Abstract

Application of nanotechnology for biomedicine in cancer therapy allows for direct delivery of anticancer agents to tumors. An example of such therapies is the nanoparticle-mediated near-infrared hyperthermia treatment. In order to investigate the influence of nanoparticle properties on the spatial distribution of heat in the tumor and healthy tissues, accurate simulations are required. The Geant4 Application for Emission Tomography (GATE) open-source simulation platform, based on the Geant4 toolkit, is widely used by the research community involved in molecular imaging, radiotherapy and optical imaging. We present an extension of GATE that can model nanoparticle-mediated hyperthermal therapy as well as simple heat diffusion in biological tissues. This new feature of GATE combined with optical imaging allows for the simulation of a theranostic scenario in which the patient is injected with theranostic nanosystems that can simultaneously deliver therapeutic (i.e. hyperthermia therapy) and imaging agents (i.e. fluorescence imaging).

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermal therapy with magnetic nanoparticles for cell destruction

Adi Vegerhof, Menachem Motei, Arkady Rudinzky, Dror Malka, Rachela Popovtzer, and Zeev Zalevsky
Biomed. Opt. Express 7(11) 4581-4594 (2016)

Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells

Jaesook Park, Arnold Estrada, Kelly Sharp, Krystina Sang, Jon A. Schwartz, Danielle K. Smith, Chris Coleman, J. Donald Payne, Brian A. Korgel, Andrew K. Dunn, and James W. Tunnell
Opt. Express 16(3) 1590-1599 (2008)

Thermal energy transfer by plasmon-resonant composite nanoparticles at pulse laser irradiation

Yuri A. Avetisyan, Alexander N. Yakunin, and Valery V. Tuchin
Appl. Opt. 51(10) C88-C94 (2012)

References

  • View by:
  • |
  • |
  • |

  1. I. H. Plenderleith, “Treating the treatment: toxicity of cancer chemotherapy,” Can. Fam. Physician 36, 1827–1830 (1990).
    [PubMed]
  2. S. J. Douglas, S. S. Davis, and L. Illum, “Nanoparticles in drug delivery,” CRC Critical Reviews in Therapeutic drug carrier systems 3(3), 233–261 (1987).
    [PubMed]
  3. B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit Rev Oncol Hematol. 43(1), 33–56 (2002).
    [Crossref] [PubMed]
  4. M. K. Popp, I. Oubou, C. Shepherd, Z. Nager, C. Anderson, and L. Pagliaro, “Photothermal therapy using gold nanorods and near-infrared light in a murine melanoma model increases survival and decreases tumor volume,” Journal of Nanomaterials 2014, 1–8 (2014).
    [Crossref]
  5. T. Ming-Fong, C. Shih-HuiGilbert, C. Fong-Yu, S. Vijayakumar, C. Yu-Sheng, S. Chia-Hao, and Y. Chen-Sheng, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
    [Crossref]
  6. E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J.F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008).
    [Crossref] [PubMed]
  7. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100(23), 13549–13554 (2003).
    [Crossref] [PubMed]
  8. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
    [Crossref] [PubMed]
  9. K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
    [Crossref]
  10. ClinicalTrials.gov, “Pilot study of auroLaseTM therapy in refractory and/or recurrent tumors of the head and neck,” https://clinicaltrials.gov/ct2/show/NCT00848042 .
  11. M. Singh, D. C. C. Harris-Birtill, S. R. Markar, G. B. Hanna, and D. S. Elson, “Application of gold nanoparticles for gastrointestinal cancer theranostics: A systematic review,” Nanomedicine: Nanotechnology, Biology and Medicine 11(8), 2083–2098 (2015).
  12. J. Zhao, P. Lee, M. J. Wallace, and M. P. Melancon, “Gold Nanoparticles in Cancer Therapy: Efficacy, Biodistribution, and Toxicity,” Curr Pharm Des. 21(29), 4240–4251 (2015).
    [Crossref] [PubMed]
  13. R. Mooney, E. Schena, A. Zhumkhawala, K. S. Aboody, and J. M. Berlin, “Internal temperature increase during photothermal tumour ablation in mice using gold nanorods,” in Proceedings of IEEE Conference of the Engineering in Medicine and Biology Society (IEEE, 2015), pp. 2563–2566.
  14. R. Mooney, E. Schena, A. Zhumkhawala, K. S. Aboody, and J. M. Berlin, “Gold nanorod-mediated near-infrared laser ablation: in vivo experiments on mice and theoretical analysis at different settings,” Int J Hyperthermia1–10 (2016).
    [Crossref] [PubMed]
  15. M. M. Paulides, P. R. Stauffer, E. Neufeld, P. Maccarini, A. Kyriakou, R. A. M. Canters, C. Diederich, J. F. Bakker, and G. C. Van Rhoon, “Simulation techniques in hyperthermia treatment planning,” Int. J. Hyperthermia 29(4), 346–357 (2013).
    [Crossref] [PubMed]
  16. Z. Rijnen, J. F. Bakker, R. A. Canters, P. Togni, G. M. Verduijn, P. C. Levendag, G. C. Van Rhoon, and M. M. Paulides, “Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck,” Int. J. Hyperthermia 29(3), 181–193 (2013).
    [Crossref] [PubMed]
  17. J. W. Hand, “Modelling the interaction of electromagnetic fields (10 MHz – 10 GHz) withe the human body: methods and applications,” Phys. Med. Biol. 53(16), 243–286 (2008).
    [Crossref]
  18. P. Deuflhard, A. Schiela, and M. Weiser, “Mathematical cancer therapy planning in deep regional hyperthermia,” Acta Numerica 21, 307–378 (2012).
    [Crossref]
  19. J. A. Jensen and N. B. Svendsen, “Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 39(2), 262–267 (1992).
    [Crossref]
  20. J. A. Jensen, “Field: a program for simulating ultrasound systems,” Med. Biol. Eng. Computing 34(1), 351–353 (1996).
  21. R. J. McGough, H. Wang, E. S. Ebbini, and C. A. Cain, “Mode scanning: heating pattern synthesis with ultrasound phased arrays,” Int. J. Hyperthermia 10(3), 433–442 (1994).
    [Crossref] [PubMed]
  22. B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15(2), 021314 (2010).
    [Crossref] [PubMed]
  23. http://www.comsol.com
  24. G. Yona, N. Meitav, I. Kahn, and S. Shoham, “Realistic numerical and analytical modeling of light scattering in brain tissue for optogenetic applications,” eNeuro 3(1), 59 (2016).
    [Crossref]
  25. S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
    [Crossref] [PubMed]
  26. S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy,” Phys. Med. Biol. 56, 881–901 (2011).
    [Crossref] [PubMed]
  27. V. Cuplov, I. Buvat, F. Pain, and S. Jan, “Extension of the GATE Monte Carlo simulation package to model bioluminescence and fuorescence imaging,” J. Biomed. Opt. 19(2), 026004 (2014).
    [Crossref] [PubMed]
  28. C. F. Babbs and D. P. DeWitt, “Physical principles of local heat therapy for cancer,” Medical instrumentation 15(6), 367–373 (1980).
  29. X. Huanga and M. A. El-Sayeda, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
    [Crossref]
  30. Z. Qin and J. C. Bischof, “Thermophysical and biological responses of gold nanoparticle laser heating,” Chem. Soc. Rev. 41(3), 1191–1217 (2012).
    [Crossref]
  31. H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” Journal of Applied Physiology 1(2), 93–122 (1948).
    [PubMed]
  32. E. H. Wissler, “Pennes’ 1948 paper revisited,” J. Appl. Physiol. 85(1), 35–41 (1998).
    [PubMed]
  33. Insight Segmentation and Registration Toolkit http://www.itk.org .
  34. A. Quarteroni, A. Veneziani, and P. Zunino, “A domain decomposition method for advection-diffusion processes with application to blood solutes,” Siam J. Sci. Comput. 23(6), 1959–1980 (2002).
    [Crossref]
  35. A.-R. A. Khaled and K. Vafai, “The role of porous media in modeling flow and heat transfer in biological tissues,” International Journal of Heat and Mass Transfer 46, 4989–5003 (2003).
    [Crossref]
  36. L. Azzimonti, L. M. Sangalli, P. Secchi, M. Domanin, and F. Nobile, “Blood flow velocity field estimation via spatial regression with PDE penalization,” J. American Statistical Association 110(511), 1057 (2015).
    [Crossref]
  37. P. A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, M. C. Gosselin, D. Payne, A. Klingenböck, and N. Kuster, “IT’IS database for thermal and electromagnetic parameters of biological tissues,” (2015) www.itis.ethz.ch/database .
  38. Z. V. P. Murthy, A. A. Mungray, and J. Singh, “Preparation and characterization of acrylonitrile butadiene styrene and trifluoroacetylethyl cellulose blend nanofiltration membrane and performance in the separation of mercury,” Lecture Notes in Engineering and Computer Science (2012).
  39. R. Tsukada, S. Sumimoto, and T. Ozawa, “Thermal conductivity and heat capacity of ABS resin composites,” Journal of Applied Polymer Science 63(10), 1279–1286 (1997).
    [Crossref]
  40. T. T. A. Nguyen, H. N. D. Le, M. Vo, Z. Wang, L. Luu, and J. C. Ramella-Roman, “Three-dimensional phantoms for curvature correction in spatial frequency domain imaging,” Biomed. Opt. Express 3(6), 1200–1214 (2012).
    [Crossref] [PubMed]
  41. W. P. Segars, B. M. W. Tsui, E. C. Frey, G. A. Johnson, and S. S. Berr, “Development of a 4D digital mouse phantom for molecular imaging research,” Mol. Imaging Biol. 6, 149–159 (2004).
    [Crossref] [PubMed]
  42. Q. Q. Zhang, X. J. Wu, C. Wang, S. W. Zhu, Y. L. Wang, B. Z. Gao, and X.-C. Yuan, “Scattering coefficients of mice organs categorized pathologically by spectral domain optical coherence tomography,” BioMed Research International 2014, 13 (2014).
    [Crossref]
  43. C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” Journal Photochem. Photobiol. B 160, 72–78 (2016).
    [Crossref]
  44. K. R. Holmes, “Thermal conductivity of selected tissues,” Biotransport: Heat and Mass Transfer in Living Systems”, Ann. NY Acad. Sci. 858, 18–20 (1998).
  45. N. Manuchehrabadi, Y. Chen, A. LeBrun, R. Ma, and L. Zhu, “Computational simulation of temperature elevations in tumors using Monte Carlo method and comparison to experimental measurements in laser photothermal therapy,” Journal of Biomechanical Engineering B 135, 121007 (2013).
    [Crossref]
  46. P. Faber and L. Garby, “Fat content affects heat capacity: a study in mice,” Acta Physiol. Scand. 153(2), 185–187 (1995).
    [Crossref] [PubMed]
  47. J. C. Hindman, “Proton resonance shift of water in the gas and liquid states,” J. Chem. Phys. 44, 4582–4592 (1996).
    [Crossref]

2016 (2)

G. Yona, N. Meitav, I. Kahn, and S. Shoham, “Realistic numerical and analytical modeling of light scattering in brain tissue for optogenetic applications,” eNeuro 3(1), 59 (2016).
[Crossref]

C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” Journal Photochem. Photobiol. B 160, 72–78 (2016).
[Crossref]

2015 (3)

L. Azzimonti, L. M. Sangalli, P. Secchi, M. Domanin, and F. Nobile, “Blood flow velocity field estimation via spatial regression with PDE penalization,” J. American Statistical Association 110(511), 1057 (2015).
[Crossref]

M. Singh, D. C. C. Harris-Birtill, S. R. Markar, G. B. Hanna, and D. S. Elson, “Application of gold nanoparticles for gastrointestinal cancer theranostics: A systematic review,” Nanomedicine: Nanotechnology, Biology and Medicine 11(8), 2083–2098 (2015).

J. Zhao, P. Lee, M. J. Wallace, and M. P. Melancon, “Gold Nanoparticles in Cancer Therapy: Efficacy, Biodistribution, and Toxicity,” Curr Pharm Des. 21(29), 4240–4251 (2015).
[Crossref] [PubMed]

2014 (3)

M. K. Popp, I. Oubou, C. Shepherd, Z. Nager, C. Anderson, and L. Pagliaro, “Photothermal therapy using gold nanorods and near-infrared light in a murine melanoma model increases survival and decreases tumor volume,” Journal of Nanomaterials 2014, 1–8 (2014).
[Crossref]

V. Cuplov, I. Buvat, F. Pain, and S. Jan, “Extension of the GATE Monte Carlo simulation package to model bioluminescence and fuorescence imaging,” J. Biomed. Opt. 19(2), 026004 (2014).
[Crossref] [PubMed]

Q. Q. Zhang, X. J. Wu, C. Wang, S. W. Zhu, Y. L. Wang, B. Z. Gao, and X.-C. Yuan, “Scattering coefficients of mice organs categorized pathologically by spectral domain optical coherence tomography,” BioMed Research International 2014, 13 (2014).
[Crossref]

2013 (4)

N. Manuchehrabadi, Y. Chen, A. LeBrun, R. Ma, and L. Zhu, “Computational simulation of temperature elevations in tumors using Monte Carlo method and comparison to experimental measurements in laser photothermal therapy,” Journal of Biomechanical Engineering B 135, 121007 (2013).
[Crossref]

T. Ming-Fong, C. Shih-HuiGilbert, C. Fong-Yu, S. Vijayakumar, C. Yu-Sheng, S. Chia-Hao, and Y. Chen-Sheng, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref]

M. M. Paulides, P. R. Stauffer, E. Neufeld, P. Maccarini, A. Kyriakou, R. A. M. Canters, C. Diederich, J. F. Bakker, and G. C. Van Rhoon, “Simulation techniques in hyperthermia treatment planning,” Int. J. Hyperthermia 29(4), 346–357 (2013).
[Crossref] [PubMed]

Z. Rijnen, J. F. Bakker, R. A. Canters, P. Togni, G. M. Verduijn, P. C. Levendag, G. C. Van Rhoon, and M. M. Paulides, “Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck,” Int. J. Hyperthermia 29(3), 181–193 (2013).
[Crossref] [PubMed]

2012 (3)

P. Deuflhard, A. Schiela, and M. Weiser, “Mathematical cancer therapy planning in deep regional hyperthermia,” Acta Numerica 21, 307–378 (2012).
[Crossref]

Z. Qin and J. C. Bischof, “Thermophysical and biological responses of gold nanoparticle laser heating,” Chem. Soc. Rev. 41(3), 1191–1217 (2012).
[Crossref]

T. T. A. Nguyen, H. N. D. Le, M. Vo, Z. Wang, L. Luu, and J. C. Ramella-Roman, “Three-dimensional phantoms for curvature correction in spatial frequency domain imaging,” Biomed. Opt. Express 3(6), 1200–1214 (2012).
[Crossref] [PubMed]

2011 (1)

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy,” Phys. Med. Biol. 56, 881–901 (2011).
[Crossref] [PubMed]

2010 (2)

X. Huanga and M. A. El-Sayeda, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
[Crossref]

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

2008 (2)

J. W. Hand, “Modelling the interaction of electromagnetic fields (10 MHz – 10 GHz) withe the human body: methods and applications,” Phys. Med. Biol. 53(16), 243–286 (2008).
[Crossref]

E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J.F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008).
[Crossref] [PubMed]

2007 (2)

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref]

2004 (2)

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

W. P. Segars, B. M. W. Tsui, E. C. Frey, G. A. Johnson, and S. S. Berr, “Development of a 4D digital mouse phantom for molecular imaging research,” Mol. Imaging Biol. 6, 149–159 (2004).
[Crossref] [PubMed]

2003 (2)

A.-R. A. Khaled and K. Vafai, “The role of porous media in modeling flow and heat transfer in biological tissues,” International Journal of Heat and Mass Transfer 46, 4989–5003 (2003).
[Crossref]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

2002 (2)

A. Quarteroni, A. Veneziani, and P. Zunino, “A domain decomposition method for advection-diffusion processes with application to blood solutes,” Siam J. Sci. Comput. 23(6), 1959–1980 (2002).
[Crossref]

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit Rev Oncol Hematol. 43(1), 33–56 (2002).
[Crossref] [PubMed]

1998 (2)

E. H. Wissler, “Pennes’ 1948 paper revisited,” J. Appl. Physiol. 85(1), 35–41 (1998).
[PubMed]

K. R. Holmes, “Thermal conductivity of selected tissues,” Biotransport: Heat and Mass Transfer in Living Systems”, Ann. NY Acad. Sci. 858, 18–20 (1998).

1997 (1)

R. Tsukada, S. Sumimoto, and T. Ozawa, “Thermal conductivity and heat capacity of ABS resin composites,” Journal of Applied Polymer Science 63(10), 1279–1286 (1997).
[Crossref]

1996 (2)

J. A. Jensen, “Field: a program for simulating ultrasound systems,” Med. Biol. Eng. Computing 34(1), 351–353 (1996).

J. C. Hindman, “Proton resonance shift of water in the gas and liquid states,” J. Chem. Phys. 44, 4582–4592 (1996).
[Crossref]

1995 (1)

P. Faber and L. Garby, “Fat content affects heat capacity: a study in mice,” Acta Physiol. Scand. 153(2), 185–187 (1995).
[Crossref] [PubMed]

1994 (1)

R. J. McGough, H. Wang, E. S. Ebbini, and C. A. Cain, “Mode scanning: heating pattern synthesis with ultrasound phased arrays,” Int. J. Hyperthermia 10(3), 433–442 (1994).
[Crossref] [PubMed]

1992 (1)

J. A. Jensen and N. B. Svendsen, “Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 39(2), 262–267 (1992).
[Crossref]

1990 (1)

I. H. Plenderleith, “Treating the treatment: toxicity of cancer chemotherapy,” Can. Fam. Physician 36, 1827–1830 (1990).
[PubMed]

1987 (1)

S. J. Douglas, S. S. Davis, and L. Illum, “Nanoparticles in drug delivery,” CRC Critical Reviews in Therapeutic drug carrier systems 3(3), 233–261 (1987).
[PubMed]

1980 (1)

C. F. Babbs and D. P. DeWitt, “Physical principles of local heat therapy for cancer,” Medical instrumentation 15(6), 367–373 (1980).

1948 (1)

H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” Journal of Applied Physiology 1(2), 93–122 (1948).
[PubMed]

Aboody, K. S.

R. Mooney, E. Schena, A. Zhumkhawala, K. S. Aboody, and J. M. Berlin, “Internal temperature increase during photothermal tumour ablation in mice using gold nanorods,” in Proceedings of IEEE Conference of the Engineering in Medicine and Biology Society (IEEE, 2015), pp. 2563–2566.

R. Mooney, E. Schena, A. Zhumkhawala, K. S. Aboody, and J. M. Berlin, “Gold nanorod-mediated near-infrared laser ablation: in vivo experiments on mice and theoretical analysis at different settings,” Int J Hyperthermia1–10 (2016).
[Crossref] [PubMed]

Ahlers, O.

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit Rev Oncol Hematol. 43(1), 33–56 (2002).
[Crossref] [PubMed]

Anderson, C.

M. K. Popp, I. Oubou, C. Shepherd, Z. Nager, C. Anderson, and L. Pagliaro, “Photothermal therapy using gold nanorods and near-infrared light in a murine melanoma model increases survival and decreases tumor volume,” Journal of Nanomaterials 2014, 1–8 (2014).
[Crossref]

Assié, K.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Autret, D.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Avner, S.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Azzimonti, L.

L. Azzimonti, L. M. Sangalli, P. Secchi, M. Domanin, and F. Nobile, “Blood flow velocity field estimation via spatial regression with PDE penalization,” J. American Statistical Association 110(511), 1057 (2015).
[Crossref]

Babbs, C. F.

C. F. Babbs and D. P. DeWitt, “Physical principles of local heat therapy for cancer,” Medical instrumentation 15(6), 367–373 (1980).

Bakker, J. F.

M. M. Paulides, P. R. Stauffer, E. Neufeld, P. Maccarini, A. Kyriakou, R. A. M. Canters, C. Diederich, J. F. Bakker, and G. C. Van Rhoon, “Simulation techniques in hyperthermia treatment planning,” Int. J. Hyperthermia 29(4), 346–357 (2013).
[Crossref] [PubMed]

Z. Rijnen, J. F. Bakker, R. A. Canters, P. Togni, G. M. Verduijn, P. C. Levendag, G. C. Van Rhoon, and M. M. Paulides, “Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck,” Int. J. Hyperthermia 29(3), 181–193 (2013).
[Crossref] [PubMed]

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Barbier, R.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Bardiès, M.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Becheva, E.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy,” Phys. Med. Biol. 56, 881–901 (2011).
[Crossref] [PubMed]

Benoit, D.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy,” Phys. Med. Biol. 56, 881–901 (2011).
[Crossref] [PubMed]

Berlin, J. M.

R. Mooney, E. Schena, A. Zhumkhawala, K. S. Aboody, and J. M. Berlin, “Gold nanorod-mediated near-infrared laser ablation: in vivo experiments on mice and theoretical analysis at different settings,” Int J Hyperthermia1–10 (2016).
[Crossref] [PubMed]

R. Mooney, E. Schena, A. Zhumkhawala, K. S. Aboody, and J. M. Berlin, “Internal temperature increase during photothermal tumour ablation in mice using gold nanorods,” in Proceedings of IEEE Conference of the Engineering in Medicine and Biology Society (IEEE, 2015), pp. 2563–2566.

Berr, S. S.

W. P. Segars, B. M. W. Tsui, E. C. Frey, G. A. Johnson, and S. S. Berr, “Development of a 4D digital mouse phantom for molecular imaging research,” Mol. Imaging Biol. 6, 149–159 (2004).
[Crossref] [PubMed]

Bischof, J. C.

Z. Qin and J. C. Bischof, “Thermophysical and biological responses of gold nanoparticle laser heating,” Chem. Soc. Rev. 41(3), 1191–1217 (2012).
[Crossref]

Bloomfield, P. M.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Brasse, D.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Breton, V.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Bruyndonckx, P.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Buvat, I.

V. Cuplov, I. Buvat, F. Pain, and S. Jan, “Extension of the GATE Monte Carlo simulation package to model bioluminescence and fuorescence imaging,” J. Biomed. Opt. 19(2), 026004 (2014).
[Crossref] [PubMed]

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy,” Phys. Med. Biol. 56, 881–901 (2011).
[Crossref] [PubMed]

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Cain, C. A.

R. J. McGough, H. Wang, E. S. Ebbini, and C. A. Cain, “Mode scanning: heating pattern synthesis with ultrasound phased arrays,” Int. J. Hyperthermia 10(3), 433–442 (1994).
[Crossref] [PubMed]

Canters, R. A.

Z. Rijnen, J. F. Bakker, R. A. Canters, P. Togni, G. M. Verduijn, P. C. Levendag, G. C. Van Rhoon, and M. M. Paulides, “Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck,” Int. J. Hyperthermia 29(3), 181–193 (2013).
[Crossref] [PubMed]

Canters, R. A. M.

M. M. Paulides, P. R. Stauffer, E. Neufeld, P. Maccarini, A. Kyriakou, R. A. M. Canters, C. Diederich, J. F. Bakker, and G. C. Van Rhoon, “Simulation techniques in hyperthermia treatment planning,” Int. J. Hyperthermia 29(4), 346–357 (2013).
[Crossref] [PubMed]

Carlier, T.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy,” Phys. Med. Biol. 56, 881–901 (2011).
[Crossref] [PubMed]

Cassol, F.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy,” Phys. Med. Biol. 56, 881–901 (2011).
[Crossref] [PubMed]

Chatziioannou, A. F.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Chen, Y.

N. Manuchehrabadi, Y. Chen, A. LeBrun, R. Ma, and L. Zhu, “Computational simulation of temperature elevations in tumors using Monte Carlo method and comparison to experimental measurements in laser photothermal therapy,” Journal of Biomechanical Engineering B 135, 121007 (2013).
[Crossref]

Chen-Sheng, Y.

T. Ming-Fong, C. Shih-HuiGilbert, C. Fong-Yu, S. Vijayakumar, C. Yu-Sheng, S. Chia-Hao, and Y. Chen-Sheng, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref]

Chia-Hao, S.

T. Ming-Fong, C. Shih-HuiGilbert, C. Fong-Yu, S. Vijayakumar, C. Yu-Sheng, S. Chia-Hao, and Y. Chen-Sheng, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref]

Choi, Y.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Chu, H.

E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J.F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008).
[Crossref] [PubMed]

Chung, Y. H.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Comtat, C.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Cox, B. T.

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

Cuplov, V.

V. Cuplov, I. Buvat, F. Pain, and S. Jan, “Extension of the GATE Monte Carlo simulation package to model bioluminescence and fuorescence imaging,” J. Biomed. Opt. 19(2), 026004 (2014).
[Crossref] [PubMed]

da Silva, D. F.

C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” Journal Photochem. Photobiol. B 160, 72–78 (2016).
[Crossref]

Davis, S. S.

S. J. Douglas, S. S. Davis, and L. Illum, “Nanoparticles in drug delivery,” CRC Critical Reviews in Therapeutic drug carrier systems 3(3), 233–261 (1987).
[PubMed]

Deana, A. M.

C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” Journal Photochem. Photobiol. B 160, 72–78 (2016).
[Crossref]

Descourt, P.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy,” Phys. Med. Biol. 56, 881–901 (2011).
[Crossref] [PubMed]

Deuflhard, P.

P. Deuflhard, A. Schiela, and M. Weiser, “Mathematical cancer therapy planning in deep regional hyperthermia,” Acta Numerica 21, 307–378 (2012).
[Crossref]

DeWitt, D. P.

C. F. Babbs and D. P. DeWitt, “Physical principles of local heat therapy for cancer,” Medical instrumentation 15(6), 367–373 (1980).

Dickerson, E. B.

E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J.F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008).
[Crossref] [PubMed]

Diederich, C.

M. M. Paulides, P. R. Stauffer, E. Neufeld, P. Maccarini, A. Kyriakou, R. A. M. Canters, C. Diederich, J. F. Bakker, and G. C. Van Rhoon, “Simulation techniques in hyperthermia treatment planning,” Int. J. Hyperthermia 29(4), 346–357 (2013).
[Crossref] [PubMed]

Dieing, A.

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit Rev Oncol Hematol. 43(1), 33–56 (2002).
[Crossref] [PubMed]

Domanin, M.

L. Azzimonti, L. M. Sangalli, P. Secchi, M. Domanin, and F. Nobile, “Blood flow velocity field estimation via spatial regression with PDE penalization,” J. American Statistical Association 110(511), 1057 (2015).
[Crossref]

Donnarieix, D.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Douglas, S. J.

S. J. Douglas, S. S. Davis, and L. Illum, “Nanoparticles in drug delivery,” CRC Critical Reviews in Therapeutic drug carrier systems 3(3), 233–261 (1987).
[PubMed]

Dreaden, E. C.

E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J.F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008).
[Crossref] [PubMed]

Drezek, R. A.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Ebbini, E. S.

R. J. McGough, H. Wang, E. S. Ebbini, and C. A. Cain, “Mode scanning: heating pattern synthesis with ultrasound phased arrays,” Int. J. Hyperthermia 10(3), 433–442 (1994).
[Crossref] [PubMed]

El-Sayed, I. H.

E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J.F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008).
[Crossref] [PubMed]

El-Sayed, M. A.

E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J.F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008).
[Crossref] [PubMed]

El-Sayeda, M. A.

X. Huanga and M. A. El-Sayeda, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
[Crossref]

Elson, D. S.

M. Singh, D. C. C. Harris-Birtill, S. R. Markar, G. B. Hanna, and D. S. Elson, “Application of gold nanoparticles for gastrointestinal cancer theranostics: A systematic review,” Nanomedicine: Nanotechnology, Biology and Medicine 11(8), 2083–2098 (2015).

Faber, P.

P. Faber and L. Garby, “Fat content affects heat capacity: a study in mice,” Acta Physiol. Scand. 153(2), 185–187 (1995).
[Crossref] [PubMed]

Felix, R.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref]

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit Rev Oncol Hematol. 43(1), 33–56 (2002).
[Crossref] [PubMed]

Ferrer, L.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Feussner, A.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref]

Fong-Yu, C.

T. Ming-Fong, C. Shih-HuiGilbert, C. Fong-Yu, S. Vijayakumar, C. Yu-Sheng, S. Chia-Hao, and Y. Chen-Sheng, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref]

França, C. M.

C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” Journal Photochem. Photobiol. B 160, 72–78 (2016).
[Crossref]

Frey, E. C.

W. P. Segars, B. M. W. Tsui, E. C. Frey, G. A. Johnson, and S. S. Berr, “Development of a 4D digital mouse phantom for molecular imaging research,” Mol. Imaging Biol. 6, 149–159 (2004).
[Crossref] [PubMed]

Frisson, T.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy,” Phys. Med. Biol. 56, 881–901 (2011).
[Crossref] [PubMed]

Gao, B. Z.

Q. Q. Zhang, X. J. Wu, C. Wang, S. W. Zhu, Y. L. Wang, B. Z. Gao, and X.-C. Yuan, “Scattering coefficients of mice organs categorized pathologically by spectral domain optical coherence tomography,” BioMed Research International 2014, 13 (2014).
[Crossref]

Garby, L.

P. Faber and L. Garby, “Fat content affects heat capacity: a study in mice,” Acta Physiol. Scand. 153(2), 185–187 (1995).
[Crossref] [PubMed]

Glick, S. J.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Gneveckow, U.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref]

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Grevillot, L.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy,” Phys. Med. Biol. 56, 881–901 (2011).
[Crossref] [PubMed]

Groiselle, C. J.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Guez, D.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Guigues, L.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy,” Phys. Med. Biol. 56, 881–901 (2011).
[Crossref] [PubMed]

Halas, N. J.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Hand, J. W.

J. W. Hand, “Modelling the interaction of electromagnetic fields (10 MHz – 10 GHz) withe the human body: methods and applications,” Phys. Med. Biol. 53(16), 243–286 (2008).
[Crossref]

Hanna, G. B.

M. Singh, D. C. C. Harris-Birtill, S. R. Markar, G. B. Hanna, and D. S. Elson, “Application of gold nanoparticles for gastrointestinal cancer theranostics: A systematic review,” Nanomedicine: Nanotechnology, Biology and Medicine 11(8), 2083–2098 (2015).

Harris-Birtill, D. C. C.

M. Singh, D. C. C. Harris-Birtill, S. R. Markar, G. B. Hanna, and D. S. Elson, “Application of gold nanoparticles for gastrointestinal cancer theranostics: A systematic review,” Nanomedicine: Nanotechnology, Biology and Medicine 11(8), 2083–2098 (2015).

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Hildebrandt, B.

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit Rev Oncol Hematol. 43(1), 33–56 (2002).
[Crossref] [PubMed]

Hindman, J. C.

J. C. Hindman, “Proton resonance shift of water in the gas and liquid states,” J. Chem. Phys. 44, 4582–4592 (1996).
[Crossref]

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Holmes, K. R.

K. R. Holmes, “Thermal conductivity of selected tissues,” Biotransport: Heat and Mass Transfer in Living Systems”, Ann. NY Acad. Sci. 858, 18–20 (1998).

Honore, P-F.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Huang, X.

E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J.F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008).
[Crossref] [PubMed]

Huanga, X.

X. Huanga and M. A. El-Sayeda, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
[Crossref]

Illum, L.

S. J. Douglas, S. S. Davis, and L. Illum, “Nanoparticles in drug delivery,” CRC Critical Reviews in Therapeutic drug carrier systems 3(3), 233–261 (1987).
[PubMed]

James, W. D.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Jan, S.

V. Cuplov, I. Buvat, F. Pain, and S. Jan, “Extension of the GATE Monte Carlo simulation package to model bioluminescence and fuorescence imaging,” J. Biomed. Opt. 19(2), 026004 (2014).
[Crossref] [PubMed]

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy,” Phys. Med. Biol. 56, 881–901 (2011).
[Crossref] [PubMed]

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Jensen, J. A.

J. A. Jensen, “Field: a program for simulating ultrasound systems,” Med. Biol. Eng. Computing 34(1), 351–353 (1996).

J. A. Jensen and N. B. Svendsen, “Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 39(2), 262–267 (1992).
[Crossref]

Johnson, G. A.

W. P. Segars, B. M. W. Tsui, E. C. Frey, G. A. Johnson, and S. S. Berr, “Development of a 4D digital mouse phantom for molecular imaging research,” Mol. Imaging Biol. 6, 149–159 (2004).
[Crossref] [PubMed]

Jordan, A.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref]

Kahn, I.

G. Yona, N. Meitav, I. Kahn, and S. Shoham, “Realistic numerical and analytical modeling of light scattering in brain tissue for optogenetic applications,” eNeuro 3(1), 59 (2016).
[Crossref]

Kerhoas-Cavata, S.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Kerner, T.

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit Rev Oncol Hematol. 43(1), 33–56 (2002).
[Crossref] [PubMed]

Khaled, A.-R. A.

A.-R. A. Khaled and K. Vafai, “The role of porous media in modeling flow and heat transfer in biological tissues,” International Journal of Heat and Mass Transfer 46, 4989–5003 (2003).
[Crossref]

Kirov, A. S.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Kohli, V.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Koole, M.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Krieguer, M.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Kyriakou, A.

M. M. Paulides, P. R. Stauffer, E. Neufeld, P. Maccarini, A. Kyriakou, R. A. M. Canters, C. Diederich, J. F. Bakker, and G. C. Van Rhoon, “Simulation techniques in hyperthermia treatment planning,” Int. J. Hyperthermia 29(4), 346–357 (2013).
[Crossref] [PubMed]

Lamare, F.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Largeron, G.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Lartizien, C.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Lazaro, D.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Le, H. N. D.

LeBrun, A.

N. Manuchehrabadi, Y. Chen, A. LeBrun, R. Ma, and L. Zhu, “Computational simulation of temperature elevations in tumors using Monte Carlo method and comparison to experimental measurements in laser photothermal therapy,” Journal of Biomechanical Engineering B 135, 121007 (2013).
[Crossref]

Lee, M. H.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Lee, P.

J. Zhao, P. Lee, M. J. Wallace, and M. P. Melancon, “Gold Nanoparticles in Cancer Therapy: Efficacy, Biodistribution, and Toxicity,” Curr Pharm Des. 21(29), 4240–4251 (2015).
[Crossref] [PubMed]

Levendag, P. C.

Z. Rijnen, J. F. Bakker, R. A. Canters, P. Togni, G. M. Verduijn, P. C. Levendag, G. C. Van Rhoon, and M. M. Paulides, “Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck,” Int. J. Hyperthermia 29(3), 181–193 (2013).
[Crossref] [PubMed]

Luu, L.

Ma, R.

N. Manuchehrabadi, Y. Chen, A. LeBrun, R. Ma, and L. Zhu, “Computational simulation of temperature elevations in tumors using Monte Carlo method and comparison to experimental measurements in laser photothermal therapy,” Journal of Biomechanical Engineering B 135, 121007 (2013).
[Crossref]

Maas, M. C.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Maccarini, P.

M. M. Paulides, P. R. Stauffer, E. Neufeld, P. Maccarini, A. Kyriakou, R. A. M. Canters, C. Diederich, J. F. Bakker, and G. C. Van Rhoon, “Simulation techniques in hyperthermia treatment planning,” Int. J. Hyperthermia 29(4), 346–357 (2013).
[Crossref] [PubMed]

Maier-Hauff, K.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref]

Maigne, L.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy,” Phys. Med. Biol. 56, 881–901 (2011).
[Crossref] [PubMed]

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Manuchehrabadi, N.

N. Manuchehrabadi, Y. Chen, A. LeBrun, R. Ma, and L. Zhu, “Computational simulation of temperature elevations in tumors using Monte Carlo method and comparison to experimental measurements in laser photothermal therapy,” Journal of Biomechanical Engineering B 135, 121007 (2013).
[Crossref]

Markar, S. R.

M. Singh, D. C. C. Harris-Birtill, S. R. Markar, G. B. Hanna, and D. S. Elson, “Application of gold nanoparticles for gastrointestinal cancer theranostics: A systematic review,” Nanomedicine: Nanotechnology, Biology and Medicine 11(8), 2083–2098 (2015).

Mayet, F.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

McDonald, J.F.

E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J.F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008).
[Crossref] [PubMed]

McGough, R. J.

R. J. McGough, H. Wang, E. S. Ebbini, and C. A. Cain, “Mode scanning: heating pattern synthesis with ultrasound phased arrays,” Int. J. Hyperthermia 10(3), 433–442 (1994).
[Crossref] [PubMed]

Meitav, N.

G. Yona, N. Meitav, I. Kahn, and S. Shoham, “Realistic numerical and analytical modeling of light scattering in brain tissue for optogenetic applications,” eNeuro 3(1), 59 (2016).
[Crossref]

Melancon, M. P.

J. Zhao, P. Lee, M. J. Wallace, and M. P. Melancon, “Gold Nanoparticles in Cancer Therapy: Efficacy, Biodistribution, and Toxicity,” Curr Pharm Des. 21(29), 4240–4251 (2015).
[Crossref] [PubMed]

Melot, F.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Merheb, C.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Ming-Fong, T.

T. Ming-Fong, C. Shih-HuiGilbert, C. Fong-Yu, S. Vijayakumar, C. Yu-Sheng, S. Chia-Hao, and Y. Chen-Sheng, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref]

Mooney, R.

R. Mooney, E. Schena, A. Zhumkhawala, K. S. Aboody, and J. M. Berlin, “Internal temperature increase during photothermal tumour ablation in mice using gold nanorods,” in Proceedings of IEEE Conference of the Engineering in Medicine and Biology Society (IEEE, 2015), pp. 2563–2566.

R. Mooney, E. Schena, A. Zhumkhawala, K. S. Aboody, and J. M. Berlin, “Gold nanorod-mediated near-infrared laser ablation: in vivo experiments on mice and theoretical analysis at different settings,” Int J Hyperthermia1–10 (2016).
[Crossref] [PubMed]

Morel, C.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy,” Phys. Med. Biol. 56, 881–901 (2011).
[Crossref] [PubMed]

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Mungray, A. A.

Z. V. P. Murthy, A. A. Mungray, and J. Singh, “Preparation and characterization of acrylonitrile butadiene styrene and trifluoroacetylethyl cellulose blend nanofiltration membrane and performance in the separation of mercury,” Lecture Notes in Engineering and Computer Science (2012).

Murthy, Z. V. P.

Z. V. P. Murthy, A. A. Mungray, and J. Singh, “Preparation and characterization of acrylonitrile butadiene styrene and trifluoroacetylethyl cellulose blend nanofiltration membrane and performance in the separation of mercury,” Lecture Notes in Engineering and Computer Science (2012).

Nager, Z.

M. K. Popp, I. Oubou, C. Shepherd, Z. Nager, C. Anderson, and L. Pagliaro, “Photothermal therapy using gold nanorods and near-infrared light in a murine melanoma model increases survival and decreases tumor volume,” Journal of Nanomaterials 2014, 1–8 (2014).
[Crossref]

Neufeld, E.

M. M. Paulides, P. R. Stauffer, E. Neufeld, P. Maccarini, A. Kyriakou, R. A. M. Canters, C. Diederich, J. F. Bakker, and G. C. Van Rhoon, “Simulation techniques in hyperthermia treatment planning,” Int. J. Hyperthermia 29(4), 346–357 (2013).
[Crossref] [PubMed]

Nguyen, T. T. A.

Nobile, F.

L. Azzimonti, L. M. Sangalli, P. Secchi, M. Domanin, and F. Nobile, “Blood flow velocity field estimation via spatial regression with PDE penalization,” J. American Statistical Association 110(511), 1057 (2015).
[Crossref]

Oubou, I.

M. K. Popp, I. Oubou, C. Shepherd, Z. Nager, C. Anderson, and L. Pagliaro, “Photothermal therapy using gold nanorods and near-infrared light in a murine melanoma model increases survival and decreases tumor volume,” Journal of Nanomaterials 2014, 1–8 (2014).
[Crossref]

Ozawa, T.

R. Tsukada, S. Sumimoto, and T. Ozawa, “Thermal conductivity and heat capacity of ABS resin composites,” Journal of Applied Polymer Science 63(10), 1279–1286 (1997).
[Crossref]

Pagliaro, L.

M. K. Popp, I. Oubou, C. Shepherd, Z. Nager, C. Anderson, and L. Pagliaro, “Photothermal therapy using gold nanorods and near-infrared light in a murine melanoma model increases survival and decreases tumor volume,” Journal of Nanomaterials 2014, 1–8 (2014).
[Crossref]

Pain, F.

V. Cuplov, I. Buvat, F. Pain, and S. Jan, “Extension of the GATE Monte Carlo simulation package to model bioluminescence and fuorescence imaging,” J. Biomed. Opt. 19(2), 026004 (2014).
[Crossref] [PubMed]

Paulides, M. M.

M. M. Paulides, P. R. Stauffer, E. Neufeld, P. Maccarini, A. Kyriakou, R. A. M. Canters, C. Diederich, J. F. Bakker, and G. C. Van Rhoon, “Simulation techniques in hyperthermia treatment planning,” Int. J. Hyperthermia 29(4), 346–357 (2013).
[Crossref] [PubMed]

Z. Rijnen, J. F. Bakker, R. A. Canters, P. Togni, G. M. Verduijn, P. C. Levendag, G. C. Van Rhoon, and M. M. Paulides, “Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck,” Int. J. Hyperthermia 29(3), 181–193 (2013).
[Crossref] [PubMed]

Pennacchio, E.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Pennes, H. H.

H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” Journal of Applied Physiology 1(2), 93–122 (1948).
[PubMed]

Perez, J.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Perrot, Y.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy,” Phys. Med. Biol. 56, 881–901 (2011).
[Crossref] [PubMed]

Pietrzyk, U.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy,” Phys. Med. Biol. 56, 881–901 (2011).
[Crossref] [PubMed]

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Plenderleith, I. H.

I. H. Plenderleith, “Treating the treatment: toxicity of cancer chemotherapy,” Can. Fam. Physician 36, 1827–1830 (1990).
[PubMed]

Popp, M. K.

M. K. Popp, I. Oubou, C. Shepherd, Z. Nager, C. Anderson, and L. Pagliaro, “Photothermal therapy using gold nanorods and near-infrared light in a murine melanoma model increases survival and decreases tumor volume,” Journal of Nanomaterials 2014, 1–8 (2014).
[Crossref]

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Pushpanketh, S.

E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J.F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008).
[Crossref] [PubMed]

Qin, Z.

Z. Qin and J. C. Bischof, “Thermophysical and biological responses of gold nanoparticle laser heating,” Chem. Soc. Rev. 41(3), 1191–1217 (2012).
[Crossref]

Quarteroni, A.

A. Quarteroni, A. Veneziani, and P. Zunino, “A domain decomposition method for advection-diffusion processes with application to blood solutes,” Siam J. Sci. Comput. 23(6), 1959–1980 (2002).
[Crossref]

Ramella-Roman, J. C.

Rannou, F. R.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Rehfeld, N.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy,” Phys. Med. Biol. 56, 881–901 (2011).
[Crossref] [PubMed]

Rey, M.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Ribeiro, M. S.

C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” Journal Photochem. Photobiol. B 160, 72–78 (2016).
[Crossref]

Riess, H.

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit Rev Oncol Hematol. 43(1), 33–56 (2002).
[Crossref] [PubMed]

Rijnen, Z.

Z. Rijnen, J. F. Bakker, R. A. Canters, P. Togni, G. M. Verduijn, P. C. Levendag, G. C. Van Rhoon, and M. M. Paulides, “Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck,” Int. J. Hyperthermia 29(3), 181–193 (2013).
[Crossref] [PubMed]

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Rothe, R.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref]

Sabino, C. P.

C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” Journal Photochem. Photobiol. B 160, 72–78 (2016).
[Crossref]

Sangalli, L. M.

L. Azzimonti, L. M. Sangalli, P. Secchi, M. Domanin, and F. Nobile, “Blood flow velocity field estimation via spatial regression with PDE penalization,” J. American Statistical Association 110(511), 1057 (2015).
[Crossref]

Santin, G.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Sarrut, D.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy,” Phys. Med. Biol. 56, 881–901 (2011).
[Crossref] [PubMed]

Schaart, D. R.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy,” Phys. Med. Biol. 56, 881–901 (2011).
[Crossref] [PubMed]

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Schena, E.

R. Mooney, E. Schena, A. Zhumkhawala, K. S. Aboody, and J. M. Berlin, “Gold nanorod-mediated near-infrared laser ablation: in vivo experiments on mice and theoretical analysis at different settings,” Int J Hyperthermia1–10 (2016).
[Crossref] [PubMed]

R. Mooney, E. Schena, A. Zhumkhawala, K. S. Aboody, and J. M. Berlin, “Internal temperature increase during photothermal tumour ablation in mice using gold nanorods,” in Proceedings of IEEE Conference of the Engineering in Medicine and Biology Society (IEEE, 2015), pp. 2563–2566.

Schiela, A.

P. Deuflhard, A. Schiela, and M. Weiser, “Mathematical cancer therapy planning in deep regional hyperthermia,” Acta Numerica 21, 307–378 (2012).
[Crossref]

Schmidtlein, C. R.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Scholz, R.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref]

Secchi, P.

L. Azzimonti, L. M. Sangalli, P. Secchi, M. Domanin, and F. Nobile, “Blood flow velocity field estimation via spatial regression with PDE penalization,” J. American Statistical Association 110(511), 1057 (2015).
[Crossref]

Segars, W. P.

W. P. Segars, B. M. W. Tsui, E. C. Frey, G. A. Johnson, and S. S. Berr, “Development of a 4D digital mouse phantom for molecular imaging research,” Mol. Imaging Biol. 6, 149–159 (2004).
[Crossref] [PubMed]

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Shepherd, C.

M. K. Popp, I. Oubou, C. Shepherd, Z. Nager, C. Anderson, and L. Pagliaro, “Photothermal therapy using gold nanorods and near-infrared light in a murine melanoma model increases survival and decreases tumor volume,” Journal of Nanomaterials 2014, 1–8 (2014).
[Crossref]

Shih-HuiGilbert, C.

T. Ming-Fong, C. Shih-HuiGilbert, C. Fong-Yu, S. Vijayakumar, C. Yu-Sheng, S. Chia-Hao, and Y. Chen-Sheng, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref]

Shoham, S.

G. Yona, N. Meitav, I. Kahn, and S. Shoham, “Realistic numerical and analytical modeling of light scattering in brain tissue for optogenetic applications,” eNeuro 3(1), 59 (2016).
[Crossref]

Simon, L.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Singh, J.

Z. V. P. Murthy, A. A. Mungray, and J. Singh, “Preparation and characterization of acrylonitrile butadiene styrene and trifluoroacetylethyl cellulose blend nanofiltration membrane and performance in the separation of mercury,” Lecture Notes in Engineering and Computer Science (2012).

Singh, M.

M. Singh, D. C. C. Harris-Birtill, S. R. Markar, G. B. Hanna, and D. S. Elson, “Application of gold nanoparticles for gastrointestinal cancer theranostics: A systematic review,” Nanomedicine: Nanotechnology, Biology and Medicine 11(8), 2083–2098 (2015).

Song, T. Y.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Sreenivasa, G.

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit Rev Oncol Hematol. 43(1), 33–56 (2002).
[Crossref] [PubMed]

Staelens, S.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Stauffer, P. R.

M. M. Paulides, P. R. Stauffer, E. Neufeld, P. Maccarini, A. Kyriakou, R. A. M. Canters, C. Diederich, J. F. Bakker, and G. C. Van Rhoon, “Simulation techniques in hyperthermia treatment planning,” Int. J. Hyperthermia 29(4), 346–357 (2013).
[Crossref] [PubMed]

Strul, D.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Stute, S.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy,” Phys. Med. Biol. 56, 881–901 (2011).
[Crossref] [PubMed]

Sumimoto, S.

R. Tsukada, S. Sumimoto, and T. Ozawa, “Thermal conductivity and heat capacity of ABS resin composites,” Journal of Applied Polymer Science 63(10), 1279–1286 (1997).
[Crossref]

Svendsen, N. B.

J. A. Jensen and N. B. Svendsen, “Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 39(2), 262–267 (1992).
[Crossref]

Thiesen, B.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref]

Togni, P.

Z. Rijnen, J. F. Bakker, R. A. Canters, P. Togni, G. M. Verduijn, P. C. Levendag, G. C. Van Rhoon, and M. M. Paulides, “Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck,” Int. J. Hyperthermia 29(3), 181–193 (2013).
[Crossref] [PubMed]

Treeby, B. E.

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

Tsui, B. M. W.

W. P. Segars, B. M. W. Tsui, E. C. Frey, G. A. Johnson, and S. S. Berr, “Development of a 4D digital mouse phantom for molecular imaging research,” Mol. Imaging Biol. 6, 149–159 (2004).
[Crossref] [PubMed]

Tsukada, R.

R. Tsukada, S. Sumimoto, and T. Ozawa, “Thermal conductivity and heat capacity of ABS resin composites,” Journal of Applied Polymer Science 63(10), 1279–1286 (1997).
[Crossref]

Vafai, K.

A.-R. A. Khaled and K. Vafai, “The role of porous media in modeling flow and heat transfer in biological tissues,” International Journal of Heat and Mass Transfer 46, 4989–5003 (2003).
[Crossref]

Van de Walle, R.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

van der Laan, D. J.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Van Rhoon, G. C.

Z. Rijnen, J. F. Bakker, R. A. Canters, P. Togni, G. M. Verduijn, P. C. Levendag, G. C. Van Rhoon, and M. M. Paulides, “Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck,” Int. J. Hyperthermia 29(3), 181–193 (2013).
[Crossref] [PubMed]

M. M. Paulides, P. R. Stauffer, E. Neufeld, P. Maccarini, A. Kyriakou, R. A. M. Canters, C. Diederich, J. F. Bakker, and G. C. Van Rhoon, “Simulation techniques in hyperthermia treatment planning,” Int. J. Hyperthermia 29(4), 346–357 (2013).
[Crossref] [PubMed]

Veneziani, A.

A. Quarteroni, A. Veneziani, and P. Zunino, “A domain decomposition method for advection-diffusion processes with application to blood solutes,” Siam J. Sci. Comput. 23(6), 1959–1980 (2002).
[Crossref]

Verduijn, G. M.

Z. Rijnen, J. F. Bakker, R. A. Canters, P. Togni, G. M. Verduijn, P. C. Levendag, G. C. Van Rhoon, and M. M. Paulides, “Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck,” Int. J. Hyperthermia 29(3), 181–193 (2013).
[Crossref] [PubMed]

Vieira, J-M.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Vijayakumar, S.

T. Ming-Fong, C. Shih-HuiGilbert, C. Fong-Yu, S. Vijayakumar, C. Yu-Sheng, S. Chia-Hao, and Y. Chen-Sheng, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref]

Visvikis, D.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy,” Phys. Med. Biol. 56, 881–901 (2011).
[Crossref] [PubMed]

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Vo, M.

von Deimling, A.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref]

Waldoefner, N.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref]

Wallace, M. J.

J. Zhao, P. Lee, M. J. Wallace, and M. P. Melancon, “Gold Nanoparticles in Cancer Therapy: Efficacy, Biodistribution, and Toxicity,” Curr Pharm Des. 21(29), 4240–4251 (2015).
[Crossref] [PubMed]

Wang, C.

Q. Q. Zhang, X. J. Wu, C. Wang, S. W. Zhu, Y. L. Wang, B. Z. Gao, and X.-C. Yuan, “Scattering coefficients of mice organs categorized pathologically by spectral domain optical coherence tomography,” BioMed Research International 2014, 13 (2014).
[Crossref]

Wang, H.

R. J. McGough, H. Wang, E. S. Ebbini, and C. A. Cain, “Mode scanning: heating pattern synthesis with ultrasound phased arrays,” Int. J. Hyperthermia 10(3), 433–442 (1994).
[Crossref] [PubMed]

Wang, Y. L.

Q. Q. Zhang, X. J. Wu, C. Wang, S. W. Zhu, Y. L. Wang, B. Z. Gao, and X.-C. Yuan, “Scattering coefficients of mice organs categorized pathologically by spectral domain optical coherence tomography,” BioMed Research International 2014, 13 (2014).
[Crossref]

Wang, Z.

Weiser, M.

P. Deuflhard, A. Schiela, and M. Weiser, “Mathematical cancer therapy planning in deep regional hyperthermia,” Acta Numerica 21, 307–378 (2012).
[Crossref]

West, J. L.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Wiëers, E.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

Wissler, E. H.

E. H. Wissler, “Pennes’ 1948 paper revisited,” J. Appl. Physiol. 85(1), 35–41 (1998).
[PubMed]

Wu, X. J.

Q. Q. Zhang, X. J. Wu, C. Wang, S. W. Zhu, Y. L. Wang, B. Z. Gao, and X.-C. Yuan, “Scattering coefficients of mice organs categorized pathologically by spectral domain optical coherence tomography,” BioMed Research International 2014, 13 (2014).
[Crossref]

Wust, P.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref]

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit Rev Oncol Hematol. 43(1), 33–56 (2002).
[Crossref] [PubMed]

Yona, G.

G. Yona, N. Meitav, I. Kahn, and S. Shoham, “Realistic numerical and analytical modeling of light scattering in brain tissue for optogenetic applications,” eNeuro 3(1), 59 (2016).
[Crossref]

Yoshimura, T. M.

C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” Journal Photochem. Photobiol. B 160, 72–78 (2016).
[Crossref]

Yuan, X.-C.

Q. Q. Zhang, X. J. Wu, C. Wang, S. W. Zhu, Y. L. Wang, B. Z. Gao, and X.-C. Yuan, “Scattering coefficients of mice organs categorized pathologically by spectral domain optical coherence tomography,” BioMed Research International 2014, 13 (2014).
[Crossref]

Yu-Sheng, C.

T. Ming-Fong, C. Shih-HuiGilbert, C. Fong-Yu, S. Vijayakumar, C. Yu-Sheng, S. Chia-Hao, and Y. Chen-Sheng, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref]

Zahra, N.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy,” Phys. Med. Biol. 56, 881–901 (2011).
[Crossref] [PubMed]

Zhang, Q. Q.

Q. Q. Zhang, X. J. Wu, C. Wang, S. W. Zhu, Y. L. Wang, B. Z. Gao, and X.-C. Yuan, “Scattering coefficients of mice organs categorized pathologically by spectral domain optical coherence tomography,” BioMed Research International 2014, 13 (2014).
[Crossref]

Zhao, J.

J. Zhao, P. Lee, M. J. Wallace, and M. P. Melancon, “Gold Nanoparticles in Cancer Therapy: Efficacy, Biodistribution, and Toxicity,” Curr Pharm Des. 21(29), 4240–4251 (2015).
[Crossref] [PubMed]

Zhu, L.

N. Manuchehrabadi, Y. Chen, A. LeBrun, R. Ma, and L. Zhu, “Computational simulation of temperature elevations in tumors using Monte Carlo method and comparison to experimental measurements in laser photothermal therapy,” Journal of Biomechanical Engineering B 135, 121007 (2013).
[Crossref]

Zhu, S. W.

Q. Q. Zhang, X. J. Wu, C. Wang, S. W. Zhu, Y. L. Wang, B. Z. Gao, and X.-C. Yuan, “Scattering coefficients of mice organs categorized pathologically by spectral domain optical coherence tomography,” BioMed Research International 2014, 13 (2014).
[Crossref]

Zhumkhawala, A.

R. Mooney, E. Schena, A. Zhumkhawala, K. S. Aboody, and J. M. Berlin, “Internal temperature increase during photothermal tumour ablation in mice using gold nanorods,” in Proceedings of IEEE Conference of the Engineering in Medicine and Biology Society (IEEE, 2015), pp. 2563–2566.

R. Mooney, E. Schena, A. Zhumkhawala, K. S. Aboody, and J. M. Berlin, “Gold nanorod-mediated near-infrared laser ablation: in vivo experiments on mice and theoretical analysis at different settings,” Int J Hyperthermia1–10 (2016).
[Crossref] [PubMed]

Zunino, P.

A. Quarteroni, A. Veneziani, and P. Zunino, “A domain decomposition method for advection-diffusion processes with application to blood solutes,” Siam J. Sci. Comput. 23(6), 1959–1980 (2002).
[Crossref]

ACS Nano (1)

T. Ming-Fong, C. Shih-HuiGilbert, C. Fong-Yu, S. Vijayakumar, C. Yu-Sheng, S. Chia-Hao, and Y. Chen-Sheng, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref]

Acta Numerica (1)

P. Deuflhard, A. Schiela, and M. Weiser, “Mathematical cancer therapy planning in deep regional hyperthermia,” Acta Numerica 21, 307–378 (2012).
[Crossref]

Acta Physiol. Scand. (1)

P. Faber and L. Garby, “Fat content affects heat capacity: a study in mice,” Acta Physiol. Scand. 153(2), 185–187 (1995).
[Crossref] [PubMed]

Ann. NY Acad. Sci. (1)

K. R. Holmes, “Thermal conductivity of selected tissues,” Biotransport: Heat and Mass Transfer in Living Systems”, Ann. NY Acad. Sci. 858, 18–20 (1998).

BioMed Research International (1)

Q. Q. Zhang, X. J. Wu, C. Wang, S. W. Zhu, Y. L. Wang, B. Z. Gao, and X.-C. Yuan, “Scattering coefficients of mice organs categorized pathologically by spectral domain optical coherence tomography,” BioMed Research International 2014, 13 (2014).
[Crossref]

Biomed. Opt. Express (1)

Can. Fam. Physician (1)

I. H. Plenderleith, “Treating the treatment: toxicity of cancer chemotherapy,” Can. Fam. Physician 36, 1827–1830 (1990).
[PubMed]

Cancer Lett. (1)

E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J.F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

Z. Qin and J. C. Bischof, “Thermophysical and biological responses of gold nanoparticle laser heating,” Chem. Soc. Rev. 41(3), 1191–1217 (2012).
[Crossref]

CRC Critical Reviews in Therapeutic drug carrier systems (1)

S. J. Douglas, S. S. Davis, and L. Illum, “Nanoparticles in drug delivery,” CRC Critical Reviews in Therapeutic drug carrier systems 3(3), 233–261 (1987).
[PubMed]

Crit Rev Oncol Hematol. (1)

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit Rev Oncol Hematol. 43(1), 33–56 (2002).
[Crossref] [PubMed]

Curr Pharm Des. (1)

J. Zhao, P. Lee, M. J. Wallace, and M. P. Melancon, “Gold Nanoparticles in Cancer Therapy: Efficacy, Biodistribution, and Toxicity,” Curr Pharm Des. 21(29), 4240–4251 (2015).
[Crossref] [PubMed]

eNeuro (1)

G. Yona, N. Meitav, I. Kahn, and S. Shoham, “Realistic numerical and analytical modeling of light scattering in brain tissue for optogenetic applications,” eNeuro 3(1), 59 (2016).
[Crossref]

IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control (1)

J. A. Jensen and N. B. Svendsen, “Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 39(2), 262–267 (1992).
[Crossref]

Int. J. Hyperthermia (3)

M. M. Paulides, P. R. Stauffer, E. Neufeld, P. Maccarini, A. Kyriakou, R. A. M. Canters, C. Diederich, J. F. Bakker, and G. C. Van Rhoon, “Simulation techniques in hyperthermia treatment planning,” Int. J. Hyperthermia 29(4), 346–357 (2013).
[Crossref] [PubMed]

Z. Rijnen, J. F. Bakker, R. A. Canters, P. Togni, G. M. Verduijn, P. C. Levendag, G. C. Van Rhoon, and M. M. Paulides, “Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck,” Int. J. Hyperthermia 29(3), 181–193 (2013).
[Crossref] [PubMed]

R. J. McGough, H. Wang, E. S. Ebbini, and C. A. Cain, “Mode scanning: heating pattern synthesis with ultrasound phased arrays,” Int. J. Hyperthermia 10(3), 433–442 (1994).
[Crossref] [PubMed]

International Journal of Heat and Mass Transfer (1)

A.-R. A. Khaled and K. Vafai, “The role of porous media in modeling flow and heat transfer in biological tissues,” International Journal of Heat and Mass Transfer 46, 4989–5003 (2003).
[Crossref]

J. Adv. Res. (1)

X. Huanga and M. A. El-Sayeda, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
[Crossref]

J. American Statistical Association (1)

L. Azzimonti, L. M. Sangalli, P. Secchi, M. Domanin, and F. Nobile, “Blood flow velocity field estimation via spatial regression with PDE penalization,” J. American Statistical Association 110(511), 1057 (2015).
[Crossref]

J. Appl. Physiol. (1)

E. H. Wissler, “Pennes’ 1948 paper revisited,” J. Appl. Physiol. 85(1), 35–41 (1998).
[PubMed]

J. Biomed. Opt. (2)

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

V. Cuplov, I. Buvat, F. Pain, and S. Jan, “Extension of the GATE Monte Carlo simulation package to model bioluminescence and fuorescence imaging,” J. Biomed. Opt. 19(2), 026004 (2014).
[Crossref] [PubMed]

J. Chem. Phys. (1)

J. C. Hindman, “Proton resonance shift of water in the gas and liquid states,” J. Chem. Phys. 44, 4582–4592 (1996).
[Crossref]

J. Neurooncol. (1)

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref]

Journal of Applied Physiology (1)

H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” Journal of Applied Physiology 1(2), 93–122 (1948).
[PubMed]

Journal of Applied Polymer Science (1)

R. Tsukada, S. Sumimoto, and T. Ozawa, “Thermal conductivity and heat capacity of ABS resin composites,” Journal of Applied Polymer Science 63(10), 1279–1286 (1997).
[Crossref]

Journal of Biomechanical Engineering B (1)

N. Manuchehrabadi, Y. Chen, A. LeBrun, R. Ma, and L. Zhu, “Computational simulation of temperature elevations in tumors using Monte Carlo method and comparison to experimental measurements in laser photothermal therapy,” Journal of Biomechanical Engineering B 135, 121007 (2013).
[Crossref]

Journal of Nanomaterials (1)

M. K. Popp, I. Oubou, C. Shepherd, Z. Nager, C. Anderson, and L. Pagliaro, “Photothermal therapy using gold nanorods and near-infrared light in a murine melanoma model increases survival and decreases tumor volume,” Journal of Nanomaterials 2014, 1–8 (2014).
[Crossref]

Journal Photochem. Photobiol. B (1)

C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” Journal Photochem. Photobiol. B 160, 72–78 (2016).
[Crossref]

Med. Biol. Eng. Computing (1)

J. A. Jensen, “Field: a program for simulating ultrasound systems,” Med. Biol. Eng. Computing 34(1), 351–353 (1996).

Medical instrumentation (1)

C. F. Babbs and D. P. DeWitt, “Physical principles of local heat therapy for cancer,” Medical instrumentation 15(6), 367–373 (1980).

Mol. Imaging Biol. (1)

W. P. Segars, B. M. W. Tsui, E. C. Frey, G. A. Johnson, and S. S. Berr, “Development of a 4D digital mouse phantom for molecular imaging research,” Mol. Imaging Biol. 6, 149–159 (2004).
[Crossref] [PubMed]

Nano Lett. (1)

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Nanomedicine: Nanotechnology, Biology and Medicine (1)

M. Singh, D. C. C. Harris-Birtill, S. R. Markar, G. B. Hanna, and D. S. Elson, “Application of gold nanoparticles for gastrointestinal cancer theranostics: A systematic review,” Nanomedicine: Nanotechnology, Biology and Medicine 11(8), 2083–2098 (2015).

Phys. Med. Biol. (3)

J. W. Hand, “Modelling the interaction of electromagnetic fields (10 MHz – 10 GHz) withe the human body: methods and applications,” Phys. Med. Biol. 53(16), 243–286 (2008).
[Crossref]

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J-M. Vieira, D. Visvikis, R. Van de Walle, E. Wiëers, and C. Morel, “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol. 49, 4543–45461 (2004).
[Crossref] [PubMed]

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy,” Phys. Med. Biol. 56, 881–901 (2011).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Siam J. Sci. Comput. (1)

A. Quarteroni, A. Veneziani, and P. Zunino, “A domain decomposition method for advection-diffusion processes with application to blood solutes,” Siam J. Sci. Comput. 23(6), 1959–1980 (2002).
[Crossref]

Other (7)

Insight Segmentation and Registration Toolkit http://www.itk.org .

P. A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, M. C. Gosselin, D. Payne, A. Klingenböck, and N. Kuster, “IT’IS database for thermal and electromagnetic parameters of biological tissues,” (2015) www.itis.ethz.ch/database .

Z. V. P. Murthy, A. A. Mungray, and J. Singh, “Preparation and characterization of acrylonitrile butadiene styrene and trifluoroacetylethyl cellulose blend nanofiltration membrane and performance in the separation of mercury,” Lecture Notes in Engineering and Computer Science (2012).

http://www.comsol.com

ClinicalTrials.gov, “Pilot study of auroLaseTM therapy in refractory and/or recurrent tumors of the head and neck,” https://clinicaltrials.gov/ct2/show/NCT00848042 .

R. Mooney, E. Schena, A. Zhumkhawala, K. S. Aboody, and J. M. Berlin, “Internal temperature increase during photothermal tumour ablation in mice using gold nanorods,” in Proceedings of IEEE Conference of the Engineering in Medicine and Biology Society (IEEE, 2015), pp. 2563–2566.

R. Mooney, E. Schena, A. Zhumkhawala, K. S. Aboody, and J. M. Berlin, “Gold nanorod-mediated near-infrared laser ablation: in vivo experiments on mice and theoretical analysis at different settings,” Int J Hyperthermia1–10 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Procedure implemented in GATE in order to account for the diffusion of heat during illumination. In this schema, the n seconds simulation is sampled into p 3D photon absorption maps; each simulation sample corresponds to a laser illumination duration time of n/p seconds.
Fig. 2
Fig. 2 Validation benchmark for the heat diffusion process.
Fig. 3
Fig. 3 Thermal diffusivity values of human biological tissues.
Fig. 4
Fig. 4 The experimental benchmark consists of a phantom made of acrylonitrile butadiene styrene in which an optical fiber is introduced 1 mm under the phantom surface pointing towards a thermal camera.
Fig. 5
Fig. 5 Figure extracted from Hirsch et al. [7] showing the measured temperature rise in a region of interest at 0, 1, 3 and 6 minutes for nanoshell treatment (a) and control treatment (b) plotted as a function of depth from skin surface.
Fig. 6
Fig. 6 Validation of the heat diffusion in GATE versus MATLAB. (A) Radiant energy (in eV) in the voxels located in the middle of the XY plane of the phantom from Fig. 2 for both simulation codes. (B) Relative error in % between GATE and MATLAB.
Fig. 7
Fig. 7 Heat (in eV) as function of the diffusion time at the center of the XY plane of the phantom when using the true or a mean value for the tissue thermal diffusivity.
Fig. 8
Fig. 8 Relative change in heat as function of the relative change in the biological tissue thermal diffusivity. For most of the biological tissues, the associated relative change in heat is below 5% and is shown by the dashed region.
Fig. 9
Fig. 9 Validation of the heat diffusion with experimental data. (A) Temperature kinetics in the ABS phantom described in Fig. 4 as function of the experiment acquisition time. (B) Relative error between the simulation and the experimental data.
Fig. 10
Fig. 10 Temperature rise as a function of the depth from skin for a region of interest at the center of the tumor site at 1, 3 and 6 minutes of nanoshell-mediated near-infrared thermal therapy treatment.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

μ a = N × C a b s .
Q h e a t = N × Q N P = N × C a b s × I
Δ T = N × R 2 × C a b s × I 2 k
I voxel = voxel × 1.6 × 10 19 t laser × area voxel
T t = k ρ c 2 T + ρ b c b ρ c w b ( T a T ) + Q with T = T ( x , y , z , t ) .
( T t ) = k ρ c ( 2 T ) ρ b c b ρ c w b ( T ) where T = T T a .
t ( T ) + ( ω 2 K 1 + K 2 ) ( T ) = 0 with K 1 = k ρ c and K 2 = ρ b c b ρ c w b .
t [ e ( ω 2 K 1 + K 2 ) t ( T ) ] = 0
( T ) = c ( ω ) e ( ω 2 K 1 + K 2 ) t with c ( ω ) = [ T ( x , y , z , 0 ) ] .
T ( x , y , z , t ) = [ T ( x , y , z , 0 ) T a ] 1 ( 4 π K 1 t ) 3 / 2 e x 2 + y 2 + z 2 / 4 K 1 t × e K 2 t + T a .
T t = k ρ c 2 T u T + Q
T ( i , t + Δ t ) = T ( i , t ) + K 1 Δ t Δ x 2 [ T ( i 1 , t ) + T ( i + 1 , t ) 2 T ( i , t ) ] + u Δ t 2 Δ x [ T ( i 1 , t ) T ( i + 1 , t ) ] .
N A = n × s i n ( θ ) ,
Q = m × C p × Δ T
N = N 0 e μ a x
voxel ( ° C ) = voxel ( eV ) × f c o n v e r s i o n f c o n v e r s i o n = 1.6 × 10 19 m A B S v o x e l ( g ) × C p ( J g 1 ° C 1 ) ,
voxel ( ° C ) = voxel ( eV ) × 1.3 × 10 12 time ( s ) with time = [ 60 , 180 , 360 ] .

Metrics