Abstract

A multimodal endomicroscope was developed for cancer detection that combines hyperspectral and confocal imaging through a single foveated objective and a vibrating optical fiber bundle. Standard clinical examination has a limited ability to identify early stage oral cancer. Optical detection methods are typically restricted by either achievable resolution or a small field-of-view. By combining high resolution and widefield spectral imaging into a single probe, a device was developed that provides spectral and spatial information over a 5 mm field to locate suspicious lesions that can then be inspected in high resolution mode. The device was evaluated on ex vivo biopsies of human oral tumors.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution endomicroscopy with a spectrally encoded miniature objective

Hamin Jeon, Michal E. Pawlowski, and Tomasz S. Tkaczyk
Biomed. Opt. Express 10(3) 1432-1445 (2019)

Achromatized endomicroscope objective for optical biopsy

Matthew Kyrish and Tomasz S. Tkaczyk
Biomed. Opt. Express 4(2) 287-297 (2013)

Toward development of a large field-of-view cancer screening patch (CASP) to detect cervical intraepithelial neoplasia

John Gawedzinski, Kathleen M. Schmeler, Andrea Milbourne, Preetha Ramalingam, Parnian A. Moghaddam, Rebecca Richards-Kortum, and Tomasz S. Tkaczyk
Biomed. Opt. Express 10(12) 6145-6159 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2016,” CA Cancer J. Clin. 66(1), 7–30 (2016).
    [Crossref] [PubMed]
  2. J. B. Epstein, P. Güneri, H. Boyacioglu, and E. Abt, “The limitations of the clinical oral examination in detecting dysplastic oral lesions and oral squamous cell carcinoma,” J. Am. Dent. Assoc. 143(12), 1332–1342 (2012).
    [Crossref] [PubMed]
  3. S. G. Patel and J. P. Shah, “TNM staging of cancers of the head and neck: striving for uniformity among diversity,” CA Cancer J. Clin. 55(4), 242–258 (2005).
    [Crossref] [PubMed]
  4. Y. Yang, Y.-X. Li, X. Yang, L. Jiang, Z.-J. Zhou, and Y.-Q. Zhu, “Progress risk assessment of oral premalignant lesions with saliva miRNA analysis,” BMC Cancer 2013, 13 (2013).
  5. M. C. Pierce, R. A. Schwarz, V. S. Bhattar, S. Mondrik, M. D. Williams, J. J. Lee, R. Richards-Kortum, and A. M. Gillenwater, “Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia,” Cancer Prev. Res. (Phila.) 5(6), 801–809 (2012).
    [Crossref] [PubMed]
  6. D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, “Multispectral optical imaging device for in vivo detection of oral neoplasia,” J. Biomed. Opt. 13(2), 024019 (2008).
    [Crossref] [PubMed]
  7. B. H. Malik, J. M. Jabbour, S. Cheng, R. Cuenca, Y.-S. L. Cheng, J. M. Wright, J. A. Jo, and K. C. Maitland, “A novel multimodal optical imaging system for early detection of oral cancer,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 121(3), 290–300 (2016).
    [Crossref] [PubMed]
  8. I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the Biological basis of Autofluorescence Imaging for Oral Cancer Detection: High-Resolution Fluorescence Microscopy in Viable Tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
    [Crossref] [PubMed]
  9. D. V. Messadi, F. S. Younai, H.-H. Liu, G. Guo, and C.-Y. Wang, “The clinical effectiveness of reflectance optical spectroscopy for the in vivo diagnosis of oral lesions,” Int. J. Oral. Sci. 6, 162–167 (2014).
  10. D. C. G. de Veld, M. Skurichina, M. J. H. Witjes, R. P. W. Duin, H. J. C. M. Sterenborg, and J. L. N. Roodenburg, “Clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy,” J. Biomed. Opt. 9, 940–950 (2004).
  11. N. Bhatia, Y. Lalla, A. N. Vu, and C. S. Farah, “Advances in Optical Adjunctive Aids for Visualisation and Detection of Oral Malignant and Potentially Malignant Lesions,” Int. J. Dentistry 2013, 1–17 (2013).
  12. M. Rana, A. Zapf, M. Kuehle, N.-C. Gellrich, and A. M. Eckardt, ““Clinical evaluation of an autofluorescence diagnostic device for oral cancer detection,” 5,” Eur. J. Cancer Prev. 21(5), 460–466 (2012).
    [Crossref] [PubMed]
  13. K. H. Awan, P. R. Morgan, and S. Warnakulasuriya, “Evaluation of an autofluorescence based imaging system (VELscope™) in the detection of oral potentially malignant disorders and benign keratoses,” Oral Oncol. 47(4), 274–277 (2011).
    [Crossref] [PubMed]
  14. K. K. McNamara, B. D. Martin, E. W. Evans, and J. R. Kalmar, “The role of direct visual fluorescent examination (VELscope) in routine screening for potentially malignant oral mucosal lesions,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 114(5), 636–643 (2012).
    [Crossref] [PubMed]
  15. H. Hanken, J. Kraatz, R. Smeets, M. Heiland, M. Blessmann, W. Eichhorn, T. S. Clauditz, A. Grobe, A. Kolk, and M. Rana, “The detection of oral pre- malignant lesions with an autofluorescence based imaging system (VELscopeTM) – a single blinded clinical evaluation,” Head Face Medicine 9, 23 (2013).
  16. T. Meyer, O. Guntinas-Lichius, F. von Eggeling, G. Ernst, D. Akimov, M. Schmitt, B. Dietzek, and J. Popp, “Multimodal nonlinear microscopic investigations on head and neck squamous cell carcinoma: Toward intraoperative imaging,” 9, Head Neck 35, A. Chen, Ed., E280–E287 (2012).
  17. R. Pal, J. Yang, D. Ortiz, S. Qiu, V. Resto, S. McCammon, and G. Vargas, “In-Vivo Nonlinear Optical Microscopy (NLOM) of Epithelial-Connective Tissue Interface (ECTI) Reveals Quantitative Measures of Neoplasia in Hamster Oral Mucosa,” 1, PLoS ONE 10, W.-C. Chin, Ed., e0116754, Public Library of Science (2015).
  18. F. L. Cals, T. C. B. Schut, J. A. Hardillo, R. J. B. de Jong, S. Koljenović, and G. J. Puppels, “Investigation of the potential of Raman spectroscopy for oral cancer detection in surgical margins,” Laboratory Investigation 95, 1186–1196 (2015).
  19. K. Guze, H. C. Pawluk, M. Short, H. Zeng, J. Lorch, C. Norris, and S. Sonis, “Pilot study: Raman spectroscopy in differentiating premalignant and malignant oral lesions from normal mucosa and benign lesions in humans,” Head Neck 37(4), 511–517 (2015).
    [Crossref] [PubMed]
  20. J. M. Jabbour, S. Cheng, B. H. Malik, R. Cuenca, J. A. Jo, J. Wright, Y.-S. L. Cheng, and K. C. Maitland, “Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer,” J. Biomed. Opt. 18, 046012 (2013).
  21. H. Fatakdawala, S. Poti, F. Zhou, Y. Sun, J. Bec, J. Liu, D. R. Yankelevich, S. P. Tinling, and R. F. Gandour-Edwards, “Multimodal in vivo imaging of oral cancer using fluorescence lifetime, photoacoustic and ultrasound techniques,” Biomed. Opt. Express 4, 1724–1741 (2013).
  22. B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12, 363–368 (2012).
  23. Z. Hamdoon, W. Jerjes, G. McKenzie, A. Jay, and C. Hopper, “Optical coherence tomography in the assessment of oral squamous cell carcinoma resection margins,” Photodiagn. Photodyn. Ther. 13, 211–217 (2016).
    [Crossref] [PubMed]
  24. G. Einstein, K. Udayakumar, P. R. Aruna, D. Koteeswaran, and S. Ganesan, “Diffuse reflectance spectroscopy for monitoring physiological and morphological changes in oral cancer,” Optik 127, 1479–1485 (2016).
  25. A. L. N. Francisco, W. R. Correr, L. H. Azevedo, V. G. Kern, C. A. L. Pinto, L. P. Kowalski, and C. Kurachi, “Fluorescence spectroscopy for the detection of potentially malignant disorders and squamous cell carcinoma of the oral cavity,” Photodiagn. Photodyn. Ther. 11(2), 82–90 (2014).
    [Crossref] [PubMed]
  26. H.-C. Wang, M.-T. Tsai, and C.-P. Chiang, “Visual perception enhancement for detection of cancerous oral tissue by multi-spectral imaging,” J. Opt. 15, 055301 (2013).
  27. N. Bedard, R. A. Schwarz, A. Hu, V. Bhattar, J. Howe, M. D. Williams, A. M. Gillenwater, R. Richards-Kortum, and T. S. Tkaczyk, “Multimodal snapshot spectral imaging for oral cancer diagnostics: a pilot study,” Biomed. Opt. Express 4, 938–949 (2013).
  28. N. G. Maher, H. Collgros, P. Uribe, S. Ch’ng, M. Rajadhyaksha, and P. Guitera, “In vivo confocal microscopy for the oral cavity: Current state of the field and future potential,” Oral Oncol. 54, 28–35 (2016).
    [Crossref] [PubMed]
  29. A. Shadfan, A. Hellebust, R. Richards-Kortum, and T. Tkaczyk, “Confocal foveated endomicroscope for the detection of esophageal carcinoma,” Biomed. Opt. Express 6(7), 2311–2324 (2015).
    [Crossref] [PubMed]
  30. R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
    [Crossref] [PubMed]
  31. A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(20), 4833–4840 (2012).
    [Crossref] [PubMed]
  32. L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18, 14330–14344 (2010).
  33. N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51, 111711 (2012).
  34. R. J. Mallia, S. Narayanan, J. Madhavan, P. Sebastian, R. Kumar, A. Mathews, G. Thomas, and J. Radhakrishnan, “Diffuse Reflection Spectroscopy: An Alternative to Autofluorescence Spectroscopy in Tongue Cancer Detection,” Appl. Spectrosc. 64, 409–418 (2010).
  35. M. M. Stephen, J. L. Jayanthi, N. G. Unni, P. E. Kolady, V. T. Beena, P. Jeemon, and N. Subhash, “Diagnostic accuracy of diffuse reflectance imaging for early detection of pre-malignant and malignant changes in the oral cavity: a feasibility study,” BMC Cancer 2013, 13 (2013).
  36. J. L. Jayanthi, N. Subhash, M. Stephen, E. K. Philip, and V. T. Beena, “Comparative evaluation of the diagnostic performance of autofluorescence and diffuse reflectance in oral cancer detection: a clinical study,” 10, J. Biophoton. 4, H. J. C. M. Sterenborg, N. Bendsoe, and K. Svanberg, Eds., 696–706 (2011).
  37. N. Subhash, J. R. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11, 014018 (2006).

2016 (5)

R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2016,” CA Cancer J. Clin. 66(1), 7–30 (2016).
[Crossref] [PubMed]

B. H. Malik, J. M. Jabbour, S. Cheng, R. Cuenca, Y.-S. L. Cheng, J. M. Wright, J. A. Jo, and K. C. Maitland, “A novel multimodal optical imaging system for early detection of oral cancer,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 121(3), 290–300 (2016).
[Crossref] [PubMed]

Z. Hamdoon, W. Jerjes, G. McKenzie, A. Jay, and C. Hopper, “Optical coherence tomography in the assessment of oral squamous cell carcinoma resection margins,” Photodiagn. Photodyn. Ther. 13, 211–217 (2016).
[Crossref] [PubMed]

G. Einstein, K. Udayakumar, P. R. Aruna, D. Koteeswaran, and S. Ganesan, “Diffuse reflectance spectroscopy for monitoring physiological and morphological changes in oral cancer,” Optik 127, 1479–1485 (2016).

N. G. Maher, H. Collgros, P. Uribe, S. Ch’ng, M. Rajadhyaksha, and P. Guitera, “In vivo confocal microscopy for the oral cavity: Current state of the field and future potential,” Oral Oncol. 54, 28–35 (2016).
[Crossref] [PubMed]

2015 (3)

A. Shadfan, A. Hellebust, R. Richards-Kortum, and T. Tkaczyk, “Confocal foveated endomicroscope for the detection of esophageal carcinoma,” Biomed. Opt. Express 6(7), 2311–2324 (2015).
[Crossref] [PubMed]

F. L. Cals, T. C. B. Schut, J. A. Hardillo, R. J. B. de Jong, S. Koljenović, and G. J. Puppels, “Investigation of the potential of Raman spectroscopy for oral cancer detection in surgical margins,” Laboratory Investigation 95, 1186–1196 (2015).

K. Guze, H. C. Pawluk, M. Short, H. Zeng, J. Lorch, C. Norris, and S. Sonis, “Pilot study: Raman spectroscopy in differentiating premalignant and malignant oral lesions from normal mucosa and benign lesions in humans,” Head Neck 37(4), 511–517 (2015).
[Crossref] [PubMed]

2014 (2)

D. V. Messadi, F. S. Younai, H.-H. Liu, G. Guo, and C.-Y. Wang, “The clinical effectiveness of reflectance optical spectroscopy for the in vivo diagnosis of oral lesions,” Int. J. Oral. Sci. 6, 162–167 (2014).

A. L. N. Francisco, W. R. Correr, L. H. Azevedo, V. G. Kern, C. A. L. Pinto, L. P. Kowalski, and C. Kurachi, “Fluorescence spectroscopy for the detection of potentially malignant disorders and squamous cell carcinoma of the oral cavity,” Photodiagn. Photodyn. Ther. 11(2), 82–90 (2014).
[Crossref] [PubMed]

2013 (8)

H.-C. Wang, M.-T. Tsai, and C.-P. Chiang, “Visual perception enhancement for detection of cancerous oral tissue by multi-spectral imaging,” J. Opt. 15, 055301 (2013).

N. Bedard, R. A. Schwarz, A. Hu, V. Bhattar, J. Howe, M. D. Williams, A. M. Gillenwater, R. Richards-Kortum, and T. S. Tkaczyk, “Multimodal snapshot spectral imaging for oral cancer diagnostics: a pilot study,” Biomed. Opt. Express 4, 938–949 (2013).

H. Fatakdawala, S. Poti, F. Zhou, Y. Sun, J. Bec, J. Liu, D. R. Yankelevich, S. P. Tinling, and R. F. Gandour-Edwards, “Multimodal in vivo imaging of oral cancer using fluorescence lifetime, photoacoustic and ultrasound techniques,” Biomed. Opt. Express 4, 1724–1741 (2013).

M. M. Stephen, J. L. Jayanthi, N. G. Unni, P. E. Kolady, V. T. Beena, P. Jeemon, and N. Subhash, “Diagnostic accuracy of diffuse reflectance imaging for early detection of pre-malignant and malignant changes in the oral cavity: a feasibility study,” BMC Cancer 2013, 13 (2013).

Y. Yang, Y.-X. Li, X. Yang, L. Jiang, Z.-J. Zhou, and Y.-Q. Zhu, “Progress risk assessment of oral premalignant lesions with saliva miRNA analysis,” BMC Cancer 2013, 13 (2013).

J. M. Jabbour, S. Cheng, B. H. Malik, R. Cuenca, J. A. Jo, J. Wright, Y.-S. L. Cheng, and K. C. Maitland, “Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer,” J. Biomed. Opt. 18, 046012 (2013).

N. Bhatia, Y. Lalla, A. N. Vu, and C. S. Farah, “Advances in Optical Adjunctive Aids for Visualisation and Detection of Oral Malignant and Potentially Malignant Lesions,” Int. J. Dentistry 2013, 1–17 (2013).

H. Hanken, J. Kraatz, R. Smeets, M. Heiland, M. Blessmann, W. Eichhorn, T. S. Clauditz, A. Grobe, A. Kolk, and M. Rana, “The detection of oral pre- malignant lesions with an autofluorescence based imaging system (VELscopeTM) – a single blinded clinical evaluation,” Head Face Medicine 9, 23 (2013).

2012 (7)

K. K. McNamara, B. D. Martin, E. W. Evans, and J. R. Kalmar, “The role of direct visual fluorescent examination (VELscope) in routine screening for potentially malignant oral mucosal lesions,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 114(5), 636–643 (2012).
[Crossref] [PubMed]

M. Rana, A. Zapf, M. Kuehle, N.-C. Gellrich, and A. M. Eckardt, ““Clinical evaluation of an autofluorescence diagnostic device for oral cancer detection,” 5,” Eur. J. Cancer Prev. 21(5), 460–466 (2012).
[Crossref] [PubMed]

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12, 363–368 (2012).

M. C. Pierce, R. A. Schwarz, V. S. Bhattar, S. Mondrik, M. D. Williams, J. J. Lee, R. Richards-Kortum, and A. M. Gillenwater, “Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia,” Cancer Prev. Res. (Phila.) 5(6), 801–809 (2012).
[Crossref] [PubMed]

J. B. Epstein, P. Güneri, H. Boyacioglu, and E. Abt, “The limitations of the clinical oral examination in detecting dysplastic oral lesions and oral squamous cell carcinoma,” J. Am. Dent. Assoc. 143(12), 1332–1342 (2012).
[Crossref] [PubMed]

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(20), 4833–4840 (2012).
[Crossref] [PubMed]

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51, 111711 (2012).

2011 (2)

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
[Crossref] [PubMed]

K. H. Awan, P. R. Morgan, and S. Warnakulasuriya, “Evaluation of an autofluorescence based imaging system (VELscope™) in the detection of oral potentially malignant disorders and benign keratoses,” Oral Oncol. 47(4), 274–277 (2011).
[Crossref] [PubMed]

2010 (2)

2008 (2)

D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, “Multispectral optical imaging device for in vivo detection of oral neoplasia,” J. Biomed. Opt. 13(2), 024019 (2008).
[Crossref] [PubMed]

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the Biological basis of Autofluorescence Imaging for Oral Cancer Detection: High-Resolution Fluorescence Microscopy in Viable Tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
[Crossref] [PubMed]

2006 (1)

N. Subhash, J. R. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11, 014018 (2006).

2005 (1)

S. G. Patel and J. P. Shah, “TNM staging of cancers of the head and neck: striving for uniformity among diversity,” CA Cancer J. Clin. 55(4), 242–258 (2005).
[Crossref] [PubMed]

2004 (1)

D. C. G. de Veld, M. Skurichina, M. J. H. Witjes, R. P. W. Duin, H. J. C. M. Sterenborg, and J. L. N. Roodenburg, “Clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy,” J. Biomed. Opt. 9, 940–950 (2004).

Abt, E.

J. B. Epstein, P. Güneri, H. Boyacioglu, and E. Abt, “The limitations of the clinical oral examination in detecting dysplastic oral lesions and oral squamous cell carcinoma,” J. Am. Dent. Assoc. 143(12), 1332–1342 (2012).
[Crossref] [PubMed]

Aruna, P. R.

G. Einstein, K. Udayakumar, P. R. Aruna, D. Koteeswaran, and S. Ganesan, “Diffuse reflectance spectroscopy for monitoring physiological and morphological changes in oral cancer,” Optik 127, 1479–1485 (2016).

Awan, K. H.

K. H. Awan, P. R. Morgan, and S. Warnakulasuriya, “Evaluation of an autofluorescence based imaging system (VELscope™) in the detection of oral potentially malignant disorders and benign keratoses,” Oral Oncol. 47(4), 274–277 (2011).
[Crossref] [PubMed]

Azevedo, L. H.

A. L. N. Francisco, W. R. Correr, L. H. Azevedo, V. G. Kern, C. A. L. Pinto, L. P. Kowalski, and C. Kurachi, “Fluorescence spectroscopy for the detection of potentially malignant disorders and squamous cell carcinoma of the oral cavity,” Photodiagn. Photodyn. Ther. 11(2), 82–90 (2014).
[Crossref] [PubMed]

Bec, J.

Bedard, N.

N. Bedard, R. A. Schwarz, A. Hu, V. Bhattar, J. Howe, M. D. Williams, A. M. Gillenwater, R. Richards-Kortum, and T. S. Tkaczyk, “Multimodal snapshot spectral imaging for oral cancer diagnostics: a pilot study,” Biomed. Opt. Express 4, 938–949 (2013).

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(20), 4833–4840 (2012).
[Crossref] [PubMed]

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51, 111711 (2012).

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
[Crossref] [PubMed]

Beena, V. T.

M. M. Stephen, J. L. Jayanthi, N. G. Unni, P. E. Kolady, V. T. Beena, P. Jeemon, and N. Subhash, “Diagnostic accuracy of diffuse reflectance imaging for early detection of pre-malignant and malignant changes in the oral cavity: a feasibility study,” BMC Cancer 2013, 13 (2013).

Bhatia, N.

N. Bhatia, Y. Lalla, A. N. Vu, and C. S. Farah, “Advances in Optical Adjunctive Aids for Visualisation and Detection of Oral Malignant and Potentially Malignant Lesions,” Int. J. Dentistry 2013, 1–17 (2013).

Bhattar, V.

Bhattar, V. S.

M. C. Pierce, R. A. Schwarz, V. S. Bhattar, S. Mondrik, M. D. Williams, J. J. Lee, R. Richards-Kortum, and A. M. Gillenwater, “Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia,” Cancer Prev. Res. (Phila.) 5(6), 801–809 (2012).
[Crossref] [PubMed]

Blessmann, M.

H. Hanken, J. Kraatz, R. Smeets, M. Heiland, M. Blessmann, W. Eichhorn, T. S. Clauditz, A. Grobe, A. Kolk, and M. Rana, “The detection of oral pre- malignant lesions with an autofluorescence based imaging system (VELscopeTM) – a single blinded clinical evaluation,” Head Face Medicine 9, 23 (2013).

Bouma, B. E.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12, 363–368 (2012).

Boyacioglu, H.

J. B. Epstein, P. Güneri, H. Boyacioglu, and E. Abt, “The limitations of the clinical oral examination in detecting dysplastic oral lesions and oral squamous cell carcinoma,” J. Am. Dent. Assoc. 143(12), 1332–1342 (2012).
[Crossref] [PubMed]

Cals, F. L.

F. L. Cals, T. C. B. Schut, J. A. Hardillo, R. J. B. de Jong, S. Koljenović, and G. J. Puppels, “Investigation of the potential of Raman spectroscopy for oral cancer detection in surgical margins,” Laboratory Investigation 95, 1186–1196 (2015).

Ch’ng, S.

N. G. Maher, H. Collgros, P. Uribe, S. Ch’ng, M. Rajadhyaksha, and P. Guitera, “In vivo confocal microscopy for the oral cavity: Current state of the field and future potential,” Oral Oncol. 54, 28–35 (2016).
[Crossref] [PubMed]

Cheng, S.

B. H. Malik, J. M. Jabbour, S. Cheng, R. Cuenca, Y.-S. L. Cheng, J. M. Wright, J. A. Jo, and K. C. Maitland, “A novel multimodal optical imaging system for early detection of oral cancer,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 121(3), 290–300 (2016).
[Crossref] [PubMed]

J. M. Jabbour, S. Cheng, B. H. Malik, R. Cuenca, J. A. Jo, J. Wright, Y.-S. L. Cheng, and K. C. Maitland, “Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer,” J. Biomed. Opt. 18, 046012 (2013).

Cheng, Y.-S. L.

B. H. Malik, J. M. Jabbour, S. Cheng, R. Cuenca, Y.-S. L. Cheng, J. M. Wright, J. A. Jo, and K. C. Maitland, “A novel multimodal optical imaging system for early detection of oral cancer,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 121(3), 290–300 (2016).
[Crossref] [PubMed]

J. M. Jabbour, S. Cheng, B. H. Malik, R. Cuenca, J. A. Jo, J. Wright, Y.-S. L. Cheng, and K. C. Maitland, “Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer,” J. Biomed. Opt. 18, 046012 (2013).

Chiang, C.-P.

H.-C. Wang, M.-T. Tsai, and C.-P. Chiang, “Visual perception enhancement for detection of cancerous oral tissue by multi-spectral imaging,” J. Opt. 15, 055301 (2013).

Clauditz, T. S.

H. Hanken, J. Kraatz, R. Smeets, M. Heiland, M. Blessmann, W. Eichhorn, T. S. Clauditz, A. Grobe, A. Kolk, and M. Rana, “The detection of oral pre- malignant lesions with an autofluorescence based imaging system (VELscopeTM) – a single blinded clinical evaluation,” Head Face Medicine 9, 23 (2013).

Collgros, H.

N. G. Maher, H. Collgros, P. Uribe, S. Ch’ng, M. Rajadhyaksha, and P. Guitera, “In vivo confocal microscopy for the oral cavity: Current state of the field and future potential,” Oral Oncol. 54, 28–35 (2016).
[Crossref] [PubMed]

Correr, W. R.

A. L. N. Francisco, W. R. Correr, L. H. Azevedo, V. G. Kern, C. A. L. Pinto, L. P. Kowalski, and C. Kurachi, “Fluorescence spectroscopy for the detection of potentially malignant disorders and squamous cell carcinoma of the oral cavity,” Photodiagn. Photodyn. Ther. 11(2), 82–90 (2014).
[Crossref] [PubMed]

Cuenca, R.

B. H. Malik, J. M. Jabbour, S. Cheng, R. Cuenca, Y.-S. L. Cheng, J. M. Wright, J. A. Jo, and K. C. Maitland, “A novel multimodal optical imaging system for early detection of oral cancer,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 121(3), 290–300 (2016).
[Crossref] [PubMed]

J. M. Jabbour, S. Cheng, B. H. Malik, R. Cuenca, J. A. Jo, J. Wright, Y.-S. L. Cheng, and K. C. Maitland, “Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer,” J. Biomed. Opt. 18, 046012 (2013).

de Jong, R. J. B.

F. L. Cals, T. C. B. Schut, J. A. Hardillo, R. J. B. de Jong, S. Koljenović, and G. J. Puppels, “Investigation of the potential of Raman spectroscopy for oral cancer detection in surgical margins,” Laboratory Investigation 95, 1186–1196 (2015).

de Veld, D. C. G.

D. C. G. de Veld, M. Skurichina, M. J. H. Witjes, R. P. W. Duin, H. J. C. M. Sterenborg, and J. L. N. Roodenburg, “Clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy,” J. Biomed. Opt. 9, 940–950 (2004).

Duin, R. P. W.

D. C. G. de Veld, M. Skurichina, M. J. H. Witjes, R. P. W. Duin, H. J. C. M. Sterenborg, and J. L. N. Roodenburg, “Clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy,” J. Biomed. Opt. 9, 940–950 (2004).

Eckardt, A. M.

M. Rana, A. Zapf, M. Kuehle, N.-C. Gellrich, and A. M. Eckardt, ““Clinical evaluation of an autofluorescence diagnostic device for oral cancer detection,” 5,” Eur. J. Cancer Prev. 21(5), 460–466 (2012).
[Crossref] [PubMed]

Eichhorn, W.

H. Hanken, J. Kraatz, R. Smeets, M. Heiland, M. Blessmann, W. Eichhorn, T. S. Clauditz, A. Grobe, A. Kolk, and M. Rana, “The detection of oral pre- malignant lesions with an autofluorescence based imaging system (VELscopeTM) – a single blinded clinical evaluation,” Head Face Medicine 9, 23 (2013).

Einstein, G.

G. Einstein, K. Udayakumar, P. R. Aruna, D. Koteeswaran, and S. Ganesan, “Diffuse reflectance spectroscopy for monitoring physiological and morphological changes in oral cancer,” Optik 127, 1479–1485 (2016).

Elliott, A. D.

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(20), 4833–4840 (2012).
[Crossref] [PubMed]

El-Naggar, A.

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the Biological basis of Autofluorescence Imaging for Oral Cancer Detection: High-Resolution Fluorescence Microscopy in Viable Tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
[Crossref] [PubMed]

El-Naggar, A. K.

D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, “Multispectral optical imaging device for in vivo detection of oral neoplasia,” J. Biomed. Opt. 13(2), 024019 (2008).
[Crossref] [PubMed]

Epstein, J. B.

J. B. Epstein, P. Güneri, H. Boyacioglu, and E. Abt, “The limitations of the clinical oral examination in detecting dysplastic oral lesions and oral squamous cell carcinoma,” J. Am. Dent. Assoc. 143(12), 1332–1342 (2012).
[Crossref] [PubMed]

Evans, E. W.

K. K. McNamara, B. D. Martin, E. W. Evans, and J. R. Kalmar, “The role of direct visual fluorescent examination (VELscope) in routine screening for potentially malignant oral mucosal lesions,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 114(5), 636–643 (2012).
[Crossref] [PubMed]

Farah, C. S.

N. Bhatia, Y. Lalla, A. N. Vu, and C. S. Farah, “Advances in Optical Adjunctive Aids for Visualisation and Detection of Oral Malignant and Potentially Malignant Lesions,” Int. J. Dentistry 2013, 1–17 (2013).

Fatakdawala, H.

Francisco, A. L. N.

A. L. N. Francisco, W. R. Correr, L. H. Azevedo, V. G. Kern, C. A. L. Pinto, L. P. Kowalski, and C. Kurachi, “Fluorescence spectroscopy for the detection of potentially malignant disorders and squamous cell carcinoma of the oral cavity,” Photodiagn. Photodyn. Ther. 11(2), 82–90 (2014).
[Crossref] [PubMed]

Fukumura, D.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12, 363–368 (2012).

Gandour-Edwards, R. F.

Ganesan, S.

G. Einstein, K. Udayakumar, P. R. Aruna, D. Koteeswaran, and S. Ganesan, “Diffuse reflectance spectroscopy for monitoring physiological and morphological changes in oral cancer,” Optik 127, 1479–1485 (2016).

Gao, L.

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(20), 4833–4840 (2012).
[Crossref] [PubMed]

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51, 111711 (2012).

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
[Crossref] [PubMed]

L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18, 14330–14344 (2010).

Gellrich, N.-C.

M. Rana, A. Zapf, M. Kuehle, N.-C. Gellrich, and A. M. Eckardt, ““Clinical evaluation of an autofluorescence diagnostic device for oral cancer detection,” 5,” Eur. J. Cancer Prev. 21(5), 460–466 (2012).
[Crossref] [PubMed]

Gillenwater, A.

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the Biological basis of Autofluorescence Imaging for Oral Cancer Detection: High-Resolution Fluorescence Microscopy in Viable Tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
[Crossref] [PubMed]

Gillenwater, A. M.

N. Bedard, R. A. Schwarz, A. Hu, V. Bhattar, J. Howe, M. D. Williams, A. M. Gillenwater, R. Richards-Kortum, and T. S. Tkaczyk, “Multimodal snapshot spectral imaging for oral cancer diagnostics: a pilot study,” Biomed. Opt. Express 4, 938–949 (2013).

M. C. Pierce, R. A. Schwarz, V. S. Bhattar, S. Mondrik, M. D. Williams, J. J. Lee, R. Richards-Kortum, and A. M. Gillenwater, “Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia,” Cancer Prev. Res. (Phila.) 5(6), 801–809 (2012).
[Crossref] [PubMed]

D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, “Multispectral optical imaging device for in vivo detection of oral neoplasia,” J. Biomed. Opt. 13(2), 024019 (2008).
[Crossref] [PubMed]

Grobe, A.

H. Hanken, J. Kraatz, R. Smeets, M. Heiland, M. Blessmann, W. Eichhorn, T. S. Clauditz, A. Grobe, A. Kolk, and M. Rana, “The detection of oral pre- malignant lesions with an autofluorescence based imaging system (VELscopeTM) – a single blinded clinical evaluation,” Head Face Medicine 9, 23 (2013).

Guitera, P.

N. G. Maher, H. Collgros, P. Uribe, S. Ch’ng, M. Rajadhyaksha, and P. Guitera, “In vivo confocal microscopy for the oral cavity: Current state of the field and future potential,” Oral Oncol. 54, 28–35 (2016).
[Crossref] [PubMed]

Güneri, P.

J. B. Epstein, P. Güneri, H. Boyacioglu, and E. Abt, “The limitations of the clinical oral examination in detecting dysplastic oral lesions and oral squamous cell carcinoma,” J. Am. Dent. Assoc. 143(12), 1332–1342 (2012).
[Crossref] [PubMed]

Guo, G.

D. V. Messadi, F. S. Younai, H.-H. Liu, G. Guo, and C.-Y. Wang, “The clinical effectiveness of reflectance optical spectroscopy for the in vivo diagnosis of oral lesions,” Int. J. Oral. Sci. 6, 162–167 (2014).

Guze, K.

K. Guze, H. C. Pawluk, M. Short, H. Zeng, J. Lorch, C. Norris, and S. Sonis, “Pilot study: Raman spectroscopy in differentiating premalignant and malignant oral lesions from normal mucosa and benign lesions in humans,” Head Neck 37(4), 511–517 (2015).
[Crossref] [PubMed]

Hagen, N.

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51, 111711 (2012).

L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18, 14330–14344 (2010).

Hamdoon, Z.

Z. Hamdoon, W. Jerjes, G. McKenzie, A. Jay, and C. Hopper, “Optical coherence tomography in the assessment of oral squamous cell carcinoma resection margins,” Photodiagn. Photodyn. Ther. 13, 211–217 (2016).
[Crossref] [PubMed]

Hanken, H.

H. Hanken, J. Kraatz, R. Smeets, M. Heiland, M. Blessmann, W. Eichhorn, T. S. Clauditz, A. Grobe, A. Kolk, and M. Rana, “The detection of oral pre- malignant lesions with an autofluorescence based imaging system (VELscopeTM) – a single blinded clinical evaluation,” Head Face Medicine 9, 23 (2013).

Hardillo, J. A.

F. L. Cals, T. C. B. Schut, J. A. Hardillo, R. J. B. de Jong, S. Koljenović, and G. J. Puppels, “Investigation of the potential of Raman spectroscopy for oral cancer detection in surgical margins,” Laboratory Investigation 95, 1186–1196 (2015).

Heiland, M.

H. Hanken, J. Kraatz, R. Smeets, M. Heiland, M. Blessmann, W. Eichhorn, T. S. Clauditz, A. Grobe, A. Kolk, and M. Rana, “The detection of oral pre- malignant lesions with an autofluorescence based imaging system (VELscopeTM) – a single blinded clinical evaluation,” Head Face Medicine 9, 23 (2013).

Hellebust, A.

Hopper, C.

Z. Hamdoon, W. Jerjes, G. McKenzie, A. Jay, and C. Hopper, “Optical coherence tomography in the assessment of oral squamous cell carcinoma resection margins,” Photodiagn. Photodyn. Ther. 13, 211–217 (2016).
[Crossref] [PubMed]

Howe, J.

Hu, A.

Jabbour, J. M.

B. H. Malik, J. M. Jabbour, S. Cheng, R. Cuenca, Y.-S. L. Cheng, J. M. Wright, J. A. Jo, and K. C. Maitland, “A novel multimodal optical imaging system for early detection of oral cancer,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 121(3), 290–300 (2016).
[Crossref] [PubMed]

J. M. Jabbour, S. Cheng, B. H. Malik, R. Cuenca, J. A. Jo, J. Wright, Y.-S. L. Cheng, and K. C. Maitland, “Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer,” J. Biomed. Opt. 18, 046012 (2013).

Jain, R. K.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12, 363–368 (2012).

Jay, A.

Z. Hamdoon, W. Jerjes, G. McKenzie, A. Jay, and C. Hopper, “Optical coherence tomography in the assessment of oral squamous cell carcinoma resection margins,” Photodiagn. Photodyn. Ther. 13, 211–217 (2016).
[Crossref] [PubMed]

Jayanthi, J. L.

M. M. Stephen, J. L. Jayanthi, N. G. Unni, P. E. Kolady, V. T. Beena, P. Jeemon, and N. Subhash, “Diagnostic accuracy of diffuse reflectance imaging for early detection of pre-malignant and malignant changes in the oral cavity: a feasibility study,” BMC Cancer 2013, 13 (2013).

Jeemon, P.

M. M. Stephen, J. L. Jayanthi, N. G. Unni, P. E. Kolady, V. T. Beena, P. Jeemon, and N. Subhash, “Diagnostic accuracy of diffuse reflectance imaging for early detection of pre-malignant and malignant changes in the oral cavity: a feasibility study,” BMC Cancer 2013, 13 (2013).

Jemal, A.

R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2016,” CA Cancer J. Clin. 66(1), 7–30 (2016).
[Crossref] [PubMed]

Jerjes, W.

Z. Hamdoon, W. Jerjes, G. McKenzie, A. Jay, and C. Hopper, “Optical coherence tomography in the assessment of oral squamous cell carcinoma resection margins,” Photodiagn. Photodyn. Ther. 13, 211–217 (2016).
[Crossref] [PubMed]

Jiang, L.

Y. Yang, Y.-X. Li, X. Yang, L. Jiang, Z.-J. Zhou, and Y.-Q. Zhu, “Progress risk assessment of oral premalignant lesions with saliva miRNA analysis,” BMC Cancer 2013, 13 (2013).

Jo, J. A.

B. H. Malik, J. M. Jabbour, S. Cheng, R. Cuenca, Y.-S. L. Cheng, J. M. Wright, J. A. Jo, and K. C. Maitland, “A novel multimodal optical imaging system for early detection of oral cancer,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 121(3), 290–300 (2016).
[Crossref] [PubMed]

J. M. Jabbour, S. Cheng, B. H. Malik, R. Cuenca, J. A. Jo, J. Wright, Y.-S. L. Cheng, and K. C. Maitland, “Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer,” J. Biomed. Opt. 18, 046012 (2013).

Kalmar, J. R.

K. K. McNamara, B. D. Martin, E. W. Evans, and J. R. Kalmar, “The role of direct visual fluorescent examination (VELscope) in routine screening for potentially malignant oral mucosal lesions,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 114(5), 636–643 (2012).
[Crossref] [PubMed]

Kern, V. G.

A. L. N. Francisco, W. R. Correr, L. H. Azevedo, V. G. Kern, C. A. L. Pinto, L. P. Kowalski, and C. Kurachi, “Fluorescence spectroscopy for the detection of potentially malignant disorders and squamous cell carcinoma of the oral cavity,” Photodiagn. Photodyn. Ther. 11(2), 82–90 (2014).
[Crossref] [PubMed]

Kester, R.

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(20), 4833–4840 (2012).
[Crossref] [PubMed]

Kester, R. T.

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
[Crossref] [PubMed]

L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18, 14330–14344 (2010).

Kolady, P. E.

M. M. Stephen, J. L. Jayanthi, N. G. Unni, P. E. Kolady, V. T. Beena, P. Jeemon, and N. Subhash, “Diagnostic accuracy of diffuse reflectance imaging for early detection of pre-malignant and malignant changes in the oral cavity: a feasibility study,” BMC Cancer 2013, 13 (2013).

Koljenovic, S.

F. L. Cals, T. C. B. Schut, J. A. Hardillo, R. J. B. de Jong, S. Koljenović, and G. J. Puppels, “Investigation of the potential of Raman spectroscopy for oral cancer detection in surgical margins,” Laboratory Investigation 95, 1186–1196 (2015).

Kolk, A.

H. Hanken, J. Kraatz, R. Smeets, M. Heiland, M. Blessmann, W. Eichhorn, T. S. Clauditz, A. Grobe, A. Kolk, and M. Rana, “The detection of oral pre- malignant lesions with an autofluorescence based imaging system (VELscopeTM) – a single blinded clinical evaluation,” Head Face Medicine 9, 23 (2013).

Koteeswaran, D.

G. Einstein, K. Udayakumar, P. R. Aruna, D. Koteeswaran, and S. Ganesan, “Diffuse reflectance spectroscopy for monitoring physiological and morphological changes in oral cancer,” Optik 127, 1479–1485 (2016).

Kowalski, L. P.

A. L. N. Francisco, W. R. Correr, L. H. Azevedo, V. G. Kern, C. A. L. Pinto, L. P. Kowalski, and C. Kurachi, “Fluorescence spectroscopy for the detection of potentially malignant disorders and squamous cell carcinoma of the oral cavity,” Photodiagn. Photodyn. Ther. 11(2), 82–90 (2014).
[Crossref] [PubMed]

Kraatz, J.

H. Hanken, J. Kraatz, R. Smeets, M. Heiland, M. Blessmann, W. Eichhorn, T. S. Clauditz, A. Grobe, A. Kolk, and M. Rana, “The detection of oral pre- malignant lesions with an autofluorescence based imaging system (VELscopeTM) – a single blinded clinical evaluation,” Head Face Medicine 9, 23 (2013).

Kuehle, M.

M. Rana, A. Zapf, M. Kuehle, N.-C. Gellrich, and A. M. Eckardt, ““Clinical evaluation of an autofluorescence diagnostic device for oral cancer detection,” 5,” Eur. J. Cancer Prev. 21(5), 460–466 (2012).
[Crossref] [PubMed]

Kumar, R.

Kurachi, C.

A. L. N. Francisco, W. R. Correr, L. H. Azevedo, V. G. Kern, C. A. L. Pinto, L. P. Kowalski, and C. Kurachi, “Fluorescence spectroscopy for the detection of potentially malignant disorders and squamous cell carcinoma of the oral cavity,” Photodiagn. Photodyn. Ther. 11(2), 82–90 (2014).
[Crossref] [PubMed]

D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, “Multispectral optical imaging device for in vivo detection of oral neoplasia,” J. Biomed. Opt. 13(2), 024019 (2008).
[Crossref] [PubMed]

Lalla, Y.

N. Bhatia, Y. Lalla, A. N. Vu, and C. S. Farah, “Advances in Optical Adjunctive Aids for Visualisation and Detection of Oral Malignant and Potentially Malignant Lesions,” Int. J. Dentistry 2013, 1–17 (2013).

Lee, J. J.

M. C. Pierce, R. A. Schwarz, V. S. Bhattar, S. Mondrik, M. D. Williams, J. J. Lee, R. Richards-Kortum, and A. M. Gillenwater, “Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia,” Cancer Prev. Res. (Phila.) 5(6), 801–809 (2012).
[Crossref] [PubMed]

Li, Y.-X.

Y. Yang, Y.-X. Li, X. Yang, L. Jiang, Z.-J. Zhou, and Y.-Q. Zhu, “Progress risk assessment of oral premalignant lesions with saliva miRNA analysis,” BMC Cancer 2013, 13 (2013).

Liu, H.-H.

D. V. Messadi, F. S. Younai, H.-H. Liu, G. Guo, and C.-Y. Wang, “The clinical effectiveness of reflectance optical spectroscopy for the in vivo diagnosis of oral lesions,” Int. J. Oral. Sci. 6, 162–167 (2014).

Liu, J.

Lorch, J.

K. Guze, H. C. Pawluk, M. Short, H. Zeng, J. Lorch, C. Norris, and S. Sonis, “Pilot study: Raman spectroscopy in differentiating premalignant and malignant oral lesions from normal mucosa and benign lesions in humans,” Head Neck 37(4), 511–517 (2015).
[Crossref] [PubMed]

Madhavan, J.

R. J. Mallia, S. Narayanan, J. Madhavan, P. Sebastian, R. Kumar, A. Mathews, G. Thomas, and J. Radhakrishnan, “Diffuse Reflection Spectroscopy: An Alternative to Autofluorescence Spectroscopy in Tongue Cancer Detection,” Appl. Spectrosc. 64, 409–418 (2010).

N. Subhash, J. R. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11, 014018 (2006).

Maher, N. G.

N. G. Maher, H. Collgros, P. Uribe, S. Ch’ng, M. Rajadhyaksha, and P. Guitera, “In vivo confocal microscopy for the oral cavity: Current state of the field and future potential,” Oral Oncol. 54, 28–35 (2016).
[Crossref] [PubMed]

Maitland, K. C.

B. H. Malik, J. M. Jabbour, S. Cheng, R. Cuenca, Y.-S. L. Cheng, J. M. Wright, J. A. Jo, and K. C. Maitland, “A novel multimodal optical imaging system for early detection of oral cancer,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 121(3), 290–300 (2016).
[Crossref] [PubMed]

J. M. Jabbour, S. Cheng, B. H. Malik, R. Cuenca, J. A. Jo, J. Wright, Y.-S. L. Cheng, and K. C. Maitland, “Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer,” J. Biomed. Opt. 18, 046012 (2013).

Malik, B. H.

B. H. Malik, J. M. Jabbour, S. Cheng, R. Cuenca, Y.-S. L. Cheng, J. M. Wright, J. A. Jo, and K. C. Maitland, “A novel multimodal optical imaging system for early detection of oral cancer,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 121(3), 290–300 (2016).
[Crossref] [PubMed]

J. M. Jabbour, S. Cheng, B. H. Malik, R. Cuenca, J. A. Jo, J. Wright, Y.-S. L. Cheng, and K. C. Maitland, “Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer,” J. Biomed. Opt. 18, 046012 (2013).

Mallia, J. R.

N. Subhash, J. R. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11, 014018 (2006).

Mallia, R. J.

Martin, B. D.

K. K. McNamara, B. D. Martin, E. W. Evans, and J. R. Kalmar, “The role of direct visual fluorescent examination (VELscope) in routine screening for potentially malignant oral mucosal lesions,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 114(5), 636–643 (2012).
[Crossref] [PubMed]

Mathews, A.

R. J. Mallia, S. Narayanan, J. Madhavan, P. Sebastian, R. Kumar, A. Mathews, G. Thomas, and J. Radhakrishnan, “Diffuse Reflection Spectroscopy: An Alternative to Autofluorescence Spectroscopy in Tongue Cancer Detection,” Appl. Spectrosc. 64, 409–418 (2010).

N. Subhash, J. R. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11, 014018 (2006).

McKenzie, G.

Z. Hamdoon, W. Jerjes, G. McKenzie, A. Jay, and C. Hopper, “Optical coherence tomography in the assessment of oral squamous cell carcinoma resection margins,” Photodiagn. Photodyn. Ther. 13, 211–217 (2016).
[Crossref] [PubMed]

McNamara, K. K.

K. K. McNamara, B. D. Martin, E. W. Evans, and J. R. Kalmar, “The role of direct visual fluorescent examination (VELscope) in routine screening for potentially malignant oral mucosal lesions,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 114(5), 636–643 (2012).
[Crossref] [PubMed]

Messadi, D. V.

D. V. Messadi, F. S. Younai, H.-H. Liu, G. Guo, and C.-Y. Wang, “The clinical effectiveness of reflectance optical spectroscopy for the in vivo diagnosis of oral lesions,” Int. J. Oral. Sci. 6, 162–167 (2014).

Miller, K. D.

R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2016,” CA Cancer J. Clin. 66(1), 7–30 (2016).
[Crossref] [PubMed]

Mondrik, S.

M. C. Pierce, R. A. Schwarz, V. S. Bhattar, S. Mondrik, M. D. Williams, J. J. Lee, R. Richards-Kortum, and A. M. Gillenwater, “Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia,” Cancer Prev. Res. (Phila.) 5(6), 801–809 (2012).
[Crossref] [PubMed]

Morgan, P. R.

K. H. Awan, P. R. Morgan, and S. Warnakulasuriya, “Evaluation of an autofluorescence based imaging system (VELscope™) in the detection of oral potentially malignant disorders and benign keratoses,” Oral Oncol. 47(4), 274–277 (2011).
[Crossref] [PubMed]

Narayanan, S.

Norris, C.

K. Guze, H. C. Pawluk, M. Short, H. Zeng, J. Lorch, C. Norris, and S. Sonis, “Pilot study: Raman spectroscopy in differentiating premalignant and malignant oral lesions from normal mucosa and benign lesions in humans,” Head Neck 37(4), 511–517 (2015).
[Crossref] [PubMed]

Patel, S. G.

S. G. Patel and J. P. Shah, “TNM staging of cancers of the head and neck: striving for uniformity among diversity,” CA Cancer J. Clin. 55(4), 242–258 (2005).
[Crossref] [PubMed]

Pavlova, I.

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the Biological basis of Autofluorescence Imaging for Oral Cancer Detection: High-Resolution Fluorescence Microscopy in Viable Tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
[Crossref] [PubMed]

Pawluk, H. C.

K. Guze, H. C. Pawluk, M. Short, H. Zeng, J. Lorch, C. Norris, and S. Sonis, “Pilot study: Raman spectroscopy in differentiating premalignant and malignant oral lesions from normal mucosa and benign lesions in humans,” Head Neck 37(4), 511–517 (2015).
[Crossref] [PubMed]

Pierce, M. C.

M. C. Pierce, R. A. Schwarz, V. S. Bhattar, S. Mondrik, M. D. Williams, J. J. Lee, R. Richards-Kortum, and A. M. Gillenwater, “Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia,” Cancer Prev. Res. (Phila.) 5(6), 801–809 (2012).
[Crossref] [PubMed]

Pinto, C. A. L.

A. L. N. Francisco, W. R. Correr, L. H. Azevedo, V. G. Kern, C. A. L. Pinto, L. P. Kowalski, and C. Kurachi, “Fluorescence spectroscopy for the detection of potentially malignant disorders and squamous cell carcinoma of the oral cavity,” Photodiagn. Photodyn. Ther. 11(2), 82–90 (2014).
[Crossref] [PubMed]

Piston, D. W.

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(20), 4833–4840 (2012).
[Crossref] [PubMed]

Poti, S.

Puppels, G. J.

F. L. Cals, T. C. B. Schut, J. A. Hardillo, R. J. B. de Jong, S. Koljenović, and G. J. Puppels, “Investigation of the potential of Raman spectroscopy for oral cancer detection in surgical margins,” Laboratory Investigation 95, 1186–1196 (2015).

Radhakrishnan, J.

Rajadhyaksha, M.

N. G. Maher, H. Collgros, P. Uribe, S. Ch’ng, M. Rajadhyaksha, and P. Guitera, “In vivo confocal microscopy for the oral cavity: Current state of the field and future potential,” Oral Oncol. 54, 28–35 (2016).
[Crossref] [PubMed]

Rana, M.

H. Hanken, J. Kraatz, R. Smeets, M. Heiland, M. Blessmann, W. Eichhorn, T. S. Clauditz, A. Grobe, A. Kolk, and M. Rana, “The detection of oral pre- malignant lesions with an autofluorescence based imaging system (VELscopeTM) – a single blinded clinical evaluation,” Head Face Medicine 9, 23 (2013).

M. Rana, A. Zapf, M. Kuehle, N.-C. Gellrich, and A. M. Eckardt, ““Clinical evaluation of an autofluorescence diagnostic device for oral cancer detection,” 5,” Eur. J. Cancer Prev. 21(5), 460–466 (2012).
[Crossref] [PubMed]

Richards-Kortum, R.

A. Shadfan, A. Hellebust, R. Richards-Kortum, and T. Tkaczyk, “Confocal foveated endomicroscope for the detection of esophageal carcinoma,” Biomed. Opt. Express 6(7), 2311–2324 (2015).
[Crossref] [PubMed]

N. Bedard, R. A. Schwarz, A. Hu, V. Bhattar, J. Howe, M. D. Williams, A. M. Gillenwater, R. Richards-Kortum, and T. S. Tkaczyk, “Multimodal snapshot spectral imaging for oral cancer diagnostics: a pilot study,” Biomed. Opt. Express 4, 938–949 (2013).

M. C. Pierce, R. A. Schwarz, V. S. Bhattar, S. Mondrik, M. D. Williams, J. J. Lee, R. Richards-Kortum, and A. M. Gillenwater, “Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia,” Cancer Prev. Res. (Phila.) 5(6), 801–809 (2012).
[Crossref] [PubMed]

D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, “Multispectral optical imaging device for in vivo detection of oral neoplasia,” J. Biomed. Opt. 13(2), 024019 (2008).
[Crossref] [PubMed]

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the Biological basis of Autofluorescence Imaging for Oral Cancer Detection: High-Resolution Fluorescence Microscopy in Viable Tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
[Crossref] [PubMed]

Roblyer, D.

D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, “Multispectral optical imaging device for in vivo detection of oral neoplasia,” J. Biomed. Opt. 13(2), 024019 (2008).
[Crossref] [PubMed]

Roodenburg, J. L. N.

D. C. G. de Veld, M. Skurichina, M. J. H. Witjes, R. P. W. Duin, H. J. C. M. Sterenborg, and J. L. N. Roodenburg, “Clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy,” J. Biomed. Opt. 9, 940–950 (2004).

Schut, T. C. B.

F. L. Cals, T. C. B. Schut, J. A. Hardillo, R. J. B. de Jong, S. Koljenović, and G. J. Puppels, “Investigation of the potential of Raman spectroscopy for oral cancer detection in surgical margins,” Laboratory Investigation 95, 1186–1196 (2015).

Schwarz, R. A.

N. Bedard, R. A. Schwarz, A. Hu, V. Bhattar, J. Howe, M. D. Williams, A. M. Gillenwater, R. Richards-Kortum, and T. S. Tkaczyk, “Multimodal snapshot spectral imaging for oral cancer diagnostics: a pilot study,” Biomed. Opt. Express 4, 938–949 (2013).

M. C. Pierce, R. A. Schwarz, V. S. Bhattar, S. Mondrik, M. D. Williams, J. J. Lee, R. Richards-Kortum, and A. M. Gillenwater, “Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia,” Cancer Prev. Res. (Phila.) 5(6), 801–809 (2012).
[Crossref] [PubMed]

Sebastian, P.

R. J. Mallia, S. Narayanan, J. Madhavan, P. Sebastian, R. Kumar, A. Mathews, G. Thomas, and J. Radhakrishnan, “Diffuse Reflection Spectroscopy: An Alternative to Autofluorescence Spectroscopy in Tongue Cancer Detection,” Appl. Spectrosc. 64, 409–418 (2010).

N. Subhash, J. R. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11, 014018 (2006).

Shadfan, A.

Shah, J. P.

S. G. Patel and J. P. Shah, “TNM staging of cancers of the head and neck: striving for uniformity among diversity,” CA Cancer J. Clin. 55(4), 242–258 (2005).
[Crossref] [PubMed]

Short, M.

K. Guze, H. C. Pawluk, M. Short, H. Zeng, J. Lorch, C. Norris, and S. Sonis, “Pilot study: Raman spectroscopy in differentiating premalignant and malignant oral lesions from normal mucosa and benign lesions in humans,” Head Neck 37(4), 511–517 (2015).
[Crossref] [PubMed]

Siegel, R. L.

R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2016,” CA Cancer J. Clin. 66(1), 7–30 (2016).
[Crossref] [PubMed]

Skurichina, M.

D. C. G. de Veld, M. Skurichina, M. J. H. Witjes, R. P. W. Duin, H. J. C. M. Sterenborg, and J. L. N. Roodenburg, “Clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy,” J. Biomed. Opt. 9, 940–950 (2004).

Smeets, R.

H. Hanken, J. Kraatz, R. Smeets, M. Heiland, M. Blessmann, W. Eichhorn, T. S. Clauditz, A. Grobe, A. Kolk, and M. Rana, “The detection of oral pre- malignant lesions with an autofluorescence based imaging system (VELscopeTM) – a single blinded clinical evaluation,” Head Face Medicine 9, 23 (2013).

Sokolov, K.

D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, “Multispectral optical imaging device for in vivo detection of oral neoplasia,” J. Biomed. Opt. 13(2), 024019 (2008).
[Crossref] [PubMed]

Sonis, S.

K. Guze, H. C. Pawluk, M. Short, H. Zeng, J. Lorch, C. Norris, and S. Sonis, “Pilot study: Raman spectroscopy in differentiating premalignant and malignant oral lesions from normal mucosa and benign lesions in humans,” Head Neck 37(4), 511–517 (2015).
[Crossref] [PubMed]

Stephen, M. M.

M. M. Stephen, J. L. Jayanthi, N. G. Unni, P. E. Kolady, V. T. Beena, P. Jeemon, and N. Subhash, “Diagnostic accuracy of diffuse reflectance imaging for early detection of pre-malignant and malignant changes in the oral cavity: a feasibility study,” BMC Cancer 2013, 13 (2013).

Sterenborg, H. J. C. M.

D. C. G. de Veld, M. Skurichina, M. J. H. Witjes, R. P. W. Duin, H. J. C. M. Sterenborg, and J. L. N. Roodenburg, “Clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy,” J. Biomed. Opt. 9, 940–950 (2004).

Subhash, N.

M. M. Stephen, J. L. Jayanthi, N. G. Unni, P. E. Kolady, V. T. Beena, P. Jeemon, and N. Subhash, “Diagnostic accuracy of diffuse reflectance imaging for early detection of pre-malignant and malignant changes in the oral cavity: a feasibility study,” BMC Cancer 2013, 13 (2013).

N. Subhash, J. R. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11, 014018 (2006).

Sun, Y.

Thomas, G.

Thomas, S. S.

N. Subhash, J. R. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11, 014018 (2006).

Tinling, S. P.

Tkaczyk, T.

Tkaczyk, T. S.

N. Bedard, R. A. Schwarz, A. Hu, V. Bhattar, J. Howe, M. D. Williams, A. M. Gillenwater, R. Richards-Kortum, and T. S. Tkaczyk, “Multimodal snapshot spectral imaging for oral cancer diagnostics: a pilot study,” Biomed. Opt. Express 4, 938–949 (2013).

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51, 111711 (2012).

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(20), 4833–4840 (2012).
[Crossref] [PubMed]

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
[Crossref] [PubMed]

L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18, 14330–14344 (2010).

Tsai, M.-T.

H.-C. Wang, M.-T. Tsai, and C.-P. Chiang, “Visual perception enhancement for detection of cancerous oral tissue by multi-spectral imaging,” J. Opt. 15, 055301 (2013).

Udayakumar, K.

G. Einstein, K. Udayakumar, P. R. Aruna, D. Koteeswaran, and S. Ganesan, “Diffuse reflectance spectroscopy for monitoring physiological and morphological changes in oral cancer,” Optik 127, 1479–1485 (2016).

Unni, N. G.

M. M. Stephen, J. L. Jayanthi, N. G. Unni, P. E. Kolady, V. T. Beena, P. Jeemon, and N. Subhash, “Diagnostic accuracy of diffuse reflectance imaging for early detection of pre-malignant and malignant changes in the oral cavity: a feasibility study,” BMC Cancer 2013, 13 (2013).

Uribe, P.

N. G. Maher, H. Collgros, P. Uribe, S. Ch’ng, M. Rajadhyaksha, and P. Guitera, “In vivo confocal microscopy for the oral cavity: Current state of the field and future potential,” Oral Oncol. 54, 28–35 (2016).
[Crossref] [PubMed]

Ustione, A.

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(20), 4833–4840 (2012).
[Crossref] [PubMed]

Vakoc, B. J.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12, 363–368 (2012).

Vu, A. N.

N. Bhatia, Y. Lalla, A. N. Vu, and C. S. Farah, “Advances in Optical Adjunctive Aids for Visualisation and Detection of Oral Malignant and Potentially Malignant Lesions,” Int. J. Dentistry 2013, 1–17 (2013).

Wang, C.-Y.

D. V. Messadi, F. S. Younai, H.-H. Liu, G. Guo, and C.-Y. Wang, “The clinical effectiveness of reflectance optical spectroscopy for the in vivo diagnosis of oral lesions,” Int. J. Oral. Sci. 6, 162–167 (2014).

Wang, H.-C.

H.-C. Wang, M.-T. Tsai, and C.-P. Chiang, “Visual perception enhancement for detection of cancerous oral tissue by multi-spectral imaging,” J. Opt. 15, 055301 (2013).

Warnakulasuriya, S.

K. H. Awan, P. R. Morgan, and S. Warnakulasuriya, “Evaluation of an autofluorescence based imaging system (VELscope™) in the detection of oral potentially malignant disorders and benign keratoses,” Oral Oncol. 47(4), 274–277 (2011).
[Crossref] [PubMed]

Williams, M.

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the Biological basis of Autofluorescence Imaging for Oral Cancer Detection: High-Resolution Fluorescence Microscopy in Viable Tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
[Crossref] [PubMed]

Williams, M. D.

N. Bedard, R. A. Schwarz, A. Hu, V. Bhattar, J. Howe, M. D. Williams, A. M. Gillenwater, R. Richards-Kortum, and T. S. Tkaczyk, “Multimodal snapshot spectral imaging for oral cancer diagnostics: a pilot study,” Biomed. Opt. Express 4, 938–949 (2013).

M. C. Pierce, R. A. Schwarz, V. S. Bhattar, S. Mondrik, M. D. Williams, J. J. Lee, R. Richards-Kortum, and A. M. Gillenwater, “Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia,” Cancer Prev. Res. (Phila.) 5(6), 801–809 (2012).
[Crossref] [PubMed]

D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, “Multispectral optical imaging device for in vivo detection of oral neoplasia,” J. Biomed. Opt. 13(2), 024019 (2008).
[Crossref] [PubMed]

Witjes, M. J. H.

D. C. G. de Veld, M. Skurichina, M. J. H. Witjes, R. P. W. Duin, H. J. C. M. Sterenborg, and J. L. N. Roodenburg, “Clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy,” J. Biomed. Opt. 9, 940–950 (2004).

Wright, J.

J. M. Jabbour, S. Cheng, B. H. Malik, R. Cuenca, J. A. Jo, J. Wright, Y.-S. L. Cheng, and K. C. Maitland, “Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer,” J. Biomed. Opt. 18, 046012 (2013).

Wright, J. M.

B. H. Malik, J. M. Jabbour, S. Cheng, R. Cuenca, Y.-S. L. Cheng, J. M. Wright, J. A. Jo, and K. C. Maitland, “A novel multimodal optical imaging system for early detection of oral cancer,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 121(3), 290–300 (2016).
[Crossref] [PubMed]

Yang, X.

Y. Yang, Y.-X. Li, X. Yang, L. Jiang, Z.-J. Zhou, and Y.-Q. Zhu, “Progress risk assessment of oral premalignant lesions with saliva miRNA analysis,” BMC Cancer 2013, 13 (2013).

Yang, Y.

Y. Yang, Y.-X. Li, X. Yang, L. Jiang, Z.-J. Zhou, and Y.-Q. Zhu, “Progress risk assessment of oral premalignant lesions with saliva miRNA analysis,” BMC Cancer 2013, 13 (2013).

Yankelevich, D. R.

Younai, F. S.

D. V. Messadi, F. S. Younai, H.-H. Liu, G. Guo, and C.-Y. Wang, “The clinical effectiveness of reflectance optical spectroscopy for the in vivo diagnosis of oral lesions,” Int. J. Oral. Sci. 6, 162–167 (2014).

Zapf, A.

M. Rana, A. Zapf, M. Kuehle, N.-C. Gellrich, and A. M. Eckardt, ““Clinical evaluation of an autofluorescence diagnostic device for oral cancer detection,” 5,” Eur. J. Cancer Prev. 21(5), 460–466 (2012).
[Crossref] [PubMed]

Zeng, H.

K. Guze, H. C. Pawluk, M. Short, H. Zeng, J. Lorch, C. Norris, and S. Sonis, “Pilot study: Raman spectroscopy in differentiating premalignant and malignant oral lesions from normal mucosa and benign lesions in humans,” Head Neck 37(4), 511–517 (2015).
[Crossref] [PubMed]

Zhou, F.

Zhou, Z.-J.

Y. Yang, Y.-X. Li, X. Yang, L. Jiang, Z.-J. Zhou, and Y.-Q. Zhu, “Progress risk assessment of oral premalignant lesions with saliva miRNA analysis,” BMC Cancer 2013, 13 (2013).

Zhu, Y.-Q.

Y. Yang, Y.-X. Li, X. Yang, L. Jiang, Z.-J. Zhou, and Y.-Q. Zhu, “Progress risk assessment of oral premalignant lesions with saliva miRNA analysis,” BMC Cancer 2013, 13 (2013).

Appl. Spectrosc. (1)

Biomed. Opt. Express (3)

BMC Cancer (2)

M. M. Stephen, J. L. Jayanthi, N. G. Unni, P. E. Kolady, V. T. Beena, P. Jeemon, and N. Subhash, “Diagnostic accuracy of diffuse reflectance imaging for early detection of pre-malignant and malignant changes in the oral cavity: a feasibility study,” BMC Cancer 2013, 13 (2013).

Y. Yang, Y.-X. Li, X. Yang, L. Jiang, Z.-J. Zhou, and Y.-Q. Zhu, “Progress risk assessment of oral premalignant lesions with saliva miRNA analysis,” BMC Cancer 2013, 13 (2013).

CA Cancer J. Clin. (2)

R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2016,” CA Cancer J. Clin. 66(1), 7–30 (2016).
[Crossref] [PubMed]

S. G. Patel and J. P. Shah, “TNM staging of cancers of the head and neck: striving for uniformity among diversity,” CA Cancer J. Clin. 55(4), 242–258 (2005).
[Crossref] [PubMed]

Cancer Prev. Res. (Phila.) (1)

M. C. Pierce, R. A. Schwarz, V. S. Bhattar, S. Mondrik, M. D. Williams, J. J. Lee, R. Richards-Kortum, and A. M. Gillenwater, “Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia,” Cancer Prev. Res. (Phila.) 5(6), 801–809 (2012).
[Crossref] [PubMed]

Clin. Cancer Res. (1)

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the Biological basis of Autofluorescence Imaging for Oral Cancer Detection: High-Resolution Fluorescence Microscopy in Viable Tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
[Crossref] [PubMed]

Eur. J. Cancer Prev. (1)

M. Rana, A. Zapf, M. Kuehle, N.-C. Gellrich, and A. M. Eckardt, ““Clinical evaluation of an autofluorescence diagnostic device for oral cancer detection,” 5,” Eur. J. Cancer Prev. 21(5), 460–466 (2012).
[Crossref] [PubMed]

Head Face Medicine (1)

H. Hanken, J. Kraatz, R. Smeets, M. Heiland, M. Blessmann, W. Eichhorn, T. S. Clauditz, A. Grobe, A. Kolk, and M. Rana, “The detection of oral pre- malignant lesions with an autofluorescence based imaging system (VELscopeTM) – a single blinded clinical evaluation,” Head Face Medicine 9, 23 (2013).

Head Neck (1)

K. Guze, H. C. Pawluk, M. Short, H. Zeng, J. Lorch, C. Norris, and S. Sonis, “Pilot study: Raman spectroscopy in differentiating premalignant and malignant oral lesions from normal mucosa and benign lesions in humans,” Head Neck 37(4), 511–517 (2015).
[Crossref] [PubMed]

Int. J. Dentistry (1)

N. Bhatia, Y. Lalla, A. N. Vu, and C. S. Farah, “Advances in Optical Adjunctive Aids for Visualisation and Detection of Oral Malignant and Potentially Malignant Lesions,” Int. J. Dentistry 2013, 1–17 (2013).

Int. J. Oral. Sci. (1)

D. V. Messadi, F. S. Younai, H.-H. Liu, G. Guo, and C.-Y. Wang, “The clinical effectiveness of reflectance optical spectroscopy for the in vivo diagnosis of oral lesions,” Int. J. Oral. Sci. 6, 162–167 (2014).

J. Am. Dent. Assoc. (1)

J. B. Epstein, P. Güneri, H. Boyacioglu, and E. Abt, “The limitations of the clinical oral examination in detecting dysplastic oral lesions and oral squamous cell carcinoma,” J. Am. Dent. Assoc. 143(12), 1332–1342 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

D. C. G. de Veld, M. Skurichina, M. J. H. Witjes, R. P. W. Duin, H. J. C. M. Sterenborg, and J. L. N. Roodenburg, “Clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy,” J. Biomed. Opt. 9, 940–950 (2004).

D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, “Multispectral optical imaging device for in vivo detection of oral neoplasia,” J. Biomed. Opt. 13(2), 024019 (2008).
[Crossref] [PubMed]

J. M. Jabbour, S. Cheng, B. H. Malik, R. Cuenca, J. A. Jo, J. Wright, Y.-S. L. Cheng, and K. C. Maitland, “Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer,” J. Biomed. Opt. 18, 046012 (2013).

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
[Crossref] [PubMed]

N. Subhash, J. R. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11, 014018 (2006).

J. Cell Sci. (1)

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(20), 4833–4840 (2012).
[Crossref] [PubMed]

J. Opt. (1)

H.-C. Wang, M.-T. Tsai, and C.-P. Chiang, “Visual perception enhancement for detection of cancerous oral tissue by multi-spectral imaging,” J. Opt. 15, 055301 (2013).

Laboratory Investigation (1)

F. L. Cals, T. C. B. Schut, J. A. Hardillo, R. J. B. de Jong, S. Koljenović, and G. J. Puppels, “Investigation of the potential of Raman spectroscopy for oral cancer detection in surgical margins,” Laboratory Investigation 95, 1186–1196 (2015).

Nat. Rev. Cancer (1)

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12, 363–368 (2012).

Opt. Eng. (1)

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51, 111711 (2012).

Opt. Express (1)

Optik (1)

G. Einstein, K. Udayakumar, P. R. Aruna, D. Koteeswaran, and S. Ganesan, “Diffuse reflectance spectroscopy for monitoring physiological and morphological changes in oral cancer,” Optik 127, 1479–1485 (2016).

Oral Oncol. (2)

N. G. Maher, H. Collgros, P. Uribe, S. Ch’ng, M. Rajadhyaksha, and P. Guitera, “In vivo confocal microscopy for the oral cavity: Current state of the field and future potential,” Oral Oncol. 54, 28–35 (2016).
[Crossref] [PubMed]

K. H. Awan, P. R. Morgan, and S. Warnakulasuriya, “Evaluation of an autofluorescence based imaging system (VELscope™) in the detection of oral potentially malignant disorders and benign keratoses,” Oral Oncol. 47(4), 274–277 (2011).
[Crossref] [PubMed]

Oral Surg. Oral Med. Oral Pathol. Oral Radiol. (2)

K. K. McNamara, B. D. Martin, E. W. Evans, and J. R. Kalmar, “The role of direct visual fluorescent examination (VELscope) in routine screening for potentially malignant oral mucosal lesions,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 114(5), 636–643 (2012).
[Crossref] [PubMed]

B. H. Malik, J. M. Jabbour, S. Cheng, R. Cuenca, Y.-S. L. Cheng, J. M. Wright, J. A. Jo, and K. C. Maitland, “A novel multimodal optical imaging system for early detection of oral cancer,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 121(3), 290–300 (2016).
[Crossref] [PubMed]

Photodiagn. Photodyn. Ther. (2)

Z. Hamdoon, W. Jerjes, G. McKenzie, A. Jay, and C. Hopper, “Optical coherence tomography in the assessment of oral squamous cell carcinoma resection margins,” Photodiagn. Photodyn. Ther. 13, 211–217 (2016).
[Crossref] [PubMed]

A. L. N. Francisco, W. R. Correr, L. H. Azevedo, V. G. Kern, C. A. L. Pinto, L. P. Kowalski, and C. Kurachi, “Fluorescence spectroscopy for the detection of potentially malignant disorders and squamous cell carcinoma of the oral cavity,” Photodiagn. Photodyn. Ther. 11(2), 82–90 (2014).
[Crossref] [PubMed]

Other (3)

T. Meyer, O. Guntinas-Lichius, F. von Eggeling, G. Ernst, D. Akimov, M. Schmitt, B. Dietzek, and J. Popp, “Multimodal nonlinear microscopic investigations on head and neck squamous cell carcinoma: Toward intraoperative imaging,” 9, Head Neck 35, A. Chen, Ed., E280–E287 (2012).

R. Pal, J. Yang, D. Ortiz, S. Qiu, V. Resto, S. McCammon, and G. Vargas, “In-Vivo Nonlinear Optical Microscopy (NLOM) of Epithelial-Connective Tissue Interface (ECTI) Reveals Quantitative Measures of Neoplasia in Hamster Oral Mucosa,” 1, PLoS ONE 10, W.-C. Chin, Ed., e0116754, Public Library of Science (2015).

J. L. Jayanthi, N. Subhash, M. Stephen, E. K. Philip, and V. T. Beena, “Comparative evaluation of the diagnostic performance of autofluorescence and diffuse reflectance in oral cancer detection: a clinical study,” 10, J. Biophoton. 4, H. J. C. M. Sterenborg, N. Bendsoe, and K. Svanberg, Eds., 696–706 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Image of 1951 USAF neagative resolution target taken through a static fiber bundle (A). Image of the same target taken with a vibrating fiber bundle in order to increase the spatial sampling, providing an improvement in acievable resolution (B). Image taken with fiber bundle removed, showing the limit of resolution of the system without the fiber bundle (C).
Fig. 2
Fig. 2 Full field image of 1951 USAF neagative resolution target taken through a static fiber bundle and the foveated objective, with red box displaying the higher resolution features and green circles indicating defects of the fiber bundle (A). Image of the same target taken with the vibrating fiber bundle and foveated obejctive in order to increase the spatial sampling, providing an improvement in acievable resolution and overall smoothing of image defects from the fiber bundle. The red box displays the higher resolution features while the green circles illustrate the reduction in the effects of the defects of the fiber bundle (B).
Fig. 3
Fig. 3 Schematic of the completely integrated device with foveated objective on the left combined with the vibrating fiber bundle. A beam splitter then splits the signal to the confocal microscope and IMS. The images are then displayed on a laptop monitor.
Fig. 4
Fig. 4 Schematic view of the silver foveated objective, the gray 3D printed mount, and the black fiber bundle (A). Cross section view, displaying the lenses within the foveated objective and the spacing of the objective to the fiber bundle (B). Photograph of the foveated objective held in the mount attached to the fiber bundle (C). Isometric view of the 3D printed holding mount (D).
Fig. 5
Fig. 5 Comparison of images of fluorescent lens paper imaged by the confocal microscope through a fiber bundle. Images acquired through the bare fiber bundle (A) and through the foveated objective coupled to the confocal microscope (B) show an observable increase in field of view
Fig. 6
Fig. 6 Full field image of resolution target imaged through the foveated objective by the IMS with all wavelengths represented, where the scale bar is equivalent to 500 μm (A). Images of the resolution target at eight different wavelengths, pseudocolored to match the represented wavelength, where the scale bars are equivalent to 500 μm (B).
Fig. 7
Fig. 7 Images acquired by the endomicroscope of a biopsy showing invasive oral SCC in widefield spectral mode when illuminated by the white and blue LEDs, where the scale bars are equivalent to 500 μm. Beneath the images are plots of the associated spectra of these two images, which were found by taking the average of the measured spectra of the an area 1 mm in diameter at the center of the fields, (indicated by an orange circle). The vertical axis of the chart is intensity (arbitrary units) and the horizontal axis is wavelengths (from 460 nm to 660 nm) (A). Reflectance images of the biopsies at eight different wavelengths, (pseudocolored to match the represented wavelengths) showing enhanced viszualitzion of vessels at 548 m, and 575 nm (areas identified by the red circles), where hemoglobin absorption is maximal - the scale bars are equivalent to 500 μm. (B).
Fig. 8
Fig. 8 Scatter plot of the reflectance signal intensity ratio of 545/575 nm from different biopsy sites (both normal and from cancerous oral lesions). The error bars represent the standard deviation of the average ratios, which were measured in approximately twenty points on each biopsy.
Fig. 9
Fig. 9 Widefield and confocal mode images of two ex vivo biopsy samples acquired by the system (A) A widefield image of a negative for tumor sample from the buccal site. (B) confocal image of the same sample treated with proflavine with a red arrow indicating individual cell nuclei. (C) Widefield image of biopsy taken from a buccal tumor. (D) Confocal image of the biopsy stained with proflavine, illustrating irregular formations, suggesting neoplasm.

Tables (1)

Tables Icon

Table 1 Basic optical parameters of the Foveated Objective.

Metrics