; Research in Biological Diversity 84, 25–40 (2012).

IEEE J. Sel. Top. Quantum Electron. (2)

J. Men, Y. Huang, J. Solanki, X. Zeng, A. Alex, J. Jerwick, Z. Zhang, R. E. Tanzi, A. Li, and C. Zhou, “Optical Coherence Tomography for Brain Imaging and Developmental Biology,” IEEE J. Sel. Top. Quantum Electron. 22(4), 120–132 (2016).
[Crossref] [PubMed]

M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Longitudinal Imaging of Heart Development With Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1166–1175 (2012).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

S. Bhat, I. V. Larina, K. V. Larin, M. E. Dickinson, and M. Liebling, “4D reconstruction of the beating embryonic heart from two orthogonal sets of parallel optical coherence tomography slice-sequences,” IEEE Trans. Med. Imaging 32(3), 578–588 (2013).
[Crossref] [PubMed]

Int. J. Epidemiol. (1)

A. M. Andersen, P. K. Andersen, J. Olsen, M. Grønbæk, and K. Strandberg-Larsen, “Moderate alcohol intake during pregnancy and risk of fetal death,” Int. J. Epidemiol. 41(2), 405–413 (2012).
[Crossref] [PubMed]

J. Am. Acad. Nurse Pract. (1)

D. S. Walker, C. S. Fisher, A. Sherman, B. Wybrecht, and K. Kyndely, “Fetal alcohol spectrum disorders prevention: an exploratory study of women’s use of, attitudes toward, and knowledge about alcohol,” J. Am. Acad. Nurse Pract. 17(5), 187–193 (2005).
[Crossref] [PubMed]

J. Anat. (2)

T. Hiruma, Y. Nakajima, and H. Nakamura, “Development of pharyngeal arch arteries in early mouse embryo,” J. Anat. 201(1), 15–29 (2002).
[Crossref] [PubMed]

S. J. Ainsworth, R. L. Stanley, and D. J. R. Evans, “Developmental stages of the Japanese quail,” J. Anat. 216(1), 3–15 (2010).
[Crossref] [PubMed]

J. Biomech. (1)

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006).
[Crossref] [PubMed]

J. Biomech. Eng. (1)

A. Ramasubramanian, N. L. Nerurkar, K. H. Achtien, B. A. Filas, D. A. Voronov, and L. A. Taber, “On Modeling Morphogenesis of the Looping Heart Following Mechanical Perturbations,” J. Biomech. Eng. 130(6), 061018 (2008).
[Crossref] [PubMed]

J. Biomed. Opt. (6)

W. Luo, D. L. Marks, T. S. Ralston, and S. A. Boppart, “Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system,” J. Biomed. Opt. 11(2), 021014 (2006).
[Crossref] [PubMed]

R. Yelin, D. Yelin, W.-Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref] [PubMed]

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref] [PubMed]

P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt. 17(9), 096006 (2012).
[Crossref] [PubMed]

R. Raghunathan, M. Singh, M. E. Dickinson, and K. V. Larin, “Optical coherence tomography for embryonic imaging: a review,” J. Biomed. Opt. 21(5), 050902 (2016).
[Crossref] [PubMed]

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213 (2007).
[Crossref] [PubMed]

J. Biophotonics (2)

A. Bradu, L. Ma, J. W. Bloor, and A. Podoleanu, “Dual optical coherence tomography/fluorescence microscopy for monitoring of Drosophila melanogaster larval heart,” J. Biophotonics 2(6-7), 380–388 (2009).
[Crossref] [PubMed]

S. Wang, D. S. Lakomy, M. D. Garcia, A. L. Lopez, K. V. Larin, and I. V. Larina, “Four-dimensional live imaging of hemodynamics in mammalian embryonic heart with Doppler optical coherence tomography,” J. Biophotonics 9(8), 837–847 (2016).
[Crossref] [PubMed]

J. Cardiovasc. Dev. Dis. (1)

V. K. Chivukula, S. Goenezen, A. Liu, and S. Rugonyi, “Effect of Outflow Tract Banding on Embryonic Cardiac Hemodynamics,” J. Cardiovasc. Dev. Dis. 3(1), 1 (2015).
[Crossref] [PubMed]

J. Clin. Invest. (3)

M. J. Farrell, J. L. Burch, K. Wallis, L. Rowley, D. Kumiski, H. Stadt, R. E. Godt, T. L. Creazzo, and M. L. Kirby, “FGF-8 in the ventral pharynx alters development of myocardial calcium transients after neural crest ablation,” J. Clin. Invest. 107(12), 1509–1517 (2001).
[Crossref] [PubMed]

K. Waldo, M. Zdanowicz, J. Burch, D. H. Kumiski, H. A. Stadt, R. E. Godt, T. L. Creazzo, and M. L. Kirby, “A novel role for cardiac neural crest in heart development,” J. Clin. Invest. 103(11), 1499–1507 (1999).
[Crossref] [PubMed]

F. A. High, M. Zhang, A. Proweller, L. Tu, M. S. Parmacek, W. S. Pear, and J. A. Epstein, “An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation,” J. Clin. Invest. 117(2), 353–363 (2007).
[Crossref] [PubMed]

J. Embryol. Exp. Morphol. (1)

C. S. Le Lièvre and N. M. Le Douarin, “Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos,” J. Embryol. Exp. Morphol. 34(1), 125–154 (1975).
[PubMed]

J. Morphol. (1)

V. Hamburger and H. L. Hamilton, “A series of normal stages in the development of the chick embryo,” J. Morphol. 88(1), 49–92 (1951).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Laser Phys. Lett. (1)

I. V. Larina, E. F. Carbajal, V. V. Tuchin, M. E. Dickinson, and K. V. Larin, “Enhanced OCT imaging of embryonic tissue with optical clearing,” Laser Phys. Lett. 5(6), 476–479 (2008).
[Crossref]

MMWR Morb. Mortal. Wkly. Rep. (1)

Centers for Disease Control and Prevention (CDC), “Alcohol use and binge drinking among women of childbearing age--United States, 2006-2010,” MMWR Morb. Mortal. Wkly. Rep. 61(28), 534–538 (2012).
[PubMed]

Mol. Vis. (1)

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

N. Engl. J. Med. (1)

L. B. Finer and M. R. Zolna, “Declines in Unintended Pregnancy in the United States, 2008-2011,” N. Engl. J. Med. 374(9), 843–852 (2016).
[Crossref] [PubMed]

Opt. Express (8)

A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. D. Yang, “Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system,” Opt. Express 15(4), 1627–1638 (2007).
[Crossref] [PubMed]

M. Gargesha, M. W. Jenkins, D. L. Wilson, and A. M. Rollins, “High temporal resolution OCT using image-based retrospective gating,” Opt. Express 17(13), 10786–10799 (2009).
[Crossref] [PubMed]

N. V. Iftimia, D. X. Hammer, R. D. Ferguson, M. Mujat, D. Vu, and A. A. Ferrante, “Dual-beam Fourier domain optical Doppler tomography of zebrafish,” Opt. Express 16(18), 13624–13636 (2008).
[Crossref] [PubMed]

N. V. Iftimia, D. X. Hammer, R. D. Ferguson, M. Mujat, D. Vu, and A. A. Ferrante, “Dual-beam Fourier domain optical Doppler tomography of zebrafish,” Opt. Express 16(18), 13624–13636 (2008).
[Crossref] [PubMed]

S. Yazdanfar, M. Kulkarni, and J. Izatt, “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography,” Opt. Express 1(13), 424–431 (1997).
[Crossref] [PubMed]

V. X. D. Yang, M. Gordon, E. Seng-Yue, S. Lo, B. Qi, J. Pekar, A. Mok, B. Wilson, and I. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis,” Opt. Express 11(14), 1650–1658 (2003).
[Crossref] [PubMed]

Z. Hu and A. Rollins, “Quasi-telecentric optical design of a microscope-compatible OCT scanner,” Opt. Express 13(17), 6407–6415 (2005).
[Crossref] [PubMed]

M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, “4D embryonic cardiography using gated optical coherence tomography,” Opt. Express 14(2), 736–748 (2006).
[Crossref] [PubMed]

Opt. Lett. (8)

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett. 32(5), 506–508 (2007).
[Crossref] [PubMed]

Y.-C. Ahn, W. Jung, and Z. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett. 32(11), 1587–1589 (2007).
[Crossref] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett. 33(8), 836–838 (2008).
[Crossref] [PubMed]

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett. 33(24), 2967–2969 (2008).
[Crossref] [PubMed]

I. V. Larina, S. Ivers, S. Syed, M. E. Dickinson, and K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34(7), 986–988 (2009).
[Crossref] [PubMed]

S. Wang, M. Singh, A. L. Lopez, C. Wu, R. Raghunathan, A. Schill, J. Li, K. V. Larin, and I. V. Larina, “Direct four-dimensional structural and functional imaging of cardiovascular dynamics in mouse embryos with 1.5 MHz optical coherence tomography,” Opt. Lett. 40(20), 4791–4794 (2015).
[Crossref] [PubMed]

T. G. van Leeuwen, M. D. Kulkarni, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography,” Opt. Lett. 24(22), 1584–1586 (1999).
[Crossref] [PubMed]

D. P. Davé and T. E. Milner, “Doppler-angle measurement in highly scattering media,” Opt. Lett. 25(20), 1523–1525 (2000).
[Crossref] [PubMed]

Optice (1)

L. Thrane, H. E. Larsen, K. Norozi, F. Pedersen, J. B. Thomsen, M. Trojer, and T. M. Yelbuz, “Field programmable gate-array-based real-time optical Doppler tomography system for in vivo imaging of cardiac dynamics in the chick embryo,” Optice 48, 023201 (2009).

Pediatr. Res. (1)

L. Leatherbury, D. M. Connuck, H. E. Gauldin, and M. L. Kirby, “Hemodynamic changes and compensatory mechanisms during early cardiogenesis after neural crest ablation in chick embryos,” Pediatr. Res. 30(6), 509–512 (1991).
[Crossref] [PubMed]

Phys. Med. Biol. (3)

S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref] [PubMed]

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol. 56(22), 7081–7092 (2011).
[Crossref] [PubMed]

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol. 56(22), 7081–7092 (2011).
[Crossref] [PubMed]

PLoS Biol. (1)

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act Through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref] [PubMed]

PLoS One (4)

K. Boric, P. Orio, T. Viéville, and K. Whitlock, “Quantitative Analysis of Cell Migration Using Optical Flow,” PLoS One 8(7), e69574 (2013).
[Crossref] [PubMed]

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling,” PLoS One 7(7), e40869 (2012).
[Crossref] [PubMed]

R. Alati, G. Davey Smith, S. J. Lewis, K. Sayal, E. S. Draper, J. Golding, R. Fraser, and R. Gray, “Effect of prenatal alcohol exposure on childhood academic outcomes: contrasting maternal and paternal associations in the ALSPAC study,” PLoS One 8(10), e74844 (2013).
[Crossref] [PubMed]

W. J. Kowalski, O. Dur, Y. Wang, M. J. Patrick, J. P. Tinney, B. B. Keller, and K. Pekkan, “Critical transitions in early embryonic aortic arch patterning and hemodynamics,” PLoS One 8(3), e60271 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 94(9), 4256–4261 (1997).
[Crossref] [PubMed]

Proc. SPIE (1)

W. J. Kowalski, N. C. Teslovich, C.-Y. Chen, B. B. Keller, and K. Pekkan, “Simultaneous real-time quantification of blood flow and vascular growth in the chick embryo using optical coherence tomography,” Proc. SPIE 8953, 895307 (2014).

Science (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

K. K. Sulik, M. C. Johnston, and M. A. Webb, “Fetal alcohol syndrome: embryogenesis in a mouse model,” Science 214(4523), 936–938 (1981).
[Crossref] [PubMed]

Semin. Cell Dev. Biol. (1)

M. R. Hutson and M. L. Kirby, “Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations,” Semin. Cell Dev. Biol. 18(1), 101–110 (2007).
[Crossref] [PubMed]

Other (5)

E. Abel, ed., Fetal Alcohol syndrome (Medical Economics Books, Oradell, NJ, 1990).

Z. Ma and X. Tao, “Two wavelength spectral domain optical coherence tomography systems for early stage chicken embryonic heart imaging,” in 2012 IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS) Proceedings, 2012), 13–16.
[Crossref]

S. Gu, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Optical Coherence Tomography Imaging of Early Quail Embryos,” Cold Spring Harbor Protocols 2011, pdb.prot5564 (2011).

S. M. Ford, M. T. McPheeters, Y. T. Wang, S. Gu, Y. Q. Doughman, J. P. Strainic, C. S. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” accepted.

L. M. Peterson, M. McPheeters, L. Barwick, S. Gu, A. M. Rollins, and M. W. Jenkins, “Altering embryonic cardiac dynamics with optical pacing,” in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012), 1382–1385.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Aortic arch imaging. (A) A projection of the 3-D volumetric OCT data acquired for embryonic developmental staging. The image clearly displays the limb buds and wing buds indicated by the yellow arrows. These limb buds along with general head and body morphology are necessary for accurate staging without removal of the embryo from the yolk. (B) A phase variance image was generated from the Doppler OCT data to segment the aortic arch vessel lumen. The cross-sectional OCT images used to generate the phase variance image were acquired at the pharyngeal arches indicated by the dotted line in A. (C) The segmentation was applied to the Doppler OCT images for absolute blood flow calculations.
Fig. 2
Fig. 2 Pulsed Doppler traces were acquired in the 3rd aortic arch of control (uninjected) and ethanol exposed HH stage 19 embryos. (A) Both uninjected (n = 16) and saline (n = 17) embryos had pulsed Doppler traces with a positive peak and a prominent shoulder (orange arrow) followed by a minor negative peak indicating retrograde blood flow. (B) Pulsed Doppler traces from ethanol-exposed embryos (n = 19) showed increased retrograde blood flow and were often missing a shoulder (orange arrow). (C) Ethanol-exposed embryos exhibited a significant increase in average percentage of retrograde blood flow compared with saline or uninjected embryos. * indicates p<0.05
Fig. 3
Fig. 3 Hemodynamic measurements. Ethanol-exposed embryos exhibited higher levels of all hemodynamic measurements. (A) Average blood flow over a heartbeat from multiple B-scan images. (B) These same images were used to determine the average shear stress. Ethanol-exposed embryos had significantly higher average blood flow and shear stress. (C) The shear stress values over the heartbeat were used to determine the oscillatory shear index which was higher in ethanol-exposed embryos due to the higher retrograde blood flow. (D and E) the peak forward and retrograde shear stress were determined and shown to be higher in ethanol-exposed embryos in comparison with uninjected and saline controls. *indicates p < 0.05.
Fig. 4
Fig. 4 Pharyngeal arch mesenchymal tissue measurements. An orthogonal slice from a 3-D volumetric acquisition of the 3rd aortic arch of an uninjected (A) and ethanol-exposed (B) embryo. The lumen area was segmented as indicated by the yellow dotted line. The surrounding pharyngeal arch tissue was then segmented as indicated by the red dotted line. (C) Ethanol-exposed embryos (n = 19) did not have a statistically significant difference in the lumen cross sectional area compared with uninjected (n = 16) and saline (n = 17) embryos. (D) The surrounding pharyngeal arch tissue cross sectional area was statistically smaller in ethanol exposed embryos in comparison to uninjected and saline embryos. * indicates p<0.05.
Fig. 5
Fig. 5 Quantification of cardiac neural crest mid-migration. Transverse cryosections of stage 13 embryos at the level of the cardiac neural crest were immunofluorescently stained using HNK-1 and anti-AP-2 antibodies to identify neural crest cells (A). Cyrosections were also co-stained with DAPI to identify all cell nuclei (B) for quantification. The area of HNK-1/AP-2 positive neural crest cells are outlined in red (A,B) with the area that was selected for quantification outlined in blue regions of interest (A,B). The area selected is within the beginning of the circumpharyngeal ridge. Both the left and right sides of the embryo were similarly imaged for quantification. NT = neural tube; No = notochord.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ ω = 4Qμ π r 3

Metrics